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PSEUDOPARABOLIC PARTIAL DIFFERENTIAL EQUATIONS*

R. E. SHOWALTERt AND T. W. TING:

1. Introduction. Various physical phenomena have led to a study of a mixed
boundary value problem for the partial differential equation

(1.1) -diu- rlau kau,

where A denotes the Laplacian differential operator. The initial and boundary
conditions for this equation are the same as those posed for solutions of the
parabolic equation

(1.2) --u kAu

which is obtained from (1.1) by setting r/= 0. The class of equations which are
considered here will be called pseudoparabolic, not only because the problems
which are well-posed for the parabolic equation are also well-posed for these
equations, but because the generalized solution to the parabolic equation (1.2)
satisfying mixed initial and boundary conditions can be obtained as the limit of
a sequence of solutions to the corresponding problem for equation (1.1) corres-
ponding to any null sequence for the coefficient q. That is, a solution ofthe parabolic
equation can be approximated by a solution of (1.1).

More statements on the comparison of these problems will appear in the
following.

A study ofnonsteady flow ofsecond order fluids [36] leads to a mixed boundary
value problem for the one-dimensional case of (1.1) for the velocity of the fluid.
In [36 the role of the material constant r/was examined, for this constant dis-
tinguishes this theory of second order fluids from earlier ones. This principal result
of interest here is that the mixed boundary value problem is mathematically
well-posed.

Equations of the form (1.1) are satisfied by the hydrostatic excess pressure
within a portion of clay during consolidation [35]. In this context the constant r/
is a composite soil property with the dimensions of viscosity. If one assumes that
the resistance to compression is plastic (proportional to the rate of compression),
then equation (1.1) results with r/> 0. However the classical Terzaghi assumption
that any increment in the hydrostatic excess pressure is proportional to an incre-
ment of the ratio of pore volume to solid volume in the clay leads to the parabolic
(1.2).
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As a final example of the physical origin of (1.1) we mention the theory of
seepage of homogeneous fluids through a fissured rock [4]. A fissured rock consists
of blocks of porous and permeable material separated by fissures or "cracks."
The liquid then flows through the blocks and also between the blocks through
the fissures. In this context an analysis of the pressure in the fissures leads to (1.1),
where r/represents a characteristic of the fissured rock. A decrease in q corresponds
to a reduction in block dimensions and an increase in the degree of fissuring, and
(1.1) then tends to coincide with the classical parabolic equation (1.2) of seepage
of a liquid under elastic conditions.

The equation which we shall consider here is an example of the general class
of equations of Sobolev type, sometimes referred to as the Sobolev-Galpern type.
These are characterized by having mixed time and space derivatives appearing in
the highest order terms of the equation. Such an equation was studied by Sobolev
34], and he used a Hilbert space approach to determine that both the Cauchy
problem on the whole space and the mixed boundary value problem on a bounded
domain are well-posed for the equation

(.) I/Xu) + (u) 0.

This equation can be handled by the methods considered here.
The methods of generalized functions 11], 16] have been used on various

classes of Sobolev type equations. In particular Galpern [15] investigated the
Cauchy problem for a system of equations of the form

(.4 M t, + C t, 0,

where is a vector of functions and M and L are quadratic polynomial matrices
depending on t. An analysis by Fourier transforms was used to assert existence
and regularity of a solution to this system. Kostachenko and Eskin [24] discussed
correctness classes of generalized functions for (1.4) with constant coecients.

Zalenyak [41 obtained a class of solution of (1.3) satisfying a homogeneous
initial condition and then [42] exhibited a class of solutions for the more general
equation

i(ail aiu u u
+ + b(, + c(, + (,u o

in which the a are constants.
In the following we shall consider equations of the form

M[+ Lu= f

for which M and L are second order differential operators in the space variable
and M is elliptic. These operators are independent of but contain variable
coefficients.

This class of equations contains (1.1), and the original Sobolev equation (1.3)
can be handled similarly. A generalized mixed boundary value problem for this
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equation will be solved in the Hilbert space H which is the Sobolev space of
functions having square integrable first order derivatives and which vanish on
the boundary in a generalized sense. The Sobolev spaces are introduced in 2
along with other information that will be used in the following development.
The statement of the generalized form of the problem and of the existence and
uniqueness of the solution are the content of 3.

The proofofthe existence-uniqueness theorem comprises 4, and the regularity
of the solution is demonstrated in 5. In particular it is shown that the solution is
just as smooth as the initial function and the coefficients of the equation allow
it to be. These results depend on the well-developed theory ofthe Dirichlet problem
by means of L2 estimates.

The asymptotic behavior of solutions is discussed in 6 where it is shown
that the solution decays exponentially along with all first order space derivatives.
Section 7 extends the existence, uniqueness and regularity results to the non-
homogeneous equation with a time-varying boundary condition.

The results contained in 8 account for the name pseudo-parabolic which
we have given to the equation under consideration. In particular it is shown that
the solution of (1.1) depends continuously on the coefficient r/, and that if r/is
close to zero then the corresponding solution of (1.1) is arbitrarily close to the
solution of (1.2) which satisfies the same initial and boundary data.

Finally in 9, a similar problem is posed and solved in the Schauder space
of functions with uniformly H61der-continuous derivatives. It is shown that the
problem is well-posed in this Banach space, and the same method of constructing
a solution as used in the Hilbert space development is applicable here. This
section is independent of the previous material, but it depends on the solution of
the Dirichlet problem by means of the estimates of Schauder.

2. Preliminary material. In this section we shall recall some standard
definitions and notations for various spaces of functions. In particular we shall,

discuss the domain G associated with the problem we are to consider as well as
the Sobolev spaces of functions defined on G.

R" will denote the n-dimensional real Euclidean space with points specified
by coordinates of the form

x (x, x, ..., x,).

For any open set f in R" we shall denote by C"(f) the set of all functions defined
on f which have continuous derivatives of all orders up through the integer m.
By C"() we shall mean those elements of cm(f) for which all the indicated
derivatives are uniformly continuous and hence have unique continuous extensions
to the boundary of fL and we set

The support of a function on f is the closure of the set of points for which the
function is nonzero. The set consisting of those functions in C(f) with compact
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support contained in f is denoted by C(). Each of the sets defined above is a

linear space under pointwise addition and scalar multiplication of the elements.
The eth derivative of a function q in cm(f) is denoted by

D=q)
ax{’ax cx]"

q)’

where (a l, 2, (n) is an n-tuple of nonnegative integers and the order of
this derivative is denoted by

The domain G associated with the problem is a bounded open point set in R"
whose boundary cG is an (n 1)-dimensional manifold with G all on one side
of G. With regard to the degree of smoothness of the boundary we shall say that
cG is of the class C for a positive integer rn if at each point of cG there is a neigh-
borhood f in which cG has a representation of the form

Xi g(x1, Xi-l,Xi+l, Xn),

where g is in cm(f).
We shall make use of a generalization of the concept of differentiation in

order to obtain a large class of differentiable functions. Let LZ(G) denote the
space of (equivalence classes of) square-summable functions on G.

DEFINITION 2.1. For each integer k >= O, Hk(G) is the set of (equivalence
classes of) real-valued measurable functions f on G for which the eth derivative

Df belongs to L2(G) whenever I1 =< k.
The linear space Hk(G) has a norm and scalar product defined on it by

1/2

and

(f, g) f (Dy. Dg),

respectively. From the definition of Hk(G) and the completeness of Lz(G) it follows
easily that Hk(G) is complete with respect to the indicated norm and is hence a
Hilbert space.

We shall want to distinguish those elements of Hk(G) which vanish on cG
in some generalized sense. This is accomplished as follows.

DEFINITION 2.2. For each integer k >= O, Ho(G) is the closure ofC(G) in Hk(G).
Thus H(G) is a closed subspace of Hk(G). It can be shown that if cG is of

the class Ck and if qo belongs to Ck- l(cl(G)), then q0 is in H(G) if and only if q
is in Hk(G) and Dq0 0 on OG whenever ]l =< k 1. Furthermore it can be shown
that an element f in Hk(G) is in H(G) if and only if Df belongs to H(G) for all e

with [l =< k- 1.
It is worthwhile to note that C(G) is not in general a dense subset of Hk(G),

although it is true that H(G)= H(G)= LZ(G) since C(G) is dense in L2(G).
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Also, we note that most rules of the calculus can be extended to generalized
derivatives, [1 ], 12].

The following result is known as Poincare’s inequality and relates the LZ-norm
of a function to that of its derivatives.

PROPOSITION 2.1. There is a constant K >= 1 depending only on G such that
for all p in H(G)

i-1 X/q9
The proof of this proposition [17, pp. 181-182] depends only on integration
by parts.

Another useful result for domains with smooth boundaries is the Sobolev
lemma. Letting [y] denote the greatest integer less than or equal to the real number
y, we have the following uniform bound on functions in H(G) when k is sufficiently
large, [12, pp. 282-284].

PROPOSITION 2.2. Let c3G be of class C and k In/2] + 1. There is a constant

Cs (depending on G) such that for any u in Ha(G) and almost all x in G we have

lu(x)l <= Cl ull.
COrOllARy. U u is in H(G), k In/2] + 1, then u can be identified with a

unormly continuous function u(x) on G for which the above inequality is true.

3. The boundary value problem. In the following we shall let M and L denote
differential operators of second order of the form

i=1 j=l __mij(x) + m(x)

(3.2) L: i ii=1j=l
UAj i+ +

i=1

The (classical) problem under consideration is that of finding a function u(x, t) of
the space and time variables x and which satisfies the partial differential equation

vanishes on the boundary of the domain G for all in R, and at 0 is equal to
a given function uo(x) of the space variable x.

The operators M and L are meaningful for functions in C(G), but we shall
extend the domain ofthese operators in a meaningful way. This will be accomplished
by using the Lax-Milgram theorem on bounded positive-definite bilinear forms
in Hilbert space to obtain the corresponding Friedrichs extensions of these
operators. The domains of the extended operators are dense subsets of H(G),
and it is in this space that the generalized boundary value problem will be form-
ulated. We shall seek a solution u(x, t) belonging to H(G) for each fixed in R,
and this will provide the generalization of the vanishing on the boundary of G
in view ofthe remarks in the previous section on the boundary behavior offunctions
in H(G).
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The following properties of the operators M and L will be assumed.
PROI’ERTY 1. (P1). The coefficients occurring in (3.1) and (3.2) are bounded

and measurable, and re(x) >= 0 for x in G.
PROVERT 2. (P2). M is uniformly strongly elliptic on G. Hence there is a

constant mo > 0 for which

i,j=l i=1

whenever (,..., ,)is in R" and x is in G.
POPERTV 3. (P). For 1 i,j n, lj and mj belong to H2(G).
This last assumption is used to relate the operators M and L to the respective

bilinear forms

BM(, m ’ oi,j
and

+ )o

for , in C(G). It follows from an integration by parts and (P) that

and

Bu((, 0) (Mq, )o

BL(q, ) (Lq,

The generalized problem which we shall eventually formulate will be stated
in terms of the bilinear forms BM and BE. For this reason there is no necessity for
the assumption (P3), and it will be needed only when we wish to consider the
linear operators M and L for which it is necessary to be able to differentiate the
higher order coefficients.

The inequalities we derive now essentially characterize the bilinear forms
BM and BE. Letting q0 and denote arbitrary elements of C(G), we have from
the Cauchy-Schwarz inequalities

IBM(qO, q)l (mijqx‘1, Oxi)O + (mq), )o
i,j=

1/2

i=1

1/2

,i=1

where N maxl=i,‘1=, { mi‘1 m oo}. Hence there is a constant K > 0 such
that

(3.3) IBM(q), O)l <= Km P 0111
for all qg, ff in C(G). A similar argument will verify that for some K > 0 we have

(3.4) IBL(qg, ff)l <= Kl[ qgll 11.
Hence BM and BL are defined by continuity for all qg, ff in H(G).
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From the ellipticity condition (P2) we have for q in C(G)

n(qg, qg) >= mo IIqxi .
i=1

Poincare’s inequality then yields

mo

so we have

Bu(q, q)=> - q, + q .
i=1

Hence there is a constant k > 0 such that

(3.5) Bu(q, (p) k (.p

for all q9 in C(G).
We shall demonstrate that we may assume without loss of generality that L

is elliptic and that

(3.6) BL(qg,) k/llqgll2

for some k > 0 and all q in C(G). In particular, u(x, t) is a solution of the problem
if and only if v(x, t) e-tu(x, t) satisfies the equation

M -- + (aM + L)v=O.

From (3.4) and (3.5) it follows that (3.6) is true for aM + L instead ofL if we choose
a >_ (Kl + kl)/km. That is, (L, qg, P)o > -Kt qg[I , so

((aM + L)qg, q)o >= (akin Kl)llqgll >= k, llqll.

The ellipticity is verified as follows" letting sup {l/ij(x)l "x G, 1 < i,j <= n},
we have

i=1 j=l

i=1

in2 (i)2.
i=1

1/2

Hence

i=lj=l i=1
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so we have

i=lj=l i=1

for all x in G, in R", so aM + L is uniformly strongly elliptic for sufficiently
large. As stated above, we shall hereafter assume L is elliptic and that (3.6) is
satisfied.

We are ready to obtain the extensions of M and L by means of the Lax-
Milgram theorem [25, p. 171]. This asserts that there exists a linear transformation
Mo with domain D(Mo) dense in H(G) for which BM(q, ) (Moqg, )o whenever
q9 is in D(Mo) and in H(G). The range of Mo is all of H(G), and Mo has an
inverse which is a bounded mapping of H(G) into H(G). From (P3) it follows that
(mqg, )o (moqg, )o for all qg, in C(G), so mo is a (weak) extension of M,
also known as the minimal operator associated with M, or the Friedrichs extension.
See [25, p. 173], [31, pp. 329-335] and [21]. The discussion above can be duplicated
to obtain the Friedrichs extension Lo of L with domain D(Lo).

The generalized initial boundary value problem may now be formulated in
H(G) as follows" Find a strongly differentiable [18, p. 59] mapping u(t) of R
into H(G) such that

(3.7) Bt(u’(t), qg) + B(u(t), qg) 0

for each in R and q9 in C(G) with u(0) Uo, where Uo is a given "initial" function
in H(G).

The proof of the following existence-uniqueness theorem is the context of
the next section.

TnEORE 3.1. Assume (Px) and (P2). There is a unique bounded linear operator B
on H(G) which extends m Lo. If Uo is an element of H(G), then there is a
unique strongly differentiable mapping u(t) of R into H(G) such that

(3.8) u’(t) u(t)

for all in R and u(O) Uo.
COROt.ARY 3.1. The vector-valued function u(t) satisfies (3.7).
COrOLlARY 3.2. If U(t) belongs to D(Lo) then if(t) is in D(mo) and

(3.9) mou’(t) + Lou(t) 0

for all in R.

4. Existence and uniqueness. The operators Mo and Lo are bijections onto
H(G) from D(Mo) and D(Lo) respectively. We shall show that the bijection
M 1Lo from D(Lo) onto D(Mo) can be uniquely extended as a bounded linear
operator from H(G) onto itself and that the appropriate exponential of this
bounded operator provides the unique solution of the problem in H(G) as stated
in3.

We shall verify that the bijection M-1Lo is bounded with respect to the
norm I1" II1. If cp is in C(G) it follows from (3.4) and (3.5) that

km Mff Loq9 I =< (Loq, Mff ’Loqg)o _<_ Kllqgl, [IM ’Loqgl[,
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so we have

(4.1) IIM Loqoll, (Kl/km)llq)ll.

The constant Kl/k depends only on L, M and the domain G, so (4.1_) is true for
all q9 in C(G). Since this set is dense in H(G) it follows that M 1Lo is bounded
and has a unique extension to a bounded linear operator on H(G). We shall let
B denote the extension of -Mff 1Lo and remark that Lo is defined only on D(Lo)
while B -M- 1Lo has been defined on all H(G) by continuity.

By an elementary argument we can verify that the range of B is all of H(G)
and that its inverse is bounded. Letting q belong to C(G) we have from (3.6)
and (3.3)

k L 1Moq) (Mop, L 1Moq))o

so we have

Kmllq9 Ix IILff Moq9 ,

IL 1Moq9 I1 (Km/kl)llqglll

for all q9 in C;(G); hence B-1 -LIMo is bounded from D(Mo) to D(Lo).
Since D(mo) is dense in H(G), B is onto H(G). In particular if g is in H(G) there
is a sequence {g.} from D(Mo) which converges to g in the topology of H(G).
The boundedness of B-1 on D(Mo) implies that the sequence f, B-lg, is
Cauchy in D(L), hence converges to some element f in H(G). From the continuity
of B we conclude

B(T) lim {B(f.): n } g.

The construction of B is indicated by Fig. 1.

H(G)
B

H(G)
isomorphism

-MLoO(Lo) O(Mo)

Lo -Mo
L "C(G) ,H(G) C(G)

InJection injection

FIG.

From the boundedness of B we are able to construct the exponential of the
operator tB for each real number t. This will yield a one-parameter group {E(t)’t
in R} of bounded operators on H(G), and these will be used to construct the
solution of the generalized problem. For each real number t, define E(t) by means
of the power series

exp (tB) (tB)k/k !.
k=0
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Then E(t) is the limit in the uniform operator topology of(Ho(G)) of the sequence

(tBl/k!.
k=O

The convergence of this sequence follows from the completeness of the space
(H(G)) of bounded linear operators on H(G), and this is a consequence of
the completeness of H(G). By means of the classical arguments on the con-
vergence of power series with absolute values replaced by the norm [l" [11, we can
show that the indicated power series in tB is convergent for all in R and that
the convergence is uniform on compact subsets of R. In this manner we obtain
for each real the bounded linear operator E(t) on H(G) whose norm satisfies

IIe(t)ll exp (Itl IIBII ,).

For the purpose of reference we collect the properties of this group of
operators on H(G)"

(a) {E(t):tinR} isanAbelian group, and E(tl + t2) E(tl)E(t2),E(O) I.
(b) Each E(t) is a bounded linear operator on H(G) and the dependence

on is continuous in the uniform operator topology.(4.2) (c) E(t) is differentiable in the uniform operator topology, and

E’(t) B. E(t).

The group of bounded operators E(t) can now be used to construct our weak
solution. Let Uo be the given "initial" function in H(G) and define

(4.3) u(t) E(t)Uo

for each in R. From (4.2 c) it follows that

(4.4) u’(t) S. u(t)

in the strong topology of H(G). Furthermore we see from (4.2 a) that u(0) Uo
and from (4.2 b) that u(t) is a continuous function of in the strong topology
of H(G).

We shall verify that the solution given by (4.3) is the only such solution to
the generalized problem. Letting u(t) denote any such solution, we consider the
real-valued function

a(t) (u(t), u(t))

By the Cauchy-Schwarz inequality and (4.4) we have

la’(t)] 21(Su(t), u(t))ll <= 211Sllla(t)

for all real t. This yields the estimate a(t) =< exp (211BII llt])a(0) from which we have

(4.5) Ilu(t)[I =< [lu(0)[[1 exp (llSll lltl).

An immediate consequence of (4.5) is the uniqueness of the solution, for the differ-
ence of any two solutions is a solution which is initially zero, hence zero for all
tinR.
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Finally we must verify (3.7). Since u(t) belongs to H(G), there is a sequence
{q,} in C(G) converging to u(t). The boundedness of B on H(G) implies that
{Bq,} converges to u’(t). But Mo(Bq,) + Lo(q,) 0 for all n, so we see

BM(u’(t), q) + BL(u(t), q) lim Bt(Bq., q) + lim B.(q., q)

lim [(Mo(Bq.), q)o + (Loq., q)o] 0.

Having obtained the weak solution to the generalized problem under con-
sideration, we shall relate the extended operators Lo and Mo on their respective
domains to the operators L1 and M1 which are just the extensions of L and M
respectively to the domain HZ(G) in the sense of generalized derivatives. Hereafter
we shall always assume (P3). An integration by parts shows that for all f in
H(G) f3 HZ(G) and g in H(G) we have

(Mf, g)o BM(f, g),

and from the characterization ofD(Mo) in the Lax-Milgram theorem it follows that

H(G) HZ(G) c D(Mo)

and that Mo(f) M(f) when f belongs to H(G) H2(G). Likewise we have

H(G) f’l H2(G)c D(Lo)

and Lo L1 on H(G) H2(G).

5. Regularity of the weak solution. The group of operators {E(t):t in R} has
enabled us to construct a solution by (4.3) of the generalized problem in the weak
sense of (3.7). We shall in this section show that each of the subspaces H(G)
f3 HP(G) remains invariant under the family {E(t)}, where the integer p depends on
the differentiability of the coefficients in L and M as well as the boundary of G.
These results are based on the regularity problem for the Dirichlet problem.
The invariance of these subspaces implies that the solution u(t) given by (4.3) is
just as smooth in the L2 sense as is the initial function Uo. In fact the special case
L M possesses the solution u(x, t)= e-tuo(x), and this example shows that
we may not in general expect the solution to be more smooth in the space variable
than is the initial function. Thus the invariance of the subspaces is the strongest
possible result. Finally we shall show that under certain smoothness conditions
on the coefficients, boundary and initial function Uo, the solution is an analytic
function of the time variable and is uniformly continuous (or differentiable) in
the space variable.

In order to show that B leaves invariant the spaces H(G) (’1 HP(G) we shall
make use of the results on the Dirichlet problem as presented in 12, pp. 270-307].
The following criterion will be used to specify the assumptions of smoothness on
the generalized problem.

DEFINITION 5.1. The generalized initial boundary value problem (3.7) is
p-smooth for the integer p _> 2, if
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(i) the coefficients in (3.1) and (3.2) satisfy for 1 < i;j <= n; lij,
Cp- l(cl(G)); m, l, li e Cp- 2(cl(G)), with m(x) >= 0 for x in cl(G);

(ii) M and L are uniformly strongly elliptic in G;and
(iii) the boundary ?G is of class Cp.
From [12] there is then for any f in Hp-2(G) a unique pair u, v in H(G)

0 H(G) for which Lou f and Mov f.
Assume that the generalized problem is p-smooth and let v belong to

H(G) N HP(G). Lo(v) is in Hp- 2(G), so there is a unique u in H(G) N HP(G) for
which Mou -Lo(v). Thus u -M 1Lov is in H(G) N HP(G), so we see that
B maps H(G) N HP(G) into itself. Furthermore B is onto H(G) n HP(G) from
itself, since we need only solve the Dirichlet problem

Lov Mou, v in H(G)

for a given u in H(G)n HP(G) to obtain the v in H(G)n HP(G) for which
u -M ILov. We conclude that B maps each of these subspaces Ho(G) n nq(G)
onto itself for p >= q _>_ 2.

Remark. We shall hereafter assume that the problem is at least 2-smooth.
It follows that iff is in H(G) there is a unique v in H(G) N H2(G) with Mov f;
hence the domain D(Mo) is contained in H(G) N H2(G), and by a previous remark
thus equal to H(G) n H2(G). Similarly, D(Lo) H(G) n HZ(G). We collect these
results in the following statement.

PROPOSITION 5.1. Let the generalized problem be p-smooth for some integer
p >= 2. Then the domains D(Lo) and D(Mo) of the respective Friedrich’s extensions
coincide with H(G) n H2(G) and the bounded extension B of -M XLo on H(G)
leaves invariant each of the subspaces H(G) n Hq(G), where 2 q <= p.

We shall make use of the closed graph theorem [18, p. 47] to show that

B’H(G) H(G)- H(G) n HP(G)

is bounded with respect to the norm p. The linear operator B is said to be closed
if whenever Xn XO and Bxn --, x it is necessarily true that x Bxo. The closed
graph theorem asserts that any such closed linear operator is necessarily bounded;
its proof depends on the completeness of the space. We remark that since
H(G) n HP(G) is a linear subset of the Hilbert space HP(G) and since IIx -<_
on this space, H(G) n HP(G) is a (complete) Hilbert space with the norm I1.

We shall have need of similar results as this on the boundedness of a linear
operator with respect to stronger topologies on subspaces, so we prove a funda-
mental lemma which with the above discussion implies that B is bounded on
H(G) n H’(G).

FUNDAMENTAL LEMMA. Let Xi (i 1,2) be Banach spaces with respective
norms l. li. Let Yi be a subset of Xi which is a Banach space with norm II" IIg and
assume lyl _-< Ilyllg when y belongs to Yi. Let T be a bounded linear transformation
from X to X2 such that T maps Yx into Y2. Then T is bounded from YI to Y2.

Pro@ We need only show that T is closed as a transformation of Y into Y2.
Hence let {y,:n >= 2} be a sequence in Y for which IIY.-Yo[l---,0 and
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Zy. Y 2 0 as n m, where Yo e Y1 and Y e Y2. Since

lY TyoI2 <= lYa TynI2 + IT(y. Yo)12

<= lYl TY,]2 + ITIly, Yoll

=< IlYt ZYllz / ITI IlY- Yollx,

we have yl Tyo, so T is closed, hence bounded.
The significance of the boundedness of B on H(G) f’l HP(G) is that the group

of operators {E(t)’t in R} is bounded on H(G) f’l HP(G). We state this as the main
result of this section.

THEOREM 5.1. If the generalized problem is p-smooth, then the group of operators
{E(t)’t in R} leaves invariant the subspace H(G) f) H(G). For each in R, E(t) is a
bijection of H(G) f] HP(G) onto itself and is bounded with respect to the norm [. IIp.

In fact we could duplicate the discussion on the construction of the E(t) but
replace the norm I1" II1 by [[. p since B is bounded with respect to II" lip and thus
obtain the corresponding results with H(G) replaced by H(G) f) HP(G).

Since we always assume p _>_ 2 it follows that H(G) f) H2(G) is invariant
under {E(t)’t in R}. Hence ifuo is in H(G) f’) H2(G) the solution u(t) ofthe equation
(4.4) as given by (4.3) belongs to H(G) tq H2(G) for each in R. Furthermore it
follows from (4.4) and the invariance ofH(G) f’) H2(G) under B that u’(t) belongs to
H(G) f’) HE(G). But this is the domain of the extended operators Mo, so we may
apply M0 to both sides of (4.4) to obtain the equation

(5.1) Mou’(t) / Lou(t) O.

That is, Mou’(t) and LoU(t) are both in H(G), so (5.1) is equivalent to (3.7).
Since the group ofoperators constructed above leaves invariant the subspaces

Ho(G) f’) H(G) for p __> q __> 2 under the assumption of p-smoothness, it follows
that this group also leaves invariant each of their (point-set) complements. That is,
if Uo is in H(G) f’) H- I(G) but not in HP(G) then the same is true of u(t) for each
in R. Thus our transformation group preserves smoothness but does not improve
it.

We can use the Sobolev lemma to obtain a sufficient condition for the solution
u(t) to be a continuous function of the space variable and infinitely differentiable
in the time variable.

PROPOSITION 5.2. Let the generalized problem be p-smooth and Uo belong to
H(G) f) HP(G), with p >= In/2] + 1. Thenfor each in R, u(t) can be identified (a.e.)
with a uniformly continuous function of x, denoted by u(x, t), and the mapping- u(x, t) is infinitely differentiable. The function u(x, t) vanishes identically on the
boundary c3G.

Proof. From Theorem 5.1 it follows that u(t) belongs to H(G) f] HP(G) for
every in R, hence by Sobolev’s lemma it can be identified with a uniformly
continuous function u(x, t) on G. Also from Sobolev’s inequality it follows that if
6#0

13- l(u(x, + 6) u(x, t)) B u(x, t)l

1(6-1(E(6)- I)- B)u(x, t)]

<- Csll(6-1(E(6)- I)- B)u(t)llp,
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where the constant C depends only on n and cG. Since the group {E(t):t in R} is
infinitely differentiable in the uniform operator topology induced by [1" p and its
kth derivative is Bk. E(t), the last term in the above inequality converges to zero as
6 0. This establishes the differentiability of u(x, t) and the equality

--u(x, t) B. u(x, t)t

for each x in G. A repetition of this argument will show that u(x, t) is infinitely
differentiable with respect to and that its derivatives agree with the corresponding
derivatives of u(t) in H(G) N HP(G).

In fact we see that u(x, t) is analytic in t, for the remainder term

(n+
R,(x, t) ct, + u(x, T)t"+ X/(n + 1)!

(where [TI < [t[) of the Taylor formula converges to zero as n increases. That is,

JR,(x, t)[ [((tB)"+ 1/(n + 1)!)U(X, T)[

<= Cl (tB)"+ 1/(n + 1)!111 Uo Ipexp(]ltB

by Sobolev’s lemma, and the convergence of the power series for exp(tB) in
(H(G) (3 HP(G)) implies that its (n + 1)st term converges to zero in L#(H(G)
N HP(G)).

Finally we note that the uniform continuity of u(x, t) in the space variable and
its belonging to H(G) imply that it vanishes on the boundary.

COROLLARY. The solution u(t) of the generalized problem can be identified with
a function u(x, t) in C"(cl(G)) for each in R, where m p In/2] 1. Hence a
classical solution of the problem exists if p >= In/2] + 3.

6. Asymptotic behavior. We shall investigate the asymptotic behavior of the
solution of the problem under consideration. The additional assumptions of
symmetry ofthe operators or ofconstant coefficients are reasonable from the stand-
point of physical motivation. We shall show in this section that under the appro-
priate conditions the solution u(t) of our problem decays exponentially along with
its derivatives up through a specified order. Furthermore we shall obtain more
regularity type results which will imply that if the initial function has a given
number of derivatives vanishing on the boundary then the solution has this same
property.

Assume throughout the remainder ofthis section that M is symmetric and that
the statements (P1.) and (P2) of 3 are valid. By letting Uo in H(G) be arbitrary,
it follows from the strong differentiability of u(t) and the symmetry of the bilinear
form BM on H(G) that the real-valued function

7(t) BM(u(t), u(t))

is continuously differentiable and that

1/27’(t) Bt(u’(t), u(t)).
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From (3.7), (3.6) and (3.3), respectively, we see that

1/2’(t) (u(), u(t))

<= kllu(t)lli <= kl/K.#(t).

Hence for all > 0 we have

7(t) 7(0) exp (- 2k/Kmt).

Using (3.5) and (3.3) we then obtain the estimate

(6.1) Ilu(t) I1 <-_ (Km/km) 1/2 Uo exp(-k/Kmt)

for > 0. This estimate (6.1) implying the exponential decay of the solution and its
first derivatives in the sense of their LZ-norms is true in particular whenever M has
constant coefficients, for then it can be written in a symmetric form.

Because of the boundedness of the operator B on H(G) it’has made no differ-
ence whether we consider (5.1) or the equation

mou’(t) + Lou(t) O.

However it is apparent in the previous paragraph that the sign ofM is fundamental
in obtaining the estimate (6.1) describing the asymptotic behavior in the norm
for the solution. Without this sign consideration we would only obtain an estimate
of the form (4.5) which allows the solution to grow exponentially with the time
variable. The estimate (6.1) is valid only for >__ 0, but this is the case of physical
interest. The previously used estimate also implies that for <_ 0

(t) >__ (0) exp (-kl/Kmt)

and by (3.3) and (3.5) would follow

(6.2) u(t) (k,,/Km)’/2]lUoll exp

whenever _<_ 0. The inequalities (4.5), (6.1) and (6.2) describe the behavior of u(t)
in the large" the solution grows exponentially as --, oe and decays exponentially
as oe whenever M is symmetric.

We should note that in order for the above results to be significant we must
assume that (3.6) is true for the "original" operator L. That is, by replacing L by
aM + L we actually obtain the solution etu(t)which is bounded by (Km/km) 1/2 [[Uol
exp ((e- kl/Km)t). But our sufficient choice for given in 3 implies that

k/Km Kl/k,, + kl/k,, k/K,,, and this quantity will in general be positive.
In this event we would not be able to show that the solution decayed exponentially
for --, oe. An example ofthis is the case M dZ/dx2, L I and Uo(X) {sinh (x),
0<_x=<1/2; sinh(1-x), 1/2=<x__< 1}. The solution u(x,t)=Uo(x)e in H(G)
grows exponentially.

We will obtain some bounds on the higher order derivatives ofthe solution. To
do so let us assume that the generalized problem is (k + 1)-smooth, k being an
integer >_ 1, and that M and L have constant coefficients.

Our first task is to show that the spaceH+ k(G) is invariant under the group of
operators {E(t)}. Since B has already been shown to be bounded with respect to the
(k + 1)-norm, it will suffice to show that B maps H+k(G) into itself. Hence let be
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an element of C(G). The regularity results previously obtained imply that
belongs to Hl/k(G). If I1 =< k then since DO belongs to C(G) we have BDW/
belongs to H(G) f’l H2(G) and hence

Mo(BD/) + Lo(D) O.

But Mo and Lo have constant coefficients, so we see

Mo(BDW/) Lo(D) D(Lo/)

D(MoB)= Mo(DB/).

That is, we have

(6.3) D(B) B(D)

belongs to H(G) whenever Ia] =< k, so in particular BO must be in H +k(G). Since
B maps C(G) into H+k(G) and is bounded with respect to the (k + 1)-norm, it
follows that B maps all ofH +(G) into itself. Also it is easy to show that (6.3) is true
for all in H+; the argument is similar to that used below to verify (6.4).

We have shown that each E(t) mapsH/(G) onto itself and we shall verify that
when I1 <= k

(6.4) DE(t)/= E(t)D

for each k in H+(G). Let E.(t) denote the nth partial sum of the series which
defined E(t). Since D" commutes with B it also commutes with each E.(t). Thus for
any q9 in C(G) we have

(E(t)D’O, O)o lim (E.(t)DW/, (P)o lim (DE.(t)/, q)o

lim (E,(t), (- 1)llDqg)o (E(t), (- 1)llDqg)o

(De(t), qg)o.

The desired estimates on the derivatives of a solution to the generalized
problem are now easily obtained. Let Uo be given in H+k(G). Then u(t) E(t)Uo
belongs to H+(G) and from (6.4) it follows that Du(t) is the unique solution in
H(G) of the generalized problem with initial condition D’u(O) D’uo Hence we
have the estimate

(6.5) IIO=u(t) (Km/km)’/Z]lOuoll exp -mm
for all e with Il <= k.

From the inequality (6.5) one can proceed by means of the Sobolev lemma to
obtain pointwise bounds on the solution and various derivatives. The smoothness
ofthe problem now depends only on the differentiability ofthe boundary cG, so the
largest number k for which the solution belongs to H/(G) and (6.5) is true when
I1 -< k depends on the boundary c3G and the initial function Uo.
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7. The nonhomogeneous problem. The objective in this section is to extend the
previous results to the nonhomogeneous equation

(7.1) Mxu’(t) + L,u(t) f(t)

with a solution in H2(G) satisfying a nonhomogeneous time-varying boundary
condition. Note that for any v in H2(G) the expression Mv denotes the element of
H(G) defined as a linear combination of v and its first and second order strong
derivatives as specified by (3.1). It follows that the linear mapping v- Mv is
bounded from H2(G) to H(G), and we have shown that Mo is the restriction ofM
to the subspace H(G) H2(G). The corresponding statements hold for the
operator L.

We shall first prove the following result.
LEMMA 7. l. Assume that the (associated homogeneous) problem is 2-smooth and

f(t) is strongly continuous in H(G). There is a unique mapping - w(t) of R into
H(G) f"l H2(G) with a strongly continuous derivative which satisfies (7.1) and the
initial condition w(O) O.

Proof. The operator M is continuous from H(G) into H(G), so it
follows from the Fundamental Lemma of 5 that it not only maps H(G) onto
H(G) H2(G) but is continuous with respect to the stronger norm 2 on
H(G) H2(G). The strong continuity of f(t) implies that M af(t) is strongly
continuous with respect to ]]. 2. Also the continuity of the mapping - E() in
the uniform operator topology of C(H(G) H2(G)) implies that for each in R
the function

W- E( T)M f T)

from R into H(G) H2(G) is strongly continuous.
By means of the calculus of vector-valued functions [18, pp. 56-58] we have

given for each real number an element of H(G) 1 H2(G) denoted by

w(t) E(t T)M’f(T)dT.

The integral is taken as a limit of Riemann sums with respect to the norm []. []2.
From the differentiability of E(t) it follows that w(t) is differentiable with respect to
]]" ]]2 and that

w’(t) E’(t T)M if(T)dT + E(O)M f(t)

B. E(t T)M if(T)dT + M if(t).

The continuity and linearity of B then implies that

w’(t) Sw(t) + Mf(t).

Each term of this last equation belongs to H(G) H2(G) so we have

Mow’(t) + Low(t)= f(t),

where w(t) has a strongly continuous derivative in H(G) H2(G) and w(0) 0.
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The uniqueness of w(t) follows from the corresponding result for the homo-
geneous equation by linearity.

We shall proceed by means ofthis lemma to the case oftime-varying boundary
conditions. The boundary condition is given by a function fl(t) from R to H2(G)
with a strongly continuous derivative in the I1" 112-norm. The initial function Uo
belongs to H2(G), and these functions satisfy a compatibility condition

(7.2) Uo fl(0)e H(G).
Define a function in H(G) by

f(t) f(t)- Mlfl’(t)- L,fl(t)

for each in R. The continuity of fl and fl’ in H2(G) implies that F(t) is continuous in
H(G). From the preceding lemma we know that the function

v(t) E(t T)M 1F(T) dT

in H(G) HZ(G) satisfies the equation

mov’(t) + Lov(t)= F(t)

and the initial condition v(0) 0. Now we define the function

(7.3) u(t) fl(t) + E(t)(Uo fl(0))+ v(t)

which has a strongly continuous derivative in H2(G). Furthermore we may verify
directly that u(t) satisfies the requirements in the following theorem which is the
main result of this section.

THEOREM 7.1. Let the (associated homogeneous) problem be 2-smooth, f(t) be
strongly continuous in H(G), fl(t) have a strongly continuous derivative in H2(G), and
Uo be a function in H2(G) for which (7.2) is satisfied. There is a unique strongly
differentiable function u(t) in H2(G) given by (7.3) which satisfies (7.1) and for which
u(t) fl(t) is in H(G) for all tin R, and u(O) Uo.

Remark. In verifying (7.1) it is essential to note that MIM I on H(G) and
hence MIB -Lo on H(G) H2(G).

In the same manner we can verify the following result.
COROLLARY. Let the problem be p-smooth (p _> 2),f(t) be strongly continuous in

Hp- 2(G), fl(t) have a strongly continuous derivative in HP(G), Uo belong to HP(G) and
satisfy (7.2). Then there is a strongly differentiable mapping u(t) of R into HP(G)
satisfying (7.1) with u(t) fl(t) belonging to H(G) for all real and u(O) Uo.

8. Remarks on parabolic equations. In this section we shall briefly discuss an
interesting relationship between the solution uz(t) of the pseudoparabolic
equation

(8.1) (2Lo + I)u’(t) + Lou(t)= 0

and the solution u(t) of the parabolic equation

(8.2) u’(t) + Lou(t) O,

both of which satisfy the same initial condition and a homogeneous boundary
condition. From the very form of these equations one might expect that for 2
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sufficiently small the solution ux(t) is "close" to u(t) in some generalized sense. We
shall show that this is exactly the situation. This result is normally assumed in the
formulation of these boundary value problems from a physical model, since one
often takes u(t) as an approximation for ux(t) by assuming that the viscosity coeffici-
ent 2 is zero.

The generalized solution of the parabolic equation (8.2) can be constructed
by means of the semigroup theory of Hille and Yosida. This method is used in 25].
The extended operator Lo is such that its resolvent set contains all of the positive
real axis and furthermore

(2Lo + I)-l o _-< (21o + 1)-1
for all positive numbers 2 and a constant lo depending only on Lo and the domain G.
These are precisely the conditions for which the Hille-Yosida theorem can be used
to construct a strongly continuous semigroup of bounded linear operators
{S(t):t >__ 0} with the property that if u0 belongs to D(Lo)then the function

(8.3) u(t) S(t)Uo

is strongly continuous in LZ(G), belongs to D(Lo) and satisfies u(O) Uo, u’(t)
-Lou(t for > 0.

The semigroup {S(t)"t _>_ 0} is constructed as follows. Define for each number
2 > 0 an operator

L (1 + 2Lo)- 1Lo
and show that it is a bounded operator on LZ(G). Also for any v in D(Lo) we have

lim IlL;v Lovllo O.

Since Lx is bounded we can define for each number the bounded operator

E(t) exp (- tL).

It can then be shown that, for those => 0, E(t) converges to an operator S(t)
in the strong sense as 2 converges to zero, and that {S(t)’t >= 0} is the desired semi-
group.

The relation between the solution of the parabolic problem given by (8.3) and
the solution to the equation (8.1) is now clear. The operator L above can be
expressed as L M-1Lo for the special case Mo 2Lo + I which we are
considering, hence E(t) is for each 2 > 0 the group of bounded operators con-
structed in 4 for the equation (8.1). The solution to (8.1) is then given by

u(t) e(t)Uo.

In order for the parabolic problem to be meaningful we require that Uo belong to
D(Lo). The statement above that E(t) converges in the strong sense to S(t) is
exactly the result we seek. That is, for > 0 and Uo in D(Lo) we have

(8.4) lim u(t)- u(t)llo O,

and this is the precise form of the statement that u(t) is "close" to u(t) when 2 is
small.
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This result can be generalized to the equation

(2Mo + I)u’z(t) + Louz(t) O,

for which we have the following.
THEOREM. Assume that the generalized problem (8.5) is 3-smooth and Uo belongs

to H(G) f’) HE(G). Then for all >__ 0 the solution u(x, t) of the parabolic equation
(8.2) given by (8.3) is the I1" IIo-limit of the solutions u(x, t) of the pseudoparabolic
equation (8.5). (See [37].)

The proof ofthis result is modeled after the proofofthe Hille-Yosida Theorem
[39], but the details are considerably more involved since there are two different
operators to consider.

9. The Schauder estimates. We shall begin an independent but parallel study
of the problem considered previously, and this investigation is based on the solu-
tion of the Dirichlet problem by the method of Schauder. In this context the
operators M and L are studied on the Banach space of functions with uniformly
H61der continuous second order derivatives, and we shall see that the product
operator M- 1L is bounded on this space. This will enable the construction of the
solution by exponentiating this bounded operator. In proving the boundedness of
M- L, we shall make use of the Schauder estimates (up to the boundary) and the
closed graph theorem, so the completeness of the function spaces used is essential.

The existence, uniqueness and regularity results are essentially the same as
those obtained previously. That is, the solution is obtained directly as the exponen-
tial of a bounded operator, and this operator leaves certain subspaces invariant.
There will be no need of an analogue of Sobolev’s lemma since convergence in the
function space will imply pointwise convergence, hence this method always yields
a pointwise solution.

A function v(x) is said to belong to the class cm+(cl(G)), where m is a non-
negative number and 0 < < 1, if v belongs to C"(cl(G)) and all of its mth order
derivatives are uniformly H61der continuous of exponent . By this last statement
we mean

HT(v) sup. "x, y e G, tJl- m

is finite. We define on cm+a(cl(G)) a norm

where
IVlm+- IVI + H’(v),

Ivl,. sup {IDJv(x)l "x G, 1 i}.
i=0

Furthermore one can show that cm+(cl(G)) is complete with respect to the norm
I" I,.+, so it is a Banach space.

The boundary t3G is in the class Cm+ whenever there is at each point of t3G a
neighborhood S in which t3G has a parametric representation of the form

xi g(x xi-1, xi + x,,)

where g belongs to cm+(cl(S)).
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The operators M and L will be assumed to have the forms

M
i,j=l mij(x)?xicxj + i=1

mi(x) m(x),

L
i,j=l lij(X)xitxj + i=1

li(x) l(x).

The following assumptions will always be made:
(A,): Each of the coefficients which appears above belongs to C(cl(G)) and the
coefficients re(x), l(x) are nonnegative.
(A2): M and L are uniformly elliptic, hence there are positive constants mo and lo
for which

i,j=l i=1

lij(X)iCj lo
i,j= i=

whenever belongs to R" and x belongs to G.
The technique which we shall use here is totally dependent on the existing

results on the solution of the Dirichlet problem. That is, given a function f in
C(cl(G)), find a function u for which

Lu f
in G and u(x) 0 when x is on c3G. In proving the existence of a solution of such a
problem by the method of continuity, the following a priori estimate is essential
[2], [12], [29].

THEOREM 9.1. Assume (A ), (A2), that f belongs to C(cl(G)) and that cG is of
class C2 +. Ifu is afunction in C2 +(cl(G))for which Lu f in G and u 0 on c3G,
then

(9.1) lul2 + =< Klfl,
where K depends only on L and G.

This is a very strong result and is used to prove the following existence theorem
for the Dirichlet problem.

THEOREM 9.2. Assume (A ), (A2), that f belongs to C(cl(G)) and that cG is of
class C2 +. Then there exists a uniquefunction u in C2 +(cl(G)) for which L(u) f in
G and u 0 on cG.

Concerning the differentiability of solutions of the Dirichlet problem we have
the following result.

THEORFM 9.3. Let p be a nonnegative integerfor whichfand all the coefficients
which appear in L belong to CP+(cl(G)) and for which t3G is of class Cp+ 2 +. Then
any function u in C2 +’(cl(G))for which Lu f in G and u 0 on c3G belongs to
Cv+ + (cl(G)).

Corresponding results are of course valid for the operator M.
We are now ready to study the behavior of L and M on the appropriate func-

tion space. Define C +’(cl(G)) as the set of functions in C"+(cl(G)) that vanish on
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c3G. With the norm I" I,,+, C+(cl(G)) is a Banach subspace of cm+(cl(G)),
because convergence with respect to I" I,,+, implies uniform convergence of the
function and hence preserves the zero condition on the boundary. From the results
stated above for the Dirichlet problem it is immediate that L maps Cg / (cl(G)) onto
C’(cl(G)) in a one-to-one manner. From (9.1) it follows that L- is bounded, so from
the closed graph theorem it is immediate that L is a linear homeomorphism of
Cg / (cl(G)) onto C’(cl(G)). The same is true ofM, so we may conclude that M- 1L is
a bounded linear operator on Cg +(cl(G)).

For each real number we construct the exponential of the bounded operator
-tM-L by means of the power series

E(t) exp (- tM L) (- tM- L)/k
k=0

This power series converges with respect to the uniform operator topology
induced on (C+(cl(G))) by the norm I" 12 + on C+(cl(G)). It is not difficult to
verify that the family {E(t):t in R is an infinitely differentiable group of bounded
linear operators and that

(9.2) E’(t) -M L E(t)

for all in R. This group of linear operators provides the existence portion of the
following result.

THEOREM 9.4. Assume that (A 1) and (A2) are true, c3G is of class C2+ and that
Uo is a given function in Cg + (cl(G)). There is a unique strongly differentiable mapping

of R into Cg +(cl(G)) for which

t-- u(t)

(9.3) Mu’(t) + Lu(t) 0

in C(cl(G))for all real and u(O) uo. This mapping is infinitely differentiable.
Proof. Define u(t)= E(t)Uo. It is immediate that u(0)= u0 and that u(t) is

infinitely differentiable. Furthermore since M and L are both bijections of
Cg +’(cl(G)) onto C(cl(G)) it follows from (9.2) that (9.3) is true.

We shall verify the uniqueness of the solution. The solution must necessarily
satisfy the integral equation

u(t) u(O) M- 1L u(T) dT

because of the boundedness and linearity of M- 1L on Cg + (cl(G)). The integral is
taken as usual as the limit in the C +’(cl(G)) topology of Riemann sums. From this
equation we have

(9.4) lu(t)12+= lu(0)12+ + IM- XLl2 += lu(T)12+= dT

for all in R.
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LEMMA 9.1 (Gronewall). If q9 is continuous and nonnegative on R + {r R’r
=> 0} and if

for all >= 0 then

q() <__ c + m q(T) dT

qg() =< c exp (m).

Proof. From the hypotheses we have

SO

Hence

1 d{1nm dt
c + m q)(T)dT <1

In c + m q(T) dT

c + rn q(T) dT =< c exp (mt)

and the result is immediate from this inequality.
This lemma together with (9.4) shows that any solution of the problem satisfies

(9.5) lu(t)12 + lu(O)12+ exp (IM- 1LI Itl).

In particular the difference between any two solutions satisfies (9.5) with u(0) 0,
hence the solutions are identical.

The solution thus obtained can easily be seen to be a solution in the pointwise
sense. For each real number t, u(t) belongs to Cg +’(cl(G)) and is therefore a real-
valued function of the space variable whose value at the point x of G is denoted by
u(x, t). Furthermore for any real 6 4:0 we have

16-l(u(x, + 6) u(x, t)) + M- ’L[u(x, t)]l

1(6-1(E(6) I) + M-’L)[u(x, t)]l

=< ](b-’(E(3) I) + M- XL)u(t)[2 +
-< Ib- t(E(b) I) + M- 1LI2 +lu(t)12 +

so the mapping u(x, t), x in G, is differentiable, in fact infinitely differentiable,
since the group {E(t):t in R} is infinitely differentiable. Consequently Theorem 9.4
implies that the equation (9.3) possesses a pointwise solution u(x, t) which belongs
to C2+(cl(G)) for each in R, vanishes on the boundary cG and is infinitely
differentiable with respect to the time variable t.

The results on the regularity of the solution are completely analogous to those
obtained previously, and the same methods may be used as before. In particular we
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use the results stated above on the regularity of the solution to the Dirichlet
problem to prove the following.

PROPOSITION 9.1. Let p be a nonnegative integer and assume cG is of class
Cp+2+. Let the operator L satisfy (A1) and (A2) and assume that its coefficients
belong to CP+(cl(G)). Then L is a linear homeomorphism of C+2+(cl(G)) onto
Cp+ (cl(G)).

Proof. The results above for the Dirichlet problem show that L is a hijection
as stated, so the boundedness ofL and L- is the only question. But this is settled by
the Fundamental Lemma of 5.

COROLLARY. Let p be a nonnegative integer such that t?G is of class Cp++ 2 and
the operators M and L satisfy (A1) and (A2) and their coefficients belong to
CP+(cl(G)). Then M- L is a linear homeomorphism ofC++ 2(cl(G)) onto itself

From the boundedness of M-L with respect to the norm [-]p+,+2 on
C++2(cl(G)) it follows as before that the group of operators {E(t):t in R} is
bounded on and leaves invariant the space C++ 2(cl(G)). This yields the following
result on the regularity of solutions.

THEOREM 9.5. Under the assumptions of the corollary above, the solution u(t) of
the problem (9.3), (9.4) belongs to C++2(cl(G)) for each in R if and only if Uo
belongs to C)++ 2(cl(G)).

The nonhomogeneous problem can be handled in much the same way as was
done previously. The main result in this direction is the following.

THEOREM 9.6. Assume that (A 1) and (A2) are true and the t?G is of class C2 +. Let
f(t) be a (strongly) continuous function of R into C(cl(G)) and fl(t) a continuously
differentiablefunction ofR into C2 +(cl(G)). Let Uo belong to C2 +(cl(G)) and satisfy
the "compatibility condition" Uo fl(O) on t?G. (That is, Uo fl(O) is in C+(cl(G)).)
Then there exists a unique continuously differentiable function u(t) of R into
C2 + (cl(G)) such that

(i) Mu’(t) + Lu(t) f(t),
(ii) u(O) Uo, and
(iii) u(t) fl(t) on the boundary cG.

Proof. Define F(t) from R into C’(cl(G)) by F(t) -mfl’(t) Lfl(t) + f(t).
Since M and L are bounded (but not invertible) from C2+(cl(G)) into C(cl(G)),
we see that F(t) is continuous. Since M- is bounded from C(cl(G)) onto

C+(cl(G)), we have that M- 1F(t) is continuous in C+’(cl(G)), so we can define

v(t) E(t T)M-1F(T) dT

in Cg+(cl(G)). It follows that the continuously differentiable mapping t-- v(t)
satisfies the equation

Mv’(t) + Lv(t)= F(t)

and initial condition v(0) 0.
Remark. Since M is not invertible (not injective on C2 +(cl(G))), we do not

have M- 1M identity. This is of consequence if one wishes to expand M- F(t)
into its three terms.
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Now define the continuously differentiable function

u(t) v(t) + I(t) + e(t)[Uo -/(0)].

This satisfies (i)-(iii) above. The uniqueness follows from Theorem 9.4 by looking
at the difference between two such solutions.
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ON THE BOUNDEDNESS AND THE STABILITY OF SOLUTIONS OF
SOME DIFFERENTIAL EQUATIONS OF THE FOURTH ORDER

MARTIN HARROW

In this paper we investigate certain fourth order nonhomogeneous differential
equations. Ezeilo [1 derived interesting results for the problem

(1) Yc" + a2 + b2 + h(x)= p(t).

We show similar results for

(2) x) + a’k" + bS + c2 + h(x)= p(t),

where a, b, c are given positive constants such that ab > c; h(x) is differentiable and
p(t) is continuous in x and respectively, and of such nature that the existence and
uniqueness of the solutions, as well as their continuous dependence on the initial
values is assured. Let x(t) be a solution of (2) then we may write

dx d2x d3x d4x x(4)
dt ’ dt2

5,
dt3 x,

dt4

and an equivalent system of (2) may be written as

(3) & y, .P= z, -- w, -- -aw- bz cy- h(x) / p(t).

THEORFM. Suppose that h(O) 0 and that
(A) d is a positive constant such that

h’(x) <= d, s abc c2 a2d > O,

and (2 is a constant such that for all x

d 2asc-1 < (2 < h’(x)
__

d;

(B) 1 is a positive constant such that for x :/: 0

where

ds c h(x)
s* ab x

s* =- s + 2ad(ab c)b -.
Then corresponding to any constant 2 in the interval 0 _< 2 =< 1/2 there always is a
constant la =- la(a, b, c, d, c51, b2 2) > 0 such that every solution x(t) of(2) determined
by the initial conditions

X(to) Xo, (to)= Yo, 5(to)= Zo, ’(to)= Wo

* Received by the editors November 22, 1968, and in revised form April 11, 1969.- Department of Mathematics, Sir George Williams University, Montreal, Canada, and McGill
University, Montreal, Canada.
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and defined for all >__ to satisfies

(4) x2(t) + )2(t) + 5d2(t) + 5c’2(t) =< e -"t Dx + D2 Ip(z)l 2t’-z) e"’ dz 1/(1 2)

for all t>-_to, where D1 Dl(a,b,c,d, bl,b2,to,xo,Yo,Zo,Wo) > O and D2
=- D2(a, b, c, d, 61,62) > 0 are constants.

A result similar to (4) was obtained by Ezeilo [1] for (1), and all the special
results which Ezeilo obtained by considering the following cases apply in the
fourth order equation (2) as well.

Case 1. p(t) =- O.
Case 2. ]p(t)] is bounded.

max lp(t)l < oe for all >= to and -[tCase 3.
to

<2.

]p(z)[ k dz < oe for some k, 1 __< k

In the special linear case h(x) dx we note the following:
(i) Equation (2)becomes x4) + aye" + bSd + cc + dx p(t).
(ii) The Routh-Hurwitz criteria of stability apply, namely a > 0, b > 0,

c > O, d > O, s abc c2 a2d > O.
(iii) The existence of 61 and 2 is trivially fulfilled and is unnecessary for the

proof.
(iv) The conclusions of the theorem remain the same except that D and D2 are

independent of 61 and 62.
In the nonlinear case, the difference between h(x) and dx is determined by

a, b, c, d and the hypotheses (A) and (B). A simple example illustrates the significant
difference that may occur. Suppose we let

a 2, b ,, C-- fi,2 d t22/(1 fl)

where 2 > 0, 0 </t < 1 and 0 < 6 < 1. Then a, b, c, d form a Routh-Hurwitz set of
numbers. It can be shown that

and that

d 2asc-1 22(1 #)[fi/ 22(1 fi)]

s c.l (1 + )(1 -/)
d 1

s*ab
=d.

1 +-21

Now, for an arbitrarily small e such that 0 < e < 1, and a fixed 6, we can choose
# near 1 so that

(1 + 6)(1 -/)
0<

1 +6-2#6

and we can also choose 2 large enough so that 2 > 6#/2(1 6). This implies that
rl d 2asc-1 < 0 and hence by hypotheses (A) and (B)

h(x)
Y] < (2 < h’(x) <= d and ed < t <

x
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Thus, h’(x) may take on negative values, and h(x)/x may be considerably less than d.
In what follows we shall define two functions M(x, y, z, w) and N(x, y, z, w).
We shall prove that for certain positive constants D3 and D4

D3(x2 + y2 + z2 + w2) W-- M + N =< O4(x2 + y2 + z2 .. w2)
and that for certain positive constants, D5 and D6,

dW
<_ _D(x2 / y2 / z2 / w2) / D6(x. / y2 / z2 /

dt

where dW/dt is defined in the usual way with respect to (3). The remainder of the
proof follows the one given by Ezeilo

Proof of the theorem. Consider the function

2M(x,y,z,w) ml(w + mlz + ml dc-ly)2 / c[z / mly + mlc-lh(x)]2

+ rnl doc- 2(y + cmlo- 1Z)2 / m2z2,
where is a constant such that (as is possible in view of the condition bc > ad)

0 <
and

m a o, m2 SC- / (ad bc)c- + omm3t7-1 / dmlC- 1,

a mlbc m2d c2, m3 tr derek.
It is easy to prove that m, m3, are positive, and hence that

m2 > mm3a-1 + dmlC-1 > O.

Thus M(x, y, z, w) is positive definite. Now consider the function

2N(x,y,z,w) a[w + az + (ab nx)a-y + fix] 2 + nx[z + ay + an?lh(x)] 2

+ va-(y + anaflv-x)2 + n2X2 + 2k h(z)dz dkx2

+ mc-X[dZx {h(x)} 2] + an? l[d2x2 {h(x)}],
where is a constant such that (as possible in view of the condition ab > c)

O < fi < s(ab c)-
and

n c fl, n 3 v fin1,

v abnl n aZd, kl ab n / dmic 1.

n2 dsn-(1 + aflnln3v- dfl(ab c)n-( /

It is easy to prove that nl, v,//3, k are positive, and hence that

n2 > Is fi(ab c)] dn- + aflnlnav-1 + dfl > O.

Also, since h(0) 0, by the mean value theorem and hypothesis (A),

d2x2 [h(x)] 2 0
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and

P(x) gt2X2 + 2k h(z) dr dk

f:{h(r, n22)}=2kl d- zdr.

In order to show that P(x) is positive definite we note that

lim n2 ds(ab c) -1
s(ab c)

abs + 2a2d(ab c).lim kl
a-a(ab-c)- c(ab c)

hence

n2 c s
lim d.a-.s--.

Hence we can choose 0 and so that either

ds c

S* ab
n2 h(x)

< d-- < 61 <-- <=
or

ds c h(x)
--.--<61 <<d.s* ab x

This implies that in either case

h(x)
d- nl) > 0

and hence that P(x) is positive definite. Thus N(x, y, z, w) is positive definite and
consequently W M + N is positive definite. Further, it is possible to choose
D3 =- D3(a,b,c,d, bl,bz,O,fl)>O such that W(x,y,z,w)>= D3(x2 + y2 + z2 + w2).
Also, expanding W into a quadratic in x, y, z, w and using the fact that Ixyl <= 1/2(x
_}_ y2) etc., it follows that there exists D4 Dg(a b, c, d, 61, b2,0, fl) > 0 such that
we may write

D3(x2 + y2 + z2 + w2) W(x, y, z, w) <= D4(x2 q- y2 q_ z2 + w2).

Using (3) and the definition of M(x, y, z, w) we have

dM 8M 8M 8M 8M
dt c3-

-y + --y’ + -z + w *
8M 8M 8M

--Y + oy-a--z + vz-Z-w + -w [-aw by cz h(x) + p(t)].
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An easy calculation shows that

dM
dt mlw2 talC lm3z2 m[d- h’(x)]y2 ml[d h’(x)]yz

-mc-1 h(x--))[d- h’(x)]xy + ml[w + maz + madc-ly]p(t).
x

Similarly, using (3) and the definition of N(x, y, z, w), we have

dN
dt

-n3y
e -ae[d h’(x)]ye aflh(X)xe aid h’(x)]yz

x

+mc-a h(x---)[d- h’(x)]xy + a[w + az + (ab na)a-ly + flx]p(t).

Thus,

dW
dt

-U(x, y, z, w)+ [(ml + a)w + (m + a2)z + kly + axp(t),

where

U(x, y,z, w) maow2 + n3y
2 q-ah(X)x + T(x, y,z),

x

where

T(x, y, z) mac- lm3z2 -t-- (m --1- a2)[d h’(x)]ye + (ma + a)[d h’(x)]yz

[d- h’(x)] may + + ay + + mac-ira3-

Note that for all values of e such that for 0 < e < s(bc ad)-1

mlm3c-a (a e)[s e(bc ad)]c-1 < asc-1

and that

lim mlm3c-
zO

asc -1

we can, by choosing small enough but positive, have

d 2asc-1 < d 2mam3c-a < 62 < h’(x) < d.

Hence,

T(x, y, z) >= {mare3c-1 1/2[d h’(x)]}z2

1/2[h’(x) (d 2mam3c-a)ze
>_ 1/2[c52 (d 2mam3c-1)3Z2.

Thus, there exists D5 Ds(a, b, c, d, 61,62,5,/) > 0 such that

U(x,y,z,w) >= O s(xe + ye + z2 + we
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and

dW < _Ds(x2 + y2 + z2,+ w2) + [(ml + t)lwl + (m + a))lzl -4- klYl + alxl31p(t)l
dt

--Ds(x2 4- y2 + z2 + w2) + O6[lw[ 4-Izl 4-lyl 4-Ixl31p(t)l,

where 96 max [(ml + a), (m2 + a2), kl, a/].
The remainder of the proof of the theorem is the same as the one given by

Ezeilo, except that the third order problem is replaced by a fourth order problem.
For example, X2 4- y + Z

2 becomes X2 4- y2 4- z2 4- W2, etc.

REFERENCE
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A REPRESENTATION OF HANKEL TRANSFORMABLE
GENERALIZED FUNCTIONS*

E. L. KOH’{"

(1)

where

1. Introduction. In a recent paper, Koh and Zemanian [1] indicated that
generalized functions that are Hankel transformable are of"exponential descent."
In the present note we show that this name is motivated by a suitable structure
theorem.

We recall briefly their definition of the generalized Hankel transformation.
Our notation shall be that of [1]. For a real number t and a positive real number a,
/i,a was defined as the space of testing functions (x) which are smooth and for
which

z’a(4) sup le-Xx -/i- 1/2sku(t) < oO, k 0, 1,2,...,
O<x<

Sk X-/l- 1/2 d_x2ud + x -#- 1/2

o/i,, is a Hausdorff, locally convex, first countable linear space. It is complete
and therefore Fr6chet. For each fixed complex y in the strip ft {y :Jim Yl < a,
y 4:0 or a negative number}, /i,. contains the function x//xyC/i(xy). The Hankel
transformation , is now defined on the dual space .,. as follows" Let / be
restricted to 1/2 =</l < oo. Then, for f e

(2) (fg/if)(Y) (f(x), xCu(xy)}, y e ft.

It is the case that the dual ,,0 contains all distributions of compact support
on (0, ). Also, any locally integrable function f(x) on 0 < x < oe and such that

(3) If(x)e"Xx"+ a/2

is a member of o,,. We now prove that every generalized function belonging to
o,,, can be represented by a finite sum of derivatives of continuous functions
decaying exponentially at infinity. Our proof is analogous to the method employed
in structure theorems for Schwartz distributions (e.g., [2, p. 317 if.I, [3, p. 272 if.I).

2. Theorem. Let fe ’,,,. Then f is equal to a finite sum

(4) i=0 Ci(-) i[e-axx-/i-1/2-k+lPi(x)Fi(x)]’
where the Fi(x are continuous on (0, oo) and the Pi(x) are polynomials o.f degree k.

Proof By note (viii) of [1], for every f o’u,., there exist a nonnegative integer
r and a positive constant C such that for all

(5) I(f, qS)l-< C max sup le-"x-/i-a/ZSkuckl,
O<k<r 0<x<oo

Received by the editors October 15, 1968.
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D(I) being the space of smooth functions with compact supports on (0, oc).
Expanding Skub by (1) above, we have

I(f, qS)l < C max sup y,, a2k,ie x #-1/2+i-2k d
Okr O<x< i=0

(6)

NC’ max sup e- Xx-"- / +
0NiN2r 0<x<

where

Now set

C’= 2rC max max la2k,il.
O<_k<r O<i<2k

(7) (kr e-aXX-I-1/2-2r+i(/)(X), <= 2r.

Clearly, qS(x) D(I) since qS(x) is. Then qS(x) e"x+ 1/2 + 2r-ir(X). And

d + 1/2 + 2r-i d
dx

e"x a + ci,x +

where c, is a constant. Let supp supp [A, B]. Then

d@ + 1/2 + 2r-i{ dr
ail eaxxu I1 +

where AI max (a + c,A- 1, 1). Continuing in this fashion, we have

AieaXxU + 1/2 + 2r-i r(X
q=0

Substituting (8) into (6) and noting that e-Xx-u-1/2-2+i > 0 for 0 < x < m,
we have

(9)

I(f, qS)l _-< C" max sup
O<i<_2r O<x<

=< C"’ max sup
O<i<2r O<x<

=o
(x)

o<<oo o<x< -27 at a7 ,,(o,oo’

where LI(0, oo) is the space of equivalence classes of Lebesgue integrable functions
on (0, oo) whose topology is defined by the norm

fllL,(O,oo) Ifl dt < , fe LI(0 oO).

Hence,

where C" and C’" are obvious constants.
We can write for every e D(I),

() ,t.
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(11)

The bound (10) enables us to write (9) as

I(f, b)l < C(iv) max r(x)
l<i<2r+l LI(0,)

Recalling (7), we have

Therefore

(12) f= e-.Xx-.-1/z-zr+i(_ 1)i gi.
i=1

and

For each i, we set yoh(x) (- 1)’ g,(t) dr.

Since gi L(0, ), the functions hi are continuous on (0, ) and

Ihil <= Igl dt <= Ixl max Igil Ixl Igi
O<x<oo

Furthermore, gi (-1)(d/dx)hi Hence

(13) f= e-aXX-u-1/2-2+i-1 hi.
i=2

By letting 2r + 2 k and using the differentiation formulas,

U(X) h (- 1)
j=O j

(ab)() a(J-q)b(q),
q=O q

2 1((f,4) (-
i=l

1) gi, e-"Xx-U- 1/2-2v+i((X)

Consider now the linear one-to-one mapping

<_i<2r+

of D(I) into L1 (0, ). Since D(I) is a linear manifold of LI(0, ), (11) states that the
linear functional f is continuous on MD (i.e., D(I)) for the topology induced on it by
LI(0, ). Hence, by the Hahn-Banach theorem, f can be extended as a continuous
linear functional in the whole of LI(0, ). But the dual of LI(0, v) is isomorphic
with L(0, ), the space of all equivalence classes (rood a.e.) of complex-valued
integrable functions on (0, ) such that, for every f L(0, ), there exists an M
such that Ifl M a.e. Therefore, there are functions g L(0, ), 1 2r + 1,
such that
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we can write (13) as in (4) where the F are continuous functions of hi and are there-
fore continuous functions on (0, ). This proves the theorem.
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ON THE REDUCTION OF DIFFERENTIAL EQUATIONS
TO ALGEBRAIC EQUATIONS*

M. J. MORAN? AND R. A. GAGGIOLI

1. Introduction. The objective of this paper is to extend certain techniques for
the reduction of the number of independent variables in systems of partial differen-
tial equations developed by Michal [1], Morgan [2] and the present authors
[3]-[5]. In review, the techniques currently in use utilize elementary group theory
for the purpose of reducing a given system of partial differential equations to a
system of differential equations in fewer independent variables. The extension
to be presented here is embodied in the theorem of 2, which in application is
aimed at reducing a given system to a system of algebraic equations.

2. Principal results. The abovementioned techniques as well as the theorem
to follow utilize continuous parameter groups of transformations [6, pp. 13-18].
The groups G to be considered in the present discussion are of the form

S" {i= Fi(x y,; a1, a,), i- 1 m,
(2.1) G"

y F(x ,".,y,,al,...,a,,), j= 1,...,n,

wherein the ai are the group parameters. Specifically, the class of groups to be
considered are those of the form (2.1) which possess n, and only n, functionally
independent absolute invariants gj(Y
if1, ..., ffm) [6, pp. 61--62] ;moreover, these are to be differentiable in each argument
and satisfy the Jacobian condition

c[gl, g,]
:/: O.(2.2)

c[yl, ...,
THEOREM. If and only ij for some set of differentiable functions {Ij},

yj Ij(xl, xm) yields j ij(l, ..., ,,) when transformed under G, then

(2.3) gj(Yl, Y,,, xl J,’’’, X Kj, 1,..., n,

where the Kj are constants.

Proof. By definition of absolutely invariant,

(2.4) gj(Yl,’", Y,,Xl x’)= gj(yl, ,,1 m)

If, under G, yj ij(ffl, ffm) when yj Ij(x , xm), then

(2.5) gj(Ii(x xm) xm)=gj(Ii(X Xm) Xm)
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Equation (2.5) indicates

(2.6)

where

,j(X Xm) j(l

(2.7)
gj(x x’)=_gj(Ix(x Xm) Xm)

7j(Xl ffm)___gj(ii(Xa if,,)...

That is, (2.5) indicates that 7j is an absolute invariant of G; moreover, since the
gj and Ij are differentiable, yj is differentiable.

Then since G possesses exactly n functionally independent differentiable
invariants {g}, there exists a function f of n variables such that

(2.8)
j(X1 Xm)

fj(gl(Yl,’’’, )2n, X1 xm), gn(.V1,’’’, Yn, X1 xm))

And the condition (2.2) restricts f to be identically a constant’ Consider the system
of n homogeneous differential equations for f obtained from (2.8) upon differen-
tiation with respect to each of the y’s in turn; namely, the system

(2.9) f c3g,

k= c3gk 3Yl
O, 1,’’’, n.

With (2.2), (2.9) is satisfied only if cf/cgk 0 for all k, i.e., only if fj(ga, ..-,
Kj, where Kj is a constant.
Thus, with 7j(x 1, ..., x")= Kj, and yj---Ij(x, x’), (2.7) yields the

desired result, (2.3). Moreover, (2.2) assures that the g’s may be inverted for the y’s
as differentiable functions of the x’s" Indeed, since g is an absolute invariant,
(2.3) yields yj Ij(x 1, ..., x") and Yi Ii(if1, "’", if"), which proves the converse.

The utility of the theorem is ill6straed in the next section.

3. Illustrative application. As in Birkhoff [7, p. 117, an essential feature of
the group techniques referred to in 1 is the notion that whenever a system of
equations is transformed invariantly under a group, solutions are to be sought
which are also invariant under the group. These concepts as well as the utility of
the foregoing theorem will now be illustrated by application to the Helmholtz
equation

632y 2y
(3.1)

c3(x’)2 6(X2)2
2y 0,

wherein 22 is a constant. (Equation (3.1) is treated in [8, p. 394]; but as for many
such equations the discussion is initiated by assuming a form for the solution (3.7).)

Equation (3.1) is said to transform invariantly under a group G if, when (3.1)
is satisfied, (3.2) is satisfied"

2y G2Y 22y 0(3.2) (1)2
q
(2)2
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Means for deducing groups under which an equation transforms invariantly have
been developed and are discussed elsewhere [3]-[5], [9]. For the problem at hand
it can be found that (3.1) transforms invariantly under the two-parameter group G’,

ffl=x +lnal,

(3.3) G" 2 x2 + In a2,

aa2y.

For, with the chain rule [I2/(i)2] 6/](lS2[OZy/((Xi)2], 1, 2, it follows that

(3.4) V 2y
22y axa -t )2yL(.)2 - c3(2)2 Lc(xl)2 c(x2)

Thus, (3.2) is satisfied when, and only when, (3.1) is satisfied. Clearly, if
y F(x,x2) is any solution to (3.1), then . F(l, ff2) is a solution to (3.2).
Furthermore, were I a solution to (3.1) such that y I(x x2) transforms under
G’ to . I(ff, 2), then the conditions of the foregoing theorem would be satisfied,
and hence I would be given implicitly via

(3.5) g(y, x x2) K,

wherein K is a constant. In other words, the invariance of (3.1) under G’ suggests
that solutions be sought which also transform invariantly under G’; such solutions
are frequently termed invariant solutions. And if invariant solutions to (3.1) exist,
they are given implicitly via (3.5) as a result of the foregoing theorem.

In order to apply the theorem--in order to utilize (3.5)--for the purpose of
establishing invariant solutions, it is first necessary to determine the function g.
The authors have utilized general methods for deducing sets of absolute invariants
[3]-[5]. For the case at hand, (3.3),

(3.6) g(y, x x2) y exp (- rx sx2).

Combining (3.5), (3.6), and solving the resultant expression yields

(3.7) y K exp (rx + sx2).
Substitution of (3.7) into the partial differential equation (3.1) reduces it,

for K 4: 0, to the algebraic equation

(3.8) r2 "l
t- S2- 22--- O.

When (3.8) is satisfied, then (3.1)is satisfied by (3.7).

4. Closure. This paper has provided a theorem by application of which
a system of partial differential equations, say, may in certain instances be reduced
to a system of algebraic equations. As illustrated with the Helmholtz equation,
solutions yielded by the method evolve in a straightforward manner as an extension
of well-known group techniques for partial differential equations [1]-[5]. (And in
further analogy to the earlier techniques, failure of the present method to yield
a solution generally signifies there is no solution invariant under the particular
group being considered.) The method clearly has application to other more
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complicated situations than (3.1). Indeed, as noted, it is appropriate for systems of
partial differential equations (possibly including auxiliary conditions); and for
some cases, the particular solutions yielded may even be instrumental, in the
manner of [8, pp. 393-394], in obtaining general solutions.
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INTERPOLATION IN THE SOLUTION SETS OF
ORDINARY DIFFERENTIAL EQUATIONS*

RONALD M. MATHSEN’f

Abstract. In this paper we give sufficient conditions (Theorem 1) for the existence and uniqueness
of solutions of certain boundary value problems for an nth order linear ordinary differential on a

compact interval I of the reals. Sufficient conditions (Theorem 2) are also given for the existence of
certain zero multipoint boundary value problems for an nth order nonlinear differential equation.

1. Introduction. The notation we now introduce is due mainly to Schoenberg
[1]. Let n and k be positive integers with n _>_ k. Let E,k (e,s), 1, 2, ..., k,
j 0, 1, ..., n 1, be a k x n matrix of zeros and ones with ei,j n and no
row consisting only of zeros. Let x < x2 < < Xk be given points in I, and
for each ordered pair (i, j) such that eid let aid be a given real number. The
nodes x 1, "’", Xk and the "incidence" matrix E,k describe the interpolation problem
of finding a unique solution of

(1) y(") + a,,_ y(’-1) + + a ly’ + aoy 0

on I (yO) is the jth derivative of y and each a is continuous on I) satisfying

(2) y)(x3 ,
for those (i, j) with e,,j 1. The matrix E,k will be called poised on I (with respect to
the solution set of (1) on 1) in case for any k nodes and any n real numbers ,j
there is a unique solution of (1) on I satisfying (2). Because of the linearity of (1),
to show that Ek" is poised it will suffice to show that the identically zero solution is
the only solution of (1) on I which satisfies (2) when all the numbers , 0.

Some special cases of this "interpolation problem" have been investigated.
If(l) is the equation

(D2 + n2)(D2 + (n- 1)2) (Dz + 1)y’= 0,

where D is the derivative operator, then the solution set is the set of trigonometric
polynomials of order _<n. References [2] and [3] give, for specific choices of the
nodes xg, some results and further references for this problem. If ag 0 for all

0, 1, ..., n 1, the solution set is the set of polynomials of degree =< n 1
in one indeterminate. A good bibliography for this problem is contained in [4].
K. Atkinson and A. Sharma have recently shown in [5] that a matrix Ek, is poised
for these polynomials in case E,k is a conservative matrix, i.e., E,k is the "direct sum"
of irreducible conservative matrices (see [4] or [5] for definitions).

The problem of Lagrange interpolation, i.e., k n and &,o---1 for
1, 2, ..., n, has been investigated by several authors. Reference [6] contains

an extensive bibliography for this problem. O. Aramt in [7] has announced some
results for interpolation in the solution set of (1) in the case of two nodes.

* Received by the editors January 23, 1969.

" Department of Mathematics, University of Alberta, Edmonton, Alberta. This research was
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We say that the matrix E is of class D if for any y y(x) satisfying (2) with all
ei,j 0 and any integerj, 0 =< j =< n 1, there is a point j in I such that y(J)(j) 0.
Theorem II in [8] can be stated as follows:

E will be poised with respect to solutions of (1) on ! in case E is of class D
on I and

(3) laa-(x)l dx <= 1,
l--

where h is the length of I.
The class of matrices which in this paper are shown to be poised is a subclass

of the class D, but inequality (4) is replaced by conditions that are in certain cases
less restrictive.

2. Some poised matrices. A matrix

0 0 0 1 0

0 0 0

E= A or E=
0 0 0

0 0 1 0 1

where A is a (k 2) x (n 2) (or k x (n 2)) matrix of class D, is said to be of
class C.

THEOnEM 1. Let the coefficients ai(x) be continuous on the compact interval I
of the reals, let an-2(x) be nonpositive on I and let an- l(x) 0 on I. Then a matrix

E ofclass C will be poised with respect to (1) on any proper subinterval ofI provided

nn(h)NnE(1/2i a-llh) =< 1,(4)

where
E(x) e2x ex- x,

Nn (ltan-l[[)-2([tan_3 + Ila- I+"" + Ilaoll),

h is the length of I, I1" denotes the supremum norm on I and Hn(h) is a positive
number given by (13) or (15).

Since the ordering x2 -< x3 _-< _-< Xk-1 will not be used in the proof of
Theorem 1, it will suffice to prove the theorem for Ek /k (e,i,), -,n-
=e,k,n- 1,e,2,= lforj=0,1,.-.,landei,j= lforj=i+l-2,i= 3, 4,...,
k 1, i.e.,

0 0

0

o

0

0 1 0\
1 0 0 0

0 0 0

0 1 0 0

0 0

0"1 0/
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For convenience of notation we consider/", and reduce it to /k by setting
x2 x3 Xl+ 2. Note that n k + /andthat/+ 1 is the multiplicity ofx2
as a zero of the desired solution to (1).

The following existence theorem is used in the proof of Theorem 1.
THEOREM 2. Let f be continuous on I x R", where I is a compact interval of the

set R of real numbers. Let f satisfy the following conditions:
(i) f(x, Y l, Y,) is nondecreasing in y,_ for fixed x, Y l, Y,-2, Y,

(ii) for each compact set T of I R" there is a constant K’(T) such that

If(x, y,..., y,-,, y,) f(x, Yl, "’", yn- 1, .n)l <= K’(T)Iy, Y,I

for all points (x, Y l, "’", Y,- 1, Y,) and (x, Y l, Y,- 1, .P,) in T;
(iii) for each M > 0 there is a constant K K(M) such that

f(x y Y,- 2 0, Y,) f(x, y Y,- 2 0, O)] <= gly,I

for all x in I and all lY,I < oo provided lYI + lYzl + + lY,-zl <- M.
Then given M > O, the boundary value problem

(5)
y(") f(x, y, y’, y("-

0 y(n- 2)(x1) y(i- 2)(xi) for 2, 3, n

has a solution in C"[xl, x.] provided

(6) H,(6)QuE(1/2K6) <= M. K2,

where 6 x,- x and

QM sup {If(x, Yx, "’", Y,-2,0, 0)1 :x I, lY,I + lY21 + + lY,-21 M}.

Proof. Let M > 0 be given and define

B (zeCn-ZUxx,x.]:llzll* <_ M},
where I[z * y203 [Iz(J)[[ on Ix1, x,]. B is a closed, convex subset of C"-2[xl, x,].
From the assumptions (i), (ii) and (iii) on f if follows that for each z e B, the bound-
ary value problem

(7)
u" f(x, z(x), z’(x), z"- 3)(X), U, U’),

u(x ) u(x.) 0

has a unique solution in C2EX1,Xn] (see [9, Theorem 6.3, p. 1065]). Call u this
solution to (7). Define the mapping T on B by T(z) W, where

(8) W(x) uz(s) ds ds,_ ds3.
n-2 Xn-

Then Wi- 2)(xi) 0 for 2, 3, ..., n and W("- 2)(X 1) 0. Therefore a fixed point
of Twill be a solution to (5). By a corollary to the Schauder fixed-point theorem 11,
p. 405], T will have a fixed point in B provided T is continuous on B, T is compact
and T maps B into B. That T is compact -follows from Ascoli’s lemma and the fact
that the sets {uz:zeB} and {U’z: z eB} are both uniformly bounded (see [10, pp.
628-629]). Continuity of T follows, as in [10], from the fact that there is a positive
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constant 7 such that T(u) T(v) l* <= llu vii, In 3 we show that

T(z)II* =< lug In(i),

where 6 x, xl. Nowwe know(see [10, p. 629])that Uz -< QME(1/2Kf)/K2, and
hence, by (6), T(z) B. This proves Theorem 2.

Proof of Theorem 1. Let y yo(x) be a nontrivial solution to (1) satisfying
the boundary conditions in (5)with x2 x3 Xl+. Suppose that fi

x < h and let L,[y] denote the left side of (1). For any function g which is
continuous on I, the function f defined by

(9) f(x Y l, Y Y,,) a,,_ lY,, a,,_ zY,,-1 aoy + g

satisfies conditions (i), (ii) and (iii) of Theorem 2 with K Ila,-111 and
<-(lla,-311 + + Ila0[t)M + IIg[I. Now6 x,- xl < h, so by (4) we have that
H,,(6)N,E(1/2 a,_ 116)< 1. (We shall show presently that H,(h) is a decreasing
function of h.) We prove the theorem by induction on k n I. Suppose k 2.
Choose g(x) so that V(x)= e(x x2)"-1 is a solution to L,[y] g. Then g

O(e), so for e > 0 sufficiently small
IlgllH,(a)E(1/2lla,- I)

H,(fi)N,E(1/2lla,_l 16) -< 1
M

Hence (6) holds for f as defined in (9). Then by Theorem 2 the boundary value
problem

L.[y] g,

0 y(x,)= y’(x) y"-(x) y"-(x,)

has a solution y Y(x) on Ix1, x]. But Y(x) must be of the form Y(x) CoYo(X)
+ V(x) where Co is a constant. Then

0 Y"- 2)(X1) CoY(o 2)(X1) -it- v(n- 2)(X1) v(n- 2)(X1) -7(= 0,

and this contradiction shows that no such nontrivial yo(x) can exist if k 2. Sup-
pose now/,_ is poised. Then there exist k 2 linear independent solutions (k 1
if Yo is counted) U3, U,, ..., U of (1) satisfying UlJ)(Xl+2) 0 for j 0, 1, ...,
+ 1, i- 3,4, ..., k; uln-2)(Xl)--6, (the Kronecker 6), and ull+j-2)(Xl+j)
6 for i, j 4, 5, ..., k. These boundary conditions are similar to those in (5)

except that UIl+ 1)(x + 3) is not specified, and in each case exactly one 1 is specified
with the remaining boundary values being 0. Choose g(x) so that

V(X) g(x Xl)n-l(x X/+2)/+2(X X/+3)/+l(X X/+4)/+3
(X Xl+ 5)/+ 4-... (X Xn)n-1

is a solution to L,[V] g. Note that V(x) satisfies all the boundary conditions of
(5) with x2 x3 Xl + 2 except that V + 1)(x + 3) - 0. Now again Ig O(,)
as , 0 +, so for , sufficiently small (6) will hold for f as given in (9). Hence (5) has
a solution y Y(x) for f as given in (9). Then there exist constants c2, c3, .--, c so
that

Y(X)-- 2Yo(X) + 3U3(x) --}- + ckUk(x -+- V(x)

for allxin I. Now0 Y"-2)(xl) c3 and0 yt+i+ 1)(x+i) cifor 4,5,..., k.
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Hence

0 y(l + 1)(X/+ 3) c2y(lo + 1)(X/+ 3) @ V(I + 1)(x/+ 3) V(I + 1)(x/+ 3) :)d: 0.

This contradiction shows that no such nontrivial Yo(x) can exist, and therefore/, is
poised. This proves Theorem 1.

3. H,(h). The basic inequality needed in 2 is

(10) IIWII* < IluzllH,(h),

where W, WII * and uz are defined in the proof ofTheorem 2. For W(x) as given in
(8) we have W("- 2)(x) uz(x) and

(11)
-j

W"- z-J)(s,_j) W"- 1-J)(t) dt forj= 1,2,...,n-2.

Now

W(n- 3)(Sn-1)1 Uz(t) dt < Uz Is,-x x,_ 11.

Let (i, j) Is,- x,-jl and i, j] Ix,- x.-jI. Let j be a positive integer and
let P(j) be the set of "ordered partitions of j" defined by p P(j) if and only if

P (P,P2,’", P,,), m >= 1, p + P2 + + P, =J and each p is a positive
integer with p > 1 for > 1. Let

A(j)
(j’j -Pl + 1)p’ [J,Pl,j- Pl- P2 + 1]p2 [Pro, 1]

peP(j) Pl P2 Pm!

+
[J,J Pl + 1]pl [j-- Pl,J Pl P2 + 1]p2 [Pm, 1]

peP(j) P P2 Pm

where p P(j) is written in the form p (pl, P2, Pro)" We now claim that

(12) IW"-Z-qsn_j)l _-< A(j)lluzll for j 1, 2,..., n- 2.

Equation (12) was established forj 1. Suppose then that (12) holds for some fixed
j. Then

IW(, z-(j+ 1))(s,_j_ 1)1

W(. 2 J)(s, j) ds,
Xn

--< { veP(j)

(j + 1, (PJ-A[Pl])!+ 1)pl+I [J- Pl, J-p2Pl! P2 + 1]p2

+
(j + 1, j)[j, j P + l]p’ [Pm, 1]p’’}

[Pm, 1]p"

Pm!

+Z
peP(j)

[j+ 1,j-- Pl + 1]p’ [j--Pl,j-- Pl P2 + 1] p2

Pl! P2!
[Pro, 1]’"
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Observe that in the second sum P - 1 since [j, j 1 + 1] 0, so that the first
two sums combine to form

(j+l,j+l-pl+l)p’[j+I-pl,j+I-pl-p2+I]p2

pP(j + 1) P P2

[Pm, 1]p’

Pm!

Also, in the third sum, p + 1 >__ 2, but [j, j 1 + 1] 0, so the third sum becomes

[j+ 1,j+l-pl+l]’[j+l-pl,j+l-pl-p2+l]2

peP(j+ 1) Pl P2!
[Pm, 1]"

Pro!

Hence IWt"-2-J-1)(s, 1)1 A(j + 1)lUz so by induction (12) holds for all
j 1,2, ..., n 2. Clearly then one bound for H,(h) would be

n-2

(13) H,,(h) a(j)h,
j=l

where

2 1

pP(j) P P2 qeP(j- 1) q 2.

Jr, s] Ix,-r x,-A 0 if x,_r x,_. Suppose now that X2 X3

Xl+2.r >--_ sson r =< n s, and[r,s] =0ifn--s=<l+2, i.e.,s=>n--l-2
k 2. It is clear then that A(j) does not increase for fixed j as increases, and in

fact, A(j) decreases as increases for j >_ k 2. This observation is needed for the
proofofTheorem to make the induction step ifestimates other than that in (3)are
used for H,(k). Let

(14) fl(j)
1 1

pP(j) P !P2 pl+p2 + Pl !P2!
p :: all p >__ 2

Then a(j) 2fl(j) + fl(j 1) for j 2, 3, 4,..., n 2. Let

zj
F(z): ,2f(.:ez-z- 1.

j=

Then

F(z) fl(j)zj"
1 F(z) :2

This power series has radius of convergence R > 1.1461 p, so that j= 2 fl(J)PJ
is convergent. This observation is important since it insures that the numbers fl(j)
will decrease exponentially as j gets large.

Suppose that X2 X3 Xl+2 < Xl+ 3 where 1 =< =< n 3. Then one
can estimate Wt"-2-J)(x) by W("- 2-J)(x)l =< h for j 1, 2, ..., n 3 and
[W("-2-J)(x)l =< hJ/(j n + + 3)!forj n l- 2,..., n 2.

Thus n-3 ( hn-2-j n-_-3w * w<J) <_ nell (1 + 1 j)
+ hi

j=O j=O j=l
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so we may take

h 2-j n-l- 3

(15) H,(h)
(l + 1 -j)

+ hj"
j=O j=l

For n 3 (3 nodes) we have

,:z h
H(h) H3(h)=

and for n 4 (4 nodes)we have

H,(h) H’(h)=
hJ+

j=o J!
Equation (15) is much easier to compute than (13). One may say in a nonprecise
fashion that for "close" to n- 3, estimate (15) is preferred to (13), but for
"close" to 0, (13) will give a better result since j < 1 forj >= 3.

It is also quite clear that the numbers fl(n) satisfy the recurrence relation

1 n-2 1
fl(n) .. + k2 (n k)!ilk

for n >_ 4.

4. Some special cases. Let n 3. Then k 3 so that Jr, s] 0 if s _> 1,
and thus [j, j P + 1] 0 if j P >- 0, i.e., if j >_ P l. Hence A(j) reduces to
(j, j)J/j! so that IA(j)[ <= hJ/j! and n,(h) reduces to

H.(h) H((h)= -f[..j=l

Let l=n-4. Thenk=4, so [r, s] 0 if s _>_ 2. Thus [j,j-p+ 1]=0if
J-Pl+l_->2, i.e.,ifJ>_-Pl+l. Also [j-px, j-p-p2+l]=0ifj-l__>px
+ P2, so A(j) reduces to

(j j--r+ 1)r[j- r, 1]g-r [j, 1]
r=O
rej-1

r! (j- r)! j!

Ix.- x._,l Ix x._ I’ Ix. x._ -"
Jt + j+ -j+

,=o r! (j r)!

The maximum value of this sum occurs when x x,_ and x,_ 2 Xn-3
x,_j_ 1, so that

A(j) =< fi 1 +

where()isthebinomialcoefficient. TheresultingboundforH,(h)isnotasgood

as the bound -2hJ/(j 1),. which is given by (15) for this special case. This is in
accordance with the comment at the end of 3.
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Consider next the 4-point problem obtained by putting x2 X 3 Xl +
Xl + 2 < Xl + 3 Xl +4 Xn-1" Then Jr, s] 0 if n s __< / 2 or n r

_>_l+3, i.e.,[r,s]=0ifs=>n-l-2orr_<_n-l-3. For l_<_j=<n-l-3we
have A(j) [j, 1]!. For j > n 2 we have

[j, 1] (j,j r + 1) Jr, 1]J-
A(j) j---i-- / r)’r=,--2 r. (j

rtj-1

So

A(j) __<

h
<=j<n-l-3,

1+ j>=n-l-2.
r=n-l-1
rj-1

Also of interest is the special case where x2 X4 X6 and x3 X5

In this case [r, s) 0 if r s is an even integer. Hence

pl+P2 +
Pz,P3, all

(j,j- Pl / 1)p [j- Pl,J- Pl P2 / 1]p2

Pl!
A(j) [p,, 1]

This is a special case of the problem .obtained by putting xi xi +po, 2, 3,
n Po where Po is a positive integer. In this case

A(j)
(j,j- Pl + 1)p’ j- Pl,J- Pl- P2 + 1]p2 [P,,, 1]p"

p, +p2+ Pl P2 Pm

/
[J,J Pl / 1]p’ [j Px,J Px P2 / 13p2 IV,,, 1]p"

pl+p2+ Pl P2 Pm

the first sum being taken over all partitions with p 1 (mod Po) for >= 2 and the
second sum with P 1 (mod Po) as well. These will give bounds H,,(h) for the
special problems.

5. Some poised matrices. We consider matrices E,4 of the two types B1 and B2.
Type B1. e2,j for j 0, 1,..., n 4 and j n 2; 3,,-3 e4,,-2

el,,-2 (or the given rows 2 and 3 are interchanged), i.e.,

0 0 0 0 0 0 0 0

e2=
0 0 0 0 0

0 0 0 0 0

Type B2. e2,j 1 for j 0, 1,..., n- 4; e,,,-2 1; e3,j 1 for j Jo,
0=<jo <n-2, and e,,,j= forj=jl,jo__<jl -<n-2, with not both

e4,,-2 (or the given rows and 4 and the rows 2 and 3 interchanged).

[j,j- Pl + 1]p’ [J -Pl,J- Pl P2 + 1]m I-Pro, 1]
p,+w P, P2

Pl,P2, all
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THEOREM 3. Let (1) be as in Theorem 1. Let E. satisfy condition B and let
(4) hold with

2 h
H.(h) H4)(h)=

j=l (J 1)!

Then E*. is poised with respect to (1) on any proper subinterval of I.
This theorem is simply a restatement of Theorem for the case k 4. The

corollary of this theorem involving matrices satisfying condition B2 is of interest
since matrices of type B2 are not included in class C.

COROLLARY 1. Let the condition of Theorem 3 be satisfied with B replaced
by B2 Then E*. (of Type B2) is poised on I.

Proof. Suppose y Y(x) is a solution of (1) on I satisfying (2) with e,j, 0.
Apply Rolle’s theorem to Y()(x) on Ix2, x3] to get a point /x e (x2, x3) such that
y(jo+ )(7) 0. Then apply Rolle’s theorem to y(jo+ 1)(x and continue until there
exist points 93 < 4, both in (X2, X4) SO that yt"-3)()3) 0 and ytn-2)(324) 0.
Then the matrix determined with x, x2, 3 and as nodes, 0 yt"-2)(xl)

y(n-2)(.4) y(n-3)(323) and ytJ)(x2) 0 for j 0, 1,2, ..., n 4, is of type Ba
on [x, 4], and hence by Theorem 3 (, < x4) is poised on [x a,4]. Hence
Y(x) 0 on I, and therefore E is poised on I.

Similar corollaries can be stated and proved in analogous fashion for the
cases k 4:4 also.

In the general case it suffices that the matrix A which forms part of E, (see the
beginning of 3) should be conservative since in [5] it is shown that if A is con-
servative, then A is of class D.

6. Zeros of solutions. Suppose that y yo(x) is a nontrivial solution to (1)
on the compact interval I and assume that a,_ 2(x) -< 0 on I. Then the following
situations cannot occur when inequality (4) holds"

(a) yo(x) has a zero z of multiplicity k with n- k- 1 zeros (counting
multiplicity) to the left of z and n k 1 zeros (counting multiplicity)
to the right of z in I;

(b) yo(x) has 2n 3 zeros (counting multiplicity) in I;
(c) yo(x) has a zero of multiplicity n 2 which separates two other zeros of

yo(x) in I;
(d) yo(x) has a zero of multiplicity n 1 and one other zero in 1.
Note. For cases (a) and (b) let H,(h) be defined by (13); for cases (c) and (d)

let H,(h) be given by

n2 h

Cases (c) and (d) arc impossible by Theorem 1. Case (a) follows from Theorem 1
byobservingthatifI [a,b,thcnthcrearepointsz ao >-_ al >- a: >= >=
and z b0 < b < b2 < < b,_ 2 with a,_ 2 < b,_ 2 SO that y)(as)= y)(bs)= 0
for j 0, 1,.-., n- 2. This of course violates Theorem 1 when yo(x) is not
identically zero on I. Case (b) is a special case of (a). Note that as k increases in
case (a), more terms are zero in A(j) and hence a smaller estimate can be given
for H,(h).
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7. Miscellany. Suppose that a,_ l(x) 0 on I. In Theorem 2 this corresponds
to f not depending on y,. Then condition (iii) of Theorem 2 holds for any K > 0.
Also

E(1/2hK) 3h2
lim

K2K0+ 8

so if (7) is replaced by

(16) H.(6)Qt3h2 <_ 8M,

then Theorem 2 is still valid. Similarly Theorem 1 remains valid if (5) is replaced by

H,(h)(lla,-31+ Ila,-ll + + Ilao )3h2 8

in case a,_ l(x) 0 on I. Also notice that if QME(1/26K(M))/(K(M))2 O(M2) as
M ---, oe, then (6) (or (16) in the case f does not depend on y,) is valid for M large
enough, so the given boundary value problem (5) has a solution.

Suppose that I, a,_ and a,_ 2 =< 0 on I are given. Then a,_ 3, a,-4, ..., ao
can be chosen with small enough norms so that N, is sufficiently small for (4)
to hold. Hence it is clear that the set of equations (1) for which (4) holds is not
vacuous. In fact if A is conservative and irreducible, then

0 0 0 0 0 1 0

0 0 0 0

iA and

0 0 0 0

0 0-.. 0 0 0

are both poised with respect to solutions of (1). Also,

2 a(j) < 3 fl(j)= 3
j= j=2

SO

H.(1)_< (j)=< 1 +3
e- 2e-3

j= 3 3 -e

Thus we have the following corollaries of Theorem 1.
COROLLARY 2. The matrix Ek, of class C is poised on any proper subinterval of

[0, 1] with respect to (1) provided

2e- 3 ([[a,-3ll / / Ilaoll)E(llla,_xl])_ 1.
3 e Ila,-lle

Of course we assume that a,-e -< 0 on [0, 1] and that all coefficients are
continuous.

COROLLARY 3. Suppose that a(x) and b(x) are continuous on [0, 1 with a(x) <= 0
on [0, 1]. Then the matrix E of class C is poised on any proper subinterval of [0, 1]
with respect to

yO,) + ay(,,- 2) / by O,
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provided

gl, 3 lib I=< 1.
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LEAST SQUARES METHODS FOR ILL-POSED PROBLEMS
WITH A PRESCRIBED BOUND

KEITH MILLER"

1. Introduction. Ill-posed problems in partial differential equations are those
in which the solution depends uniquely but not continuously on the data. The
Cauchy problem for elliptic equations, backward solution of parabolic equations,
elliptic continuation, and complex analytic continuation are a few of the classical
problems which are not well-posed in the sense of Hadamard. It has been found
for a large class of these problems, however, that continuous dependence on data
may be restored on compact subsets by restricting attention to those solutions
satisfying a prescribed global bound; see the initial papers by Pucci [14 and
John 9, for example. This bound is often ofphysical origin, and such problems are
thereby restored to physical usefulness.

The study of ill-posed problems seems to divide naturally into two tasks:
firstly, establishment of a priori stability estimates which assure continuous
dependence on data with the prescribed bound, and secondly, development of
adequate computational methods. This paper is directed primarily toward the
latter task.

In two previous papers, [113 and [12], the author presented a method useful
for solving ill-posed problems in cases, such as those occurring when separation
of variables applies, where an eigenfunction expansion of the solutions and the
data is known. The present paper introduces methods which are much more
general and more numerical in nature. These methods are analogous to the
versatile linear programming method introduced by J. Douglas and applied to
many ill-posed problems by Douglas [5], J. Cannon and the author [3] and others.
However, the 12 norm instead of the l norm is used, which leads to great com-
putational advantages. This switch in norms is also justified by the fact that in all
our examples the stability estimates for the quadratic norm are only slightly
higher than those for the uniform norm.

The secondary purpose of this paper is to present the results and methods it
contains for the problem of analytic continuation. Analytic continuation is used
throughout as the example for illustration because it is typical, because the
notation and a priori estimates are simpler than for other examples, but also
because it is of great interest in its own right. Analytic continuation is being
constantly used (and often abused, with little understanding of its instability) in
the physical sciences these days, in particular in nuclear scattering theory. See,
for example, the work of T. Regge [15], the copious publications on S-matrix
theory of the G. F. Chew school at Berkeley [4], and work by other physicists
too numerous to mention here.
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Sections 2-4 deal with examples and methods in a Hilbert space setting.
Section 2 introduces the example of analytic continuation from data given every-
where on an interior arc and rephrases it in terms of operators on Hilbert space.
Section 3 considers the Hilbert space problem and methods in general. The
methods developed here, involving as they do solution of normal equations in
infinite dimensions, are not exactly numerical in character however, the exposition
is simplest and most general in this setting. We see that a satisfactory approximation
policy for ill-posed problems requires knowledge of a bound for the data accuracy
(as in Method 3), or knowledge of a bound for the global constraint of the solution
(as in Method 4), or, preferably, both these bounds (as in Methods 1 and 2). The
fortunate feature of these methods is that they do not depend upon stability
estimates being known and that they are "almost best possible" methods, inde-
pendent of the choice of norm for measuring the error. A brief observation on
compactness explains qualitatively the success of prescribed bounds in restoring
stability in so many instances. Section 4 compares the present methods with the
previous eigenfunction expansion methods, again in the general Hilbert space
setting.

Sections 5-9 deal with numerical methods, with the problem of approx-
imately determining an analytic function on the unit disc from approximate data
for its values at a finite number of interior data points as example. The results and
methods for this problem and the computer program whose sample output is
shown in Tables 1-4 all go under the title of "Stabilized Numerical Analytic
Continuation", or "SNAC" for short. SNAC begins in 5 with discrete data;
6 further discretizes the problem, approximating the unknown analytic function

by an unknown polynomial and discretizing the boundary constraint. The original
problem is thereby replaced by a fully discretized problem for which all the
operators and normal equations of 3 are finite-dimensional and subject to direct
numerical computation. Section 7 discusses discretized problems in general.

Method involves considering the global constraint as an additional piece
of data, then applying the natural least squares procedure to the resulting problem
with overspecified data. The general method itself, that of minimizing a quadratic
combination of the fit to the data plus a small weighting parameter times a
regularizing function, seems to have been devised and used independently in many
different unstable situations see for example [1, p. 137] and [16]. What is ofpresent
interest is the fact that the method is essentially "best possible" within the context
of a prescribed bound, the fact that making the prescribed bound explicit allows
precise choice ofthe weighting parameter, the relation ofMethod 1 to Methods 2-4,
and the ease and generality ofthese as numerical methods. One feature ofMethod 1
which should be emphasized is that it allows "best possible" stability estimates
for the discretized problem to be easily generated by the computer. This is of
especially practical importance in the case of ill-posed problems, for as a general
rule the restored continuity is still extremely poor. Whereas the best possible
estimate may give some useful information, a theoretically derived estimate may
be so large as to be totally useless.

The a priori stability estimates for SNAC are derived in 8. The data points
may be arbitrarily distributed; however, the a priori estimates derived are in terms
of their "radial density" on a fixed compact subset of positive capacity. One
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fortunate feature of SNAC is that the interpolation error must go down exponen-
tially with the square root of the number of data points. We reiterate that as a
practical matter one need not strain too hard for quantitative precision in deriva-
tion of a priori estimates, for as a rule the computer-generated "best possible"
estimates will be much more precise. The only a priori analysis required is the
relatively simple discretization analysis needed to insure that the discretization
error is negligible.

Section 9 gives a comparison between the 12 and loo methods. Finally, we
discuss some sample output from the computer program SNAC.

2. An example with nondiserete data. Consider the problem of approximately
determining an unknown analytic function fo on the open unit disc D from
approximate values h(z) for fo(z) given everywhere on a smooth arc F compactly
contained in D. We assume that h is an L2 data function given on F, and that f0
satisfies the following data error bound on F and prescribed bound on cD:

(2.1) II/o hllv =< ,
(2.2) fo oo < E,

where we assume for now that both e and E are known numbers. The norms
indicated are the L2 norms on F and c3D, with integration with respect to normalized
arclength.

An analytic function is uniquely determined by its exact values on an interior
arc, as is well known. However, this problem, without the prescribed bound (2.2),
would be completely unstable. As the simplest example, suppose that F is the
circle {Izl b}, 0 < b < 1. Let c be any number between b and 1, and consider
the sequence offunctions (z/c)" which tend to zero together with all their derivatives
on the data circle yet tend to infinity at any point with Izl > c. Adding such functions
onto fo as error functions, we see that an arbitrarily small error in the data can
induce an arbitrarily large error in the solution at any point exterior to the data
circle.

The prescribed bound (2.2) restores stable dependence on the data on compact
subsets of D, as is shown in the following two lemmas, which give estimates for
the difference between two functions satisfying (2.1) and (2.2). The first lemma is
basic to our analysis;it gives a simple and quite precise a priori stability estimate
provided uniform bounds are assumed in (2.1) and (2.2). This variation [7] of the
classical Carleman inequality includes the Hadamard 3-circle theorem, for example,
as a special case. The second lemma extends the estimate to the desired case of

L2 bounds in (2.1) and (2.2). We delay its proof to 8, however.
LEMMA 1. Suppose that f is a function analytic on D F, continuous on D,

and satisfying

(2.3) fl < e on r,

(2.4) fl < E on 2D.

Then on D,

(2.5) If(z)l _-< w(z)E-W(Z),
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where w is the harmonic measure off with respect to D F, that is, the solution of
the following Dirichlet problem"

w is harmonic on D F, continuous on D,

(2.6) w_= 1 onF,

w =-0 ont3D.

Proof. The function log f(z)], being the real part of any branch of log f(z),
is harmonic except at zeros of j at which points it tends to . Now, this sub-
harmonic function log If(z)l is less than or equal the harmonic function (log e)w(z)
+ (log E)(1 w(z)) on the boundary ofD F; hence the same inequality extends
to all D F by the maximum principle, which completes the proof.

LEMMA 2. Suppose that f is analytic on D and satisfies the L2 bounds

(2.7)

(2.8)

Then on D,

flit <= ,

(2.9) If(z)l =< clog + //1 -izl
ewtz)E-WtZ)’

where w is the harmonic function of (2.8) and c is a constant depending only on the
length of F, on b max {Izl "z F}, and on the "radial span" of F (see 8).

We now rephrase the problem in terms of operators on Hilbert space. The
Hilbert space H2 of functions f analytic on the open unit disc with finite L2 norm
on OD is topologically isomorphic to the Hilbert space 12 of infinite complex
sequences x (Xo, x,...) with the usual 12 norm under the Taylor expansion
f(z) o xjz. The fact that this is an isometric isomorphism, i.e.,

(2.10) f[oo x Ixj[ 2
o

is only incidental. Thus, instead of dealing with analytic functions f, we shall be
dealing with their coefficient sequences or "parameter vectors" x. Corresponding
to each 12 sequence x, let Ax and Bx denote the trace functions of its Taylor series
on F and OD that is, if F is parametrized by z 7(s), and of course OD by z e,
then

(2.11) Ax(s) xj(7(s)),
o

(2.12) Bx(O) xjeijO.
o

We see that A is a bounded linear transformation on the "parameter space" 12
into (not onto) the "data space" L2(F) (it is incidentally compact and 1-1, with
an unbounded inverse on its range). B is a bounded linear transformation on 12
into (not onto) the "constraint space" L2(OD) (it is incidentally an isometry).
Notice that the data function h(s) is an element of the data space.
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We were not sufficiently precise in the original statement of the problem;
we asked only that we determine an "approximation" (let us say it is also an
analytic function fl, with parameter vector x1) to fo (with parameter vector x)
without specifying a norm or seminorm (.) with which to measure the error
x x. We certainly cannot use the 12 norm, for our problem is unstable with
respect to this norm, as we can see by considering fo(z)= z" and f(z)= -z"
with n large. By Lemma 2 the problem is stable with respect to the uniform norm
on any compact subset. In particular it is often convenient to consider the seminorm

(2.13) (X)zo =- If(zo)l (xj)zo
o

where Zo is any fixed point in D, since this seminorm can be written simply as an
inner product in the parameter space"

(2.14) (X)zo I(x, v)l, v (1,o,, ...).

3. The infinite-dimensional problem and method in general. In general we have
the following situation: x is an unknown element in a Hilbert space X, the
parameter space. (.) denotes a seminorm, or sometimes a family of seminorms
on X. A, the data operator, is a bounded linear operator on X into a Hilbert
space Y, the data space, and h, the data vector, is a given element in Ywhich approx-
imately equals Ax. B, the constraint operator, is a bounded linear operator (with
bounded inverse on its range) on X into a Hilbert space Z, the constraint space.

Problem. Suppose that x satisfies

(3.1) Zx hll ,
(3.2) IIBxll E,

where E is a "fixed" number and is a "small" number. We assume for the moment
that both e and E are known. We want to find an element x X which "approx-
imates" x, in the sense that (x x) is small when e is small. Our methods will
luckily turn out to be completely independent ofthe seminorm under consideration.

We assume that Problem (3.1), (3.2) is stable with respect to the seminorm
(.) ;that is,

(3.3) //(e,E) sup{(x)’xXand IlAx , B(x) E}
tends to zero as e tends to zero, for fixed E. Finding an approximation to x then
reduces to the problem of finding any other element x satisfying the constraints
(3.1) and (3.2); for then (x x) __< 2#(e,E). We call any upper bound for
//(, E) a stability estimate for Problem (3.1), (3.2), and //(e, E) itself we call the
best possible stability estimate.

Instead of dealing with the two constraints (3.1) and (3.2) separately, we
combine them quadratically into a single constraint, as is often done in such
cases of overspecified data (data h for Ax and data 0 for Bx). We lose at most
a factor of ,, in the constraints in the process.

LEMMA 3. If X satisfies (3.1) and (3.2), then it also satisfies

(3.4) Ax h 2

__
iiBxo 2 2e2.
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Conversely, any x satisfying (3.4) also satisfies (3.1) and (3.2) except for a factor
of at most w/. If we let #l(e, E) denote the supremum of (x) with respect to (3.4)
with h 0, then

(3.5) /(, E) =< ,(, E) __< x//(, E).

Method 1 (A least squares method). Let our approximation x be that element
of X which minimizes

(3.6) IIAx- hi[ 2 +

It is the solution of the normal equations

(3.7) A*A + B*B x A*h.

The derivation of the normal equations for the minimization of (3.6) is easily
accomplished by introducing the direct sum Hilbert space Y Z whose elements
are the pairs [y,z], ye Y, zeZ, and whose inner product is ([y,z],[y2,z2])

(Y l, Y2) -+- (z l, Z2)" The composite operator [A, (e/E)B] is defined by

and the problem is to minimize

A, B x-[h,0]

Our solution x then is the solution of the normal equation

[A, (-)BI*IA, -)Blx [A,-BI*[h,O],
as is well known, which can be written as (3.7). The existence of a minimum and
the fact that the operator

(3.8) C =_ A*A + B*B

of (3.7) is invertible follow from the fact that B has a bounded inverse on its range
and hence B*B is positive definite on X.

Note. We have required B to be bounded and with a bounded inverse on its
range mainly for ease of exposition. All that is really required is that it be densely
defined, so that B* exists, plus some other combination ofhypotheses to insure that
the normal operator C has a bounded inverse. See for instance the examples of
[11, p. 131] where we let B be various derivative and integral operators on cD.

Note. In our example of 2, B*B ! since B is an isometry. Moreover, using
the Schwarz inequality on the defining formula (2.12) we see that the uniform
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norm (and hence the L2 norm) of Ax is bounded by (1 b2) 11211Xl[, where as
before b max {[zl:zeF}. Hence I[A[[ _-< (1 b2) -1/2 and the spectrum of
A*A lies in the interval [0, (1 b2) 1]. The operator C of the normal equation
therefore has its spectrum in the interval [(e/E)2, (1 b2) _+_ (e/E)2]. Thus we
have quite a good estimate for the "condition number" for C (the supremum of
the spectrum divided by the infimum of the spectrum).

LEMMA 4 (A posteriori compatibility check and a priori error bound). If there
exists an x satisfying (3.4), then x must satisfy

(3.9) IlZx h 2 _[_ iBxXll2 <= 22.

Moreover,

(3.10)

hence,

IlB(x x)l[ 2 2e2;

(3.11) <x x> _-< ,////l(e, E).

Proof. Inequality (3.9) is automatic of course. Inequality (3.10) follows from
the fact that [A, (e/E)B]x is the perpendicular projection in Y 03 Z of [h, 0] on
the range of [A, (e/E)B]. Hence

(3.12)
[A, ,Bl(xl x) + A,-B x1- [h,O]

A,-B x [h,O]

which completes the proof.
Inequalities (3.10) and (3.11) show that the error (x x) (independently of

what seminorm is used) is as small as can be expected except for the factor of x/.
Notice that (3.10) is twice as good as could be obtained by merely using the

triangle inequality in Y 03 Z on (3.9) and (3.4). Inequality (3.9) gives an a posteriori
check (to be computed after computing x1) on the claimed accuracy e and bound E
for the given data function h.

In the following lemma we see that in case the seminorm is in the form of a
known inner product then a computable formula can be given for gl(e, E),
the "best possible stability estimate with respect to (3.4)."

LEMMA 5 (A formula for the best possible stability estimate). If (. is of the
form (x) [(x, v)[, then //{l(e, E) is given by

(3.13) gl(, E) x/e(C- iv, v)1/2.

Proof. gl is the maximum of (x, v) with respect to the quadratic constraint

2

X (Cx, x) <= 2e2.
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We thenjust apply the Schwarz inequality, but with respect to the new inner product
Ix, y] (Cx, y). We have

(x, v) Ix, C-

[X,X]I/2[C -lv, C-1/)]1/2 (Cx, x)l/2(C -lv,/))1/2

=< f(c-, )/2,

which inequality is precise.
The preceding formulation has the disadvantage that the error bound e and

the constraint E must both be known. We show now that a satisfactory approxima-
tion policy requires a knowledge of only one of these numbers. The following
considerations are extremely similar to those discussed on pages 141 and 142 of
[11] for the author’s previous eigenfunction expansion method.

Given numbers e and E may clearly be too small for the given data h, and
x satisfying (3.1) and (3.2) may fail to exist. Let us call a pair (e, E) permissible if
there exists an x in X satisfying (3.1) and (3.2). Now it turns out that the factor
22= (e/E)2 in the normal equation is really a Lagrangian multiplier, and the
solutions of the normal equation, as 2 increases from 0 to , give complete
information concerning which pairs are permissible.

Let x denote the solution of the minimization problem (3.6), i.e., of the
normal equation (3.7), with (e/E)2 replaced by .2. Let

(3.14) e IlZxa- h E Bxll.

Clearlyx minimizes IIAx hll with respect to the constraint IIBxll < E. Likewise

x minimizes Bx with respect to the constraint IIAx hll =< a. It is also easily
seen that e and E are continuously increasing and continuously decreasing
functions of 2. Thus, the set g of permissible pairs is exactly the set of points which
are above and to the right of the curve (e, E), 0 < 2 <_ oe. Here the case 2 0
corresponds to minimization of IlZx- hll alone, in which case E may be oe,
and the case 2 oe corresponds to minimization of Bxll alone, in which case

Ilhll and E 0. Moreover, one easily shows that g is a convex set, hence
computation of only a finite number of points on its boundary curve (e, Ex),
coupled with linear interpolation inbetween, should give a good idea of its shape.

Suppose now we are looking for a particular parameter vector x and are
given approximate data h for Ax. Let 4 and E denote lAx -hll and Ilnx
respectively.

Method 2. Consider first the case where upper bounds e and E are known for
both 4 and E. This was our assumption in (3.1) ofProblem (3.1), (3.2). By our previous
discussion the (4, E) for x must lie in the shaded area of Fig. 1. Further, any xx
whose corresponding (e,Ex) touches the shaded area will be a satisfactory
approximation to x, for then the error is bounded by (x- x) =< (e + 4,
E + E)_<_ 2//(e, E).

Our least squares Method 1 of course calls for us to take xz with 2 (e/E)
as our approximation; in that case we saw that ez =< w/e, Ez _< x//E, and
(x- x) __< z,(, )__< x/(, ).
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E2

FG.

Method 3. Consider next the case where only an upper bound e for is known.
Let our approximation x then be the element in X which minimizes Bx with
respect to tAx h < e. That is, let x x,, where 2’ is the value such that
e, e, as shown in Fig. 1. This method then involves merely solving a sequence
of least squares problems; because of the continuity and monotonicity of ,
we can solve for the desired Lagrangian multiplier 2’ by a variety of iterative root
solving methods, interval halving for example. Now must lie above E,.
Thus the error is bounded by (x x) =< #(e + , E, + ) =< 2//(e, ), which
is essentially optimal with respect to the given information, even though / is
unknown.

Method 4. Consider finally the case where only an upper bound E for E
is known. Let our approximation x be the element in X which minimizes Ax hi
with respect to Bx <= E. That is, let x xz,,, where 2" is the value such that
E,, E, as is shown in Fig. 1. Here the error is bounded by (x x) < 2#(g, E),
which is essentially optimal with respect to the given constraint, even though
is unknown.

Remark. The success of prescribed bounds in restoring stability to so many
of the classical ill-posed problems is qualitatively explained by the following
standard theorem, on compactness [10, p. 141]" Let a be a continuous mapping
on the topological space X into the Hausdorff topological space Y; if a is 1-1
and X is compact, then o- is continuous. In our example of analytic continuation
we see that analytic functions satisfying the prescribed bound (2.2) on (D form
a bounded equicontinuous family, which is hence precompact with respect to
the uniform norm [-[), on any subdomain D1 with 1 c D, F c D1. Taking the
closure with respect to[. [)1 we still have a compact family X of analytic functions.
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This, plus the uniqueness of analytic continuation, therefore restores continuity
to the problem of continuation from F to D 1.1

4. Comparison with the method of partial eigenfunction expansion. It is
instructive to compare our present methods with the previous methods of [11]
and [12], again in the general Hilbert space setting. We shall see that the previous
methods have two serious restrictions. In the first place A*A and B*B must
commute. This is not too great a disadvantage since we can often contrive to make
B*B I by a different choice of the parameter space, as noted in the remarks
at the end ofthe section. A more serious disadvantage, however, is that the method
requires knowledge of the spectral decompositions of A*A and B*B. In certain
instances these are given to us naturally, such as in many problems of partial
differential equations where separation of variables is possible. As a general rule,
however, even in discretized problems where the operators involved are finite-
dimensional and subject to numerical computations, the finding of spectral
decompositions is an exceedingly more difficult operation than is the mere
solution of normal equations.

We assume now that A*A and B*B commute, leaving all other hypotheses
and notation from Problem (3.1), (3.2) unchanged. A and B have the polar decom-
positions

(4.1) A Uw/A*A, B Vx//B*B,
where x//A*A and x//B*B are positive semidefinite and positive definite operators
on X, U is an isometry of X into Y and V is an isometry of X into Z. Because
w/A*A and x//B*B commute, they have spectral decompositions with respect to
the same real spectral measure E; that is,

where and p are nonnegative functions on the spectrum of E. See [13, p. 67]
and [6] as references for the spectral theory used here. Now, let P be the projection
in X corresponding to that portion ofthe spectrum where

and let Q I P; that is,

P I_ dE(2),
(4.2)

1
(2) > q(2),

={2"2spectrumEand(2)>-q(2)t.
We have chosen this particular orthogonal decomposition of X because of

the following property.
LEMMA 6. For any x in X, I[APxll <= e implies ]lBPxl] <= E, and I[BQxl[ <= E

implies aQx __< .
am indebted for this observation to a mathematician in the audience at Pisa in 1965 when was

presenting these numerical methods there.
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Let R denote the projection in Y onto the range of AP, and let S denote the
projection in Z onto the range of BQ.

(4.3) APx RAx, BQx SBx,

(4.4) AQx (I R)Ax, BPx (I S)Bx,

(4.5) IlZxll 2-- IlZPxll 2 / IlhQxll 2,

(4.6) Ilnxll 2 -IIPxll 2 / IIn0xll 2,

Instead of keeping the constraints in the form

(4.7) IlAx h <= e,

(4.8) Ilnxll =< E,
we use for our method only the information

(4.9) IIR(Ax h)ll IIAPx Rhll ,
(4.10) IISBxll IlBxll E.

Method 5. Since A, as an operator on the range of P onto the range of R,
is invertible, let our approximation be that element x such that

(4.11) APx Rh, x Px.
The following lemma corresponds to the "three norm lemma" of [11] and

Lemmas 8 and 9 here then correspond to Lemmas 7 and 8 there.
LZMMA 7. Let l(e, E) be defined as in (3.3) and let

(4.12)

(4.13)

Then

(4.14)

L L(e, E) sup {(Px5 "x X, [IAPxII },
H H(e,E)= sup{(QxS’xX, IBQx E}.

1/2(L + H) =< max (L H) =< /( E) =< L + H

Proof. The lower bounds on # by L and H follow from Lemma 6, and the
upper bound on by L + H follows by writing (x5 <= (Px5 + (Qx5 for any x
satisfying both constraints.

Notice that if (. 5 is of the form of a known inner product (x5 I(x, v)l,
as in Lemma 5, then we can give formulas for L and H. Using the Schwarz inequality
as in the proof of Lemma 5 we have

(4.15) L e((A*A)- XPv, PI)) 1/2

(4.!6) H E((B*B)- Qv, Qv)/2,

where the inverses indicated for A*A and B*B are their inverses as operators
restricted to the range of P and the range of Q, respectively, on which spaces they
are invertible.

LEMMA 8 (A priori bound). The error x x satisfies
(4.17) AP(x’ x)ll =< e, BQ(x x)ll __< E;
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hence,

(4.18)

Alternatively,

(x x) L(, E) + H(e, E).

(4.19) IlA(x x)[I , I[B(x x)l[ <_ x//E
hence,

(4.20) (x x) =< x///(e, E).

Proof. The first inequality of (4.17) follows from (4.11) substituted in (4.9).
The second follows from (4.10) and the fact that BQx 0. Now Lemma 6 with
(4.17) gives the companion inequalities

(4.21) IIBP(x x)l[ =< E, IlAO(x x)ll __< e.

These with (4.17) and with (4.5) and (4.6) then yield (4.19) as desired.
LEMMA 9 (A posteriori compatibility check). If there exists an x satisfying

(4.7), (4.8) for the given data h, then x must satisfy

(4.22) IIAx hll _<- 2e, IIBxXll =< 2E.

Proof. We have

lAx h (I-e)(-h)ll- I(I-e)(Ax- h)-(I- e)Ax

_-< IIAx- hll / IIZQxll-< 2e,

where the term AQxll is =< e by Lemma 6 since BQx is =< E. Then
IIBxXll IIBPxIII <= IIBP(x- x)]l + IIBPxll <= 2E,

where the first term is __< E by Lemma 6 since

AP(x x)ll [Rh- RAx IR(Ax h) <- e.

This completes the proof.
Note. When B is an isometry, as is often the case, then A*A commutes with

B*B 1 automatically. If commutativity should fail, however, then theoretically
we can just take y Bx as our parameter vector instead, since we have assumed
B is invertible on its range, itself a Hilbert space. The constraints then read
IIAB-ly hll -< e, ]]yl] -< E, and one is required to consider the spectral decom-
position of (AB- )*(AB- 1).

We finish this section by comparing Method 1 with Method 5 in a concrete
example for which both can be exactly executed. This is an example which we
have used previously in 12, p. 402] for Method 5. Consider the problem of analytic
continuation (2.1), (2.2) when F is the circle Izl b, 0 < b < 1. In that case X 12
and Y Z L2[0, r]. Taking the natural basis for 12 and the Fourier basis
{..., e-2, e-, 1, e, e2, .} for L2 we see that A and B have the infinite
matrices

(4.23)
aij-- bj6ij’
bij (ij, - < < , 0 < j < ,
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where 6u is the Kronecker delta. Thus B*B is the identity and A*A has the diagonal
matrix

(4.24) (a*a)i bZJ(ij 0 <= < , 0 <__ j < o.

Suppose that the L2 data function h has the Fourier expansion

(4.25) h(0)= hjeiJ.
j--

Method 1 then gives us the approximation

(4.26) fl(z) o hj bZ ie./E)2 z
j=

and the a priori error bound from (3.11), (3.13) and (2.16)"

z
=o J + (/e)]

On the other hand Method 5 gives us the approximation
[]

(4.28) f(z) hj(b-)z,
j=O

where is defined by (/E)= a and [] denotes the greatest integer . The
a priori error bound for this method from (4.18), (4.15), (4.16) and (2.16) is

I(/ -/o)(z)l

(4.29)
j=0

A similar simplification of (4.27) gives a similar bound there.
5. Stabiliz nerical analytic conuation" a numerical example. We return

to the problem of analytic continuation, but this time we only require data values
given at a finite number of points. We suppose that F is a closed set of positive
capacity contained in D, that the data set {da, --., d} is a discrete subset ofF,
that fo is an unknown analytic function on D, that h is a discrete data function
given on F, and that

(5.1) fo hll
(.2)

The problem again is to approximately determine fo on compact subsets of D.
The norm indicated on is the normalized 2 norm, that is,

1 x/2

(.3) I/o- hilt I(/o- h)()l
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Later, in 8, we shall develop a priori stability estimates which show that
the difference between two analytic functions satisfying (5.1) and (5.2) must tend
uniformly to zero on compact subsets of D as both e and the "radial density" of
the data points on F tend to zero. We consider first, however, the much simpler
discretization analysis.

6. Diseretization analysis for SNAC. We want to reduce problem (5.1), (5.2)
to a discrete or finite-dimensional one in which all the computations, and even
the stability estimates, can be carried out by computer.

In the first place we approximate fo by a polynomial Fo of degree n. Because
we are on the disc we can let Fo be the nth partial sum of fo’s Taylor series. Using
the prescribed bound (5.2) and the Schwarz inequality we get the precise truncation
error bound

E
(6.1) I(fo Vo)(z)l <- Izln/ x.

,/1 -izt
Taking n sufficiently large that this is =< .le on {Iz[ <- b} we have that

(6.2) lifo Follt =< .le, lifo Fol[oo <= E,

and hence the truncation error (fo Fo)(Z) is less at each point than any stability
estimate for the problem (5.1), (5.2). More explicitly, we obtain from (6.1) the
bound

1
[(fo Fo)(Z)[ =< w/1 [Z[2(’le)(lglzl)/(lgb)El-(lglzl)/(lgb)

(6.3)
1

x/1 -iz12(.l)wz)E-wt=),
where w is the harmonic function of Lemma 1. We have written .le instead of
just e to emphasize the fact that the effect of the truncation error, since it goes
down exponentially with n, can be essentially wiped out by taking n a little bit
larger than is absolutely necessary.

Finally, we replace the L2 norm on all t3D by the normalized 12 norm on
a discrete subset Ob {c,..., Cl}, l> n. This is not really necessary in the
present example since the L2 norm can be written as the sum of the squares of
the polynomial coefficients, but we do it anyway to emphasize the discretization
of everything in sight and to point out the generalization of the method to regions
other than discs. In the present case we take the constraint points cj equally spaced,
for then the 12 norm equals the L2 norm for polynomials of order < I. This is easily
seen since the basis functions zJ, 0 j < l, are orthonormal with respect to both
the L2 and the 12 inner product.

We have therefore reduced the original problem to the following one.
Discretized problem. Approximately determine the polynomial Fo of order n,

where Fo satisfies

(6.4) lifo- hl] 1.1,

(6.5) fol Fo I1o E.



66 KEITH MILLER

7. The discretized problem and methods in general. In terms of the general
terminology of 3 we have reduced the original problem to one in which the
parameter space, the data space, and the constraint space are all finite-dimensional.
In fact, X is C"+ 1, (n + 1)-dimensional complex space with the usual 12 inner
product. Y is Ck, and Z is C with > n. The data matrix A is given by

(aij)=(k(di)J), l <= <= k, O <=j <= n.

The constraint matrix B is given by

(bij)
1

(ci) 1 < < 0 < j < n

The parameter vector x has the polynomial coefficients xj, 0 =< j =< n, as com-
ponents. The data vector h, has the components h h(ci)/x/. Notice that the
normalization constants 1/x/- and 1/v/ have been included in A, B and h since
we are using the unnormalized 12 inner product on Y and Z. The seminorm men-
tioned in (2.14) is given by the same formula, <x>zo ](x, v)l with v (1, o, "’", ).

All of the methods of 3 now merely involve matrix computations which are
easily carried out by computer. The matrix C of the normal equation must still
have its spectrum in the interval [(/E)2, (1 b)-1 + (8/E)2] hence we have an
estimate on its condition number, which indicates the roundoff difficulties involved
in its inversion.

The computation of C-1 involves only approximately double the computa-
tional work required for just solving the single normal equation (3.7); hence with
little extra work we can use the formula (3.13) to compute the precise stability
estimate //{(e, E) at a whole grid of points z0 across the region D, thereby giving
a very good picture of the dependence of the stability estimate upon the geometry.

Generalization of these discretized least squares methods, illustrated here
in the example SNAC, to other ill-posed problems should be fairly evident now.
We take a moment though to speak loosely about certain requirements on the
discretization method used. In the general situation we are confronted with the
problem ofapproximately determining a "solution" (ofa certain partial differential
equation say) which closely fits given data and which satisfies a prescribed global
constraint. Discretization of the problem involves finding a linear approximate
representation, of sufficient accuracy for all solutions of interest, in terms of a
finite number of parameters. (For example, in the problem of harmonic continua-
tion, one can imagine approximately representing solutions of Laplace’s equation
by the discrete solutions of the Laplace difference equation; such discrete solutions
depending linearly on their discrete boundary values as parameters.) We must
insure that tle approximation for the desired solution also closely fits the (dis-
cretized) data and also satisfies a prescribed (discretized) constraint. The problem
then shifts to solving the discretized problem.

It should be emphasized that it is the discretized problem which must be
stable, the stability estimates being independent of the dimensionality of the
discretization used. This is the case in our example SNAC because the discretized
problem is really just a subproblem of the original problem (5.1), (5.2). A
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polynomial F satisfying (6.4) and (6.5) is itself an analytic function satisfying (5.1)
and (5.2); hence any stability estimate for the original problem must also hold for
the discretized problem. The situation would be different, however, for the above-
mentioned example of a finite difference equation discretization of the harmonic
continuation problem. Stability with a prescribed bound for discrete harmonic
continuation, independent of the grid size, does not follow from the stability of
harmonic continuation, but would have to be proved independently.

8. A priori stability estimates for SNAC. The task now is to obtain estimates
similar to (2.5) of Lemma 1 when the infinite data set F is replaced by the finite
subset f’, and when the uniform norm is replaced by the quadratic norm. The
basic interpolation error analysis of Lemma 10 is quite similar to that in a previous
paper by Cannon and the author [3]; however, we now bound the interpolation
error only on F and go from there using the more natural bound of Lemma 1.

We wish to point out that the sets D and F for Lemma 1 can be more general
than mentioned there. The proof of (2.5) still holds if we let D be any bounded
open set, the data set F be any closed subset of (it may for example be a portion
of the boundary rather than an interior subset), and if we assume (2.4) holds on
c3D F. The Dirichlet problem (2.5) may be nonsolvable if D F has exceptional
boundary points; in such a case we have to reinterpret w(z) to be the "lower"
generalized Dirichlet solution, that is, the supremum of all subharmonic functions
on D F which are continuous on D, __< 1 on F, and =< 0 on cD F.

Notice that the bound (2.5) includes Hadamard’s three circle theorem as a
special case. In the three circle case, the bound is precise, at least for a sequence
of e’s tending to zero, as is seen by considering the power functions z". In many
other cases when F is an arc, it can be shown that the bound is almost best possible.
When F is a set of zero capacity however, for example a finite set of points, the
function w(z) is identically zero on D F; (2.5) then gives us no information at all,
and the bound is clearly not best possible. The problem is that the method of
proof does not use the fact that f is single-valued. It uses merely the maximum
principle and the fact that If[ is single-valued on D F. For example, the best
possible bound when D is the unit disc, F is a discrete set of interior points
d l, "", dk, , 0 and E 1 is ]B(z)], where B is the Blaschke product

ll z djB(z) J=l ll 1 zdf
Now [B’(z)[ is still single-valued on D F and satisfies (2.3) and (2.4), yet B’(z) 1
as 0. Notice also that no bound such as (2.5) can hold unless F is at least a set
of unique analytic continuation, for the bound is zero when e is zero.

We assume for the rest of this section that D, F and 1 are as mentioned in 5.
The requirement that F be of positive capacity is of course exactly the condition
that the harmonic measure w(z) not be identically zero. We suppose now that f"
has a "radial density" 6 on F; that is, for each point on F there exists a point
di in " such that [T(di)[ __< 6, where T denotes any linear fractional transformation
mapping the disc onto itself and into the origin. We also suppose that F has
"radial span" a about each of its points, 0 < a < 1 that is, for every in F the set
{ITt(z)[ "z F} contains the whole real segment [0, a].
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LEMMA 10. Suppose f is analytic on the unit disc D, continuous on b, and

(8.1) If(z)l <- E on

(8.2) If(z)l =< e on (,
where " has radial density 6 on F and F has radial span a about each of its points,
a > 26. Then

2E a,/hT-g(8.3) [f(z)l =< 2e + w/1 a2
on F;

hence, by Lemma 1,

(8.4) If(z)[ <= 2 + x//1 _.....a2
E-wz) on D.

Proof. Let Ilf Ilr denote the uniform norm of f on F. Let be any point on F
where If] assumes this maximum; since we could map into the origin by a
linear fractional transformation, we may assume that 0. The geometrical
hypotheses now assure us that there exists a point d, in 1 with Idol =< 6 and that the
set [F,[ {[zl’z e F, Iz[ _-< a} is all [0, a].

We intuitively expect that the constraints (8.1) and (8.2) would give a worse
bound for If(0)l if all the data points of f-" were rotated around to the positive real
axis, maintaining their same moduli. This in fact can be proved; but we find it
simpler to do a similar analysis for a polynomial approximation to f

Let f, denote the nth partial sum off’s Taylor series, n to be chosen later. Using
the fact that the uniform norm, and hence the L2 norm, off is bounded by E on c3D,
we obtain the truncation error bound as in (6.1),

E E
(8.5) I(f f,)(z)l =< Izl"+ < a"+ Izl < a

x//1 -Izl x//1 a

Now f, has the factored form

(8.6) f,(z) k(z 1)’’" (Z n)"

We rotate the zeros of f, around to the real axis;that is, we let

(8.7) f*,(z) k(z

Clearly

(8.8) /.*(Izl) _-< f.(z)l =</.*(- Izl)
for all z. Thus

(8.9) [f*(0)l If(0)l

(8.10) If*(Idl)l <= If,(d,)l <= e + X//1 --62,
Ea,+

(8.11) /n* ll[O,a] ----< f Iv, <- If]Jr + w/1 --a2’
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where F is the set {z’z F, Izl E0, 43). By interpolation from the point (Idil) we
have

n+l
(8.12) If,*(0)] _< e + + 6llf*,’ [O,a]"

From Chebyshev theory [2, p. 7] we know that an nth order polynomial bounded
by 1 on [- 1, + 1] has its derivative bounded by n2 there. After normalization, and
using (8.9) and (8.11) we have

(8.13) Ilfll - 8 -- N//1 62 -- y/2 Ilfllr + x//1 /2
Choose n such that

(8.14) 0 <- n2

Therefore we obtain - , (n -}- 1)2

E6 + Ea,, +
(8.15) f v =< 2e + 2 +

As a rule we have 6 << a, n large, and the second term in (8.15) is exceedingly small.
However, for simplicity’s sake we have merely assumed enough (6 < 1/2a) to insure
that the second term is no greater than the third. Use of the inequality (8.14) for
n + 1 then completes the proof.

LEMMA 11. If F is a polynomial of order n satisfying

(8.16) IlFIl- =< e,

(8.17) IlFIlo, IIFIloo _-< E,

where these are the 12 norms considered in the discretized problem, containing k
points and c3"D containing > n equally spaced points, then If(z)l is bounded by (8.3)
and (8.4) withe replaced by and E replaced by w/-E.

Proof. Wejust use the facts that the uniform norm on k points is no more than
times greater than the normalized Iz norm and that the uniform norm of an nth

order polynomial on a circle is no more than f times greater than its L2 norm.
The above transition from uniform to 12 norm is quite crude, but it is com-

pletely adequate for our purposes. We may have introduced unnecessary factors of
up to and ,/-. However, we shall not have to take n and k very large since the
truncation error (see (6.1)) goes down exponentially with n and since the interpola-
tion error (the second term in (8.3)) can be made to go down exponentially with /-.

We first show that the x/ term does not hurt us, thereby obtaining a stability
estimate for problem (5.1), (5.2), and hence also for the discretization problem
independently of n.

LEMMA 12. Iff is analytic on D and

(8.18) Ilfll- <= ,
(8.19) f lloo <= E,
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then

(8.20)

If(z)l <
(’le)W()

where c depends only on b max

Proof. We approximate f by its nth order Taylor sum f,, taking n just large
enough to make the truncation error If f,I less than .le on F, as called for in (6.1).
This can be accomplished by taking n c log (E/e), where c depends only on b.
Then using (6.3) to bound I(f f,)(z)l, and Lemma 11 to bound [f,(z)], we obtain
(8.20) as desired.

We next show that the factor does not hurt us. We make the additional
assumptions that F is an arc and that the data points are taken fairly evenly spaced
on F (say for example that their maximum spacing is less than twice their minimum
spacing.) Their radial density 6 on F is then bounded by c/k, where c depends only
on b and on the length of F. We take k just large enough that the interpolation
error on F is less than .l e,

(8.21)
Ea,/-d E(a,/a,/a,/c),/< < le
w/1- a2 w1 -a2

which can be accomplished by taking k c[log (E/e)] 2. This choice of k in (8.20)
yields

(8.22) If(z)l <
L

a
1 -Izl

where c depends only on b, on a, and on the length of F.
The above analysis requires that we not take k "too large." As a practical

consideration for the numerical use of SNAC though, the upper bound we have
placed on k is just not very critical. We could overshoot greatly on k, making
extremely sure that the interpolation error bound (8.21) is satisfied, without the
factor of w/ doing us much harm.

As a matter of fact, closer analysis will show that no upper bound on k is
necessaryl We again assume that the data points are fairly evenly spaced on the
arc F (alternatively we could introduce a weighted 12 norm in which the data points
are weighted according to their spacing on F, but that would involve more compli-
cated notation). We can suppose that k > 2ko, where k0 is the least integer such that
(8.21) is satisfied. Let N now be the integer such that 2koN < k < 2ko(N + 1).
Notice that N >= 1. We group the points of " into 2ko groups of either N or N + 1
successive points, as needed to make the grouping come out even. In each group
let d be the data point at which f is minimum, thus picking out a subset F*. Now
by design the radial density of F* on F is less than the 6o necessary to insure that
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(8.21) holds. Moreover, the 12 norm offon F* is no greater than x/ times its 12
norm on 1:’"

1
if(dT)12 <

1
Ig(d)12

2ko r* 2- =
N +..1 if(d)12N =x

Therefore inequality (8.22) holds as before.
LEMMA 13. Let f be as in Lemma 12. Let F be an arc, let the points of " be

"fairly evenly spaced" on F, and let k be sufficiently large that (8.21) holds. Then
f(z)l satisfies the bound (8.22), where c depends only on b, on a, and on the length of F.

Proof ofLemma 2. We note that the l norm on with the points being equally
spaced tends to the L2 norm on F as we let k -, oe. Hence (8.22) holds in the limit
and the proof is completed.

9. Comparison between 2 and loo methods. The linear programming method
introduced by J. Douglas uses uniform norms rather than quadratic norms. That
method may be paraphrased as follows One must first reduce the original problem,
much as we did in 6, to a discrete problem in the form

IlZx- hi[ ,
Bx E,

where x, A, B, h are just as in 7 and where I1" Iloo denotes the loo norm Y Ioo
maxj lyjI if y has real components, or

Ilyll max {IRe yj[, IIm yj[}

if y has complex components. One then takes as our approximation the vector x
which minimizes Ax hlloo subject to the constraint IBxlloo =< E. This minimiza-
tion can be stated as a linear programming problem. Notice that our discrete
Method 4 is just the exact 12 analogy of the l method.

The switch in norms is justifiable on two grounds. In the first place the
stability estimates for the quadratic norm are usually not much worse than for the
uniform norm. We saw in the a priori estimates for SNAC that the 12 norm gave an
added factor of only log (E/a) at the data set F. This is typical of many of these
problems where the data set is embedded deep inside the solution domain; see for
example all the examples in [11]. The explanation, loosely, is that the solutions are
very smooth there, and for smooth functions the uniform norm is not much greater
than the quadratic norm. On the other hand the 12 norm gave an added factor of

l/w/1 Izl = at the boundary. This also is characteristic of all the examples in [11].
As a practical matter, though, this boundary behavior does us little harm, for one
usually will not be trying to do continuation close to the boundary, the H61der
continuity there being so poor. For example, accuracy a 10-6 at the data set
gives accuracy of only ewz) 10-1 at a point z sufficiently close to the boundary
that w(z) -.

In the second place there are great computational advantages to the 2

methods. The least squares approach involves only solution of equations with an
(n + 1) x (n + 1) complex matrix (or a 2(n + 1) x 2(n + 1) real matrix). The loo
approach, however, requires solution at each step of the linear programming
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algorithm of equations with a 4(/+ k) 4(/+ k) real matrix. Since in general
l+ k >> n, the least squares approach involves much less computation. The
number of equations does not go up as the number of data and constraint points
goes up; thus the possibility of solving really large scale problems is at hand.
Cannon and the author, in unpublished numerical trials in conjunction with [3],
found that even trivially small linear programming problems, say 15 data points,
15 constraint points, and n 9, soon filled the 32,000 word storage of a large
computer. On the other hand, the sample output for SNAC presented in Tables 1-4

TABLE
--1Oglo of observed error, n 14, 10-’, E 2.30

y
4 -0.4 -0.5 -0.2 0.3 1.0 1.7 1.2 1.0 0.0
3 -0.3 -0.2 0.1 0.7 1.7 3.0 2.9 2.1 0.7
2 -0.1 -0.1 0.3 1.0 2.3 4.3 4.6 3.4 1.2

-0.1 0.0 0.4 1.2 2.5 4.8 5.6 4.5 1.7
0 -0.1 0.1 0.5 1.3 2.5 4.5 5.8 4.8 1.9

-8. -6. -4. -2. 0. 2. 4. 6. 8.

TABLE 2
--Ioglo of theoretical error bound, n 14, 10 -4", E 2.30

Y

-1.5 -1.3 -1.0 -0.6 0.0 0.6 0.8 0.2 -1.0
-1.3 -1.0 -0.7 -0.2 0.6 1.5 1.9 1.1 -0.5
-1.3 -0.8 -0.5 0.1 1.0 2.4 3.2 2.0 0.0
-1.3 -0.7 -0.4 0.3 1.4 3.0 3.6 2.9 0.4
-1.3 -0.7 -0.2 0.4 1.5 3.2 3.7 3.2 0.5

-8. -6. -4. -2. 0. 2. 4. 6. 8.

TABLE 3
--1Oglo of the observed error, n 24, 10 -’, E 2.30

-0.4 -0.3 -0.3 -0.1 0.5 1.2 1.4 1.1 -0.4
-0.3 -0.2 -0.0 0.4 1.2 2.4 3.4 2.4 0.4
-0.3 -0.1 0.2 0.7 1.8 3.5 4.6 3.6 1.2
-0.2 -0.0 0.3 0.9 2.2 4.8 5.6 4.4 1.7
-0.2 -0.0 0.3 1.0 2.3 4.6 5.8 4.6 1.8

-8. -6. -4. -2. 0. 2. 4. 6. 8.

TABLE 4
--1Ogo of theoretical error bound, n 24, 10 -’, E 2.30

1.7 1.5 1.4 1.2 -0.7 -0.1 0.1 -0.5 1.5
1.6 1.1 -0.9 -0.6 0.1 1.0 1.6 0.6 1.1
1.5 -0.9 -0.6 -0.2 0.7 2.1 3.2 1.8 -0.6
1.5 -0.8 -0.5 -0.0 1.1 3.0 3.6 2.8 -0.3
1.4 -0.8 -0.4 0.1 1.3 3.2 3.7 3.1 -0.1

-8. -6. -4. -2. 0. 2. 4. 6. 8.



LEAST SQUARES METHODS 73

involves problems with 20 data points, 40 constraint points, and n up to 24. The
25 x 25 complex Hermitian matrix for the normal equations, solved by Cholesky
elimination, then requires less than 1000 words, with plenty of storage left in core
for much larger problems.

We turn finally to a description of the sample output.2 All four tables involve
continuation of the trial function

(9.1) fo(z) [(z 4)2 + (9/2)2] -1 + x//z 4.5i

on the rectangle D {z:-8 < x < 8, -4 < y < 4} from data on the circle
F {z’[z 4[ 2}. cb consists of 40 constraint points, 11 evenly spaced across
each of the four sides. consists of 20 constraint points spaced fairly evenly on F
(but not exactly evenly, in fact not exactly symmetrically across the real axis).
Approximate data h was generated by adding to f a "random" error vector with
mean 12 norm of 10 -4. Method 1 was then applied with parameters e, E chosen as

e--lifo- hll-- 10-’*,
(9.2)

E [Ifo 0"o 2.305,

and with n 14 and 24. Notice that no concession is made to truncation error in
the choice of e and E, the tacit assumption being made that n is sufficiently large
that fo could be replaced in (9.2) by a polynomial approximate Fo of order n
without e and E being noticeably increased.

Tables 1 and 2 correspond to n 14 and Tables 3 and 4 correspond to
n 24. In both cases e, E and, in fact, the "random" error vector are the same.

Tables and 3 give values of -logo of the observed error ]fo(z)- G(z)l,
where G is the polynomial computed by Method 1. Tables 2 and 4 give values of
-logo of the theoretical error bound (e, E, z); notice that here also no conces-
sion has been made to truncation error, /a being a bound for IFo(z) G(z)l rather
than for Ifo(z)- G(z)l. In all four tables z varies over a rectangular grid of 45
points on the upper half of D, with x Re z varying through 8, 6, ..., 6, 8 and
y Im z varying through 0, 1,..., 4. The normalized variable (z 4)/13 is used
throughout the computational core of the program to avoid roundoffand overflow
difficulties. The FORTRAY program was run on a CDC 6400 with approximately 14
decimal digit word length. When run previously on an 8 decimal digit machine,
definite roundoff errors dominated in Table 4, but not in the other three tables.

The observed fit to the data and constraint for G were

IIG- hill 1.51 x 10 -5 and Ilall0"o- 2.55 for n 14,

[G-hilt---.998 x 10 -5 and 11G110"o=2.34 forn=24.

Notice that the error bound tends to remain approximately 10 to 50 times greater
than the observed error and that -log of both does seem to drop off as one would
expect the harmonic function w to do. Notice, most importantly, that except where
the boundary behavior dominates there is little change between n 14 and n 24.

wish to thank Dr. Len Schlessinger for programming and running all of these examples.
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CERTAIN RESULTS INVOLVING GENERALIZED
HYPERGEOMETRIC FUNCTIONS*

H. M. SRIVASTAVA’

1. Introduction. Making use of the familiar notation

(2),-2(2/ 1)(2+2)...(2+n- 1), n_>_ 1, (2)o- 1,
we write the power series definition of the generalized hypergeometric pFq function
in the form [6, p. 41]

1(’
b,...,b, ,=o((b

where, for the sake of brevity,

((a)), (a)(a),... (a), etc.,

it being assumed that there are always p of the a products and q of the b products.
For the usual restrictions on the b parameters and the conditions of convergence
of the general series (1.1), see Slater [6, p. 45].

In a recent paper, Bhattacharya [2, p. 179] proved that if Re (s)> 0 and
4: 1, 2, 3, .-., then

Z 2F
(1.2)

,=o s+ 0+ 1; s+ 1 n

exp (B)F
e+l; s+l

and u 1 )" [n+e+l;s+1 F
s

(1.3) + 1; s + 1

s+ 1
exp()F

s e+ 1; s+ 1

where, in the notation of (1.1), F[z] and F[z] are Gauss’s and Kummer’s
hypergeometric functions respectively.

Elsewhere [7] we have given rapid proofs of the formulas (1.2) and (1.3).
The object of the present note is to derive their generalizations in the following
elegant forms:

2+n a a z

n=O bl, bq; n
(.4

(2)((a))x [2+n, al+n,...,a+n;exp(z) .+Fq+ xz
,=o ((b)) n. 2, b +n, ,bq+n;

* Received by the editors January 16, 1969, and in revised form March 27, 1969.

Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506.
Now at Department of Mathematics, University of Victoria, Victoria, British Columbia, Canada.
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and

Fq2 + n, al, ..-, ap;Z p+l
,=o bl,’", bq;

2- 1,) + n, al + n,..., at, + n; xz
P+ 2Fq+l 2, b + n,..-, bq + n; 1 z

where, for convergence, [z[ < 1 and the nonnegative integers p and q satisfy
p _< q, equality holding when Ixl < 1.

In the next two sections, we exhibit the fact that the formulas (1.4) and (1.5)
are consequences of the rather obvious result

(1.6)
o()O" lFq [2 + n’al’ ap; lz,,-.P+ bl,...,b;

x

(1 z)- Fq[2, ax,..., ap;
P+I b, b; Xz.1

which holds when Izl < 1 and the nonnegative integers p and q are constrained
by the inequality p < q, or by p q with Ixl < 1. The formula (1.6) corresponds
to the limiting case x 0 of our recent bilinear generating relations (3.4) and (3.5)
in [8, 3] which, when p q r s 1, give us the results of Meixner ([5],
see also [3, p. 84]) who obtained them two decades ago by transforming the
Pochhammer contour integral associated with Gauss’s hypergeometric function.

The results presented here find an interesting application in the evaluation
of certain infinite integrals whose specialized forms arise frequently in a number of
applied problems. With this point in view we cite, in the last section, some examples
ofthe possible applications in statistics and certain areas ofphysics and engineering.

2. Proof of (1.4). In formula (1.6), replace z by z/t, multiply both sides by
t- and take their inverse Laplace transforms using the known result

1 1 z+i ett dr, Re (z) > O.
F(z) 2i -i

On substituting the power series definition (1.1) on the right-’hand side of (1.6),
we thus find that, for Re (2) > 0,

(2.1)

I Z p+l X
n=0 bl, bq; n!
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The inner series in (2.1) is an 1F1 which can be transformed by Kummer’s
first theorem [3, p. 253]

c--a;
(2.2) 1F z =ezF -z

c;

and we have

(2.3)

since

(l],)m((aj)) X _, (_ m), (-- z)"
I=exp(z)

(2), nm=O ((bj))m m’n=o

(2)m((aj)) xm Z
=exp(z) 2 2

0 0 (2),((bj))m (m n)! n!’

(- 1)"m!
(2.4) (-m), m > n > 0.

(m n)!

In (2.3) we now write m + n for m, make use of the identity

(2.5) ()m+n (2)m(2 + m).,

and we readily get

V (R),,+,((aj)),,_+. X (XZ)
I exp (z)

m=O ,=0 (2).((bj))m+. ml. n

(t)m((aj))m X - ( + m)n((aj + m)) (xz)
exp (z) ,,=/-"o ((bj))m m. ,=o (2),((bj + m)),, n

whence the right-hand side of (1.4) follows immediately. The final result is then
obtained by an appeal to the principle of analytic continuation.

3. Proof of (1.5). If in (2.1) we replace z by zt and take the Laplace transforms
of both sides, using the well-known formula

we obtain

(3.1)

F(z) e-tt dt,

q- n, al, ab,
J Yo= p+

bx, bq,"

x" (2 + m),(1), z"(’)m((aj))m
0 ((bj))m m n=O ()n hi"

Re (z) > 0,

By Euler’s transformation [6, (1.3.15), p. 10]

[a’b; 1 [c-a’c-b; 1(3.2) zF z (1 z)c-a-’2F z
c; c;
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the inner series in (3.1) can be reduced to

(1 z)-m-’ (--m).(2 1). z"
,=o (2), n!’

giving us, in view of (2.4),

(3.3) J (1 z)- m=o ((bj))m 1- z ,,=o(m- n)

On setting m n k in (3.3), we find that

(2--1),(2),+k((aj)),+k X
k

XZ )"J (1
o (2),,((bj)),,+kn!k’ 1 z z- 1k=O

(3.4)

= ((b) z .=o (X((b + n z

by means of the identity (2.5), and (3.4) evidently leads us to the formula (1.5).
We remark in passing that it is not dicult to construct direct proofs of the

formulas (1.4) and (1.5) without using (1.6).
4. Prfielr eses. When p q 1, a v and b 2, the second member

of (1.4) equals

o (v),x" Iv+n;(4.1) exp (z) , F xz
2;

On writing the power series for F, if we interchange the order of the double
summation and make use of the binomial expansion

(2).z"
( z)-= Izl <n

(4.1) assumes the form

(1 x) -exp(z)F
1

z
F=(l-x)-exp

1-x 2; 1-x

by Kummer’s theorem (2.2), and we finally have

(4.2) o F x (1 x) exp F2; 1 x 2; 1 x

provided lxl < 1 and Izl < 1, The formula (4.2) is indeed a generalization of(1.2), to
which it would obviously reduce when the free parameter v 1, and 2, x, z are
replaced by e + 1, 1/(s + 1) and s/(s + 1), respectively.

On the other hand, if in (1.5) we let p q 1 0 and b 2, then the right-
hand side simplifies to

(l-z)-exp
1-z 2; 1-z
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and we get

I2+n(4.3) . lEa
=o

x z"=(1-z)-aexp x
1Fa

2; XZzl
Izl < 1,

which yields the formula (1.3) when 2 e + 1, x s/(s + 1) and z 1/(s + 1).
A number of particular cases of our formulas (1.4) and (1.5) can be deduced in

this manner.

5. Applications. In this section we first cite an instance from statistics that
gives rise to the problem of evaluation of infinite integrals of the type

I,.[a, b] exp {-(at + b)2} etal tz,.+ dt, m O, 1, 2, ..
We then evaluate this integral by using the results presented above and discuss its
possible applications in certain areas of physics and engineering.

Let X, Y be two random variables which have a bivariate normal distribution
(see, e.g., [1, Chap. 2]). Let/x and lar denote the respective means, aZx and azr the
variances, and p the correlation coefficient. Suppose that we wish to determine the
probability of an event of the type X <__ aY + b.

We have [1, p. 18]

(5.2)

P[X <= aY + b] exp
2raxarw/(1 p2) 2(1 p2)

V(x #x)2 2p(x- x)(Y- lar)
if2X ffxO’y

(y lay)2.1a2r } dx dy.

On introducing a sequence of elementary substitutions we observe that

0
P[X <= aY + b] exp {-(a*t + b*)2} e dz dr,

where O, a* and b* are constants depending on a, b, p, ax, at, lax and lar.
Now, since [4, p. 17]

(5.4) e dz
2

and

(5.5) e dz Erf (t),

where Erf(t) denotes the error function (see also [3, p. 266]), it follows at once that

(5.6) P[X <= aY + b]
2x/

exp { (a*t + b*)2} 1 + Erf(t) dt.
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In view of the known relationship [4, p. 272]

(5.7) Erf(z) ZlF1 z2

the second integral on the right-hand side of (5.6) assumes the same form as the
general integral (5.1).

To evaluate (5.1), we expand the exponential function and then integrate term
by term. We thus derive

" -b2F(m+n+-})(2b)2"+--o(2n + 1) a--- 12’m + n+;" a2(5.8) I,,[a, b] -e _-_ 2F1

provided Re (a2) > Re (), m being a nonnegative integer.
in particular, when rn 0 and # 3/2, we get

(5.9)
I,,3/2 a2

e 2F1
,=o , n!

a2ta- )bx/-
(a2_e) eXP/a_e _,

by using our formula (4.2); and on applying Kummer’s theorem (2.2) once again, we
find that

(5.10) ooexp{-(at+b)2}FI _, o dt -(-. 1F ,3" a2_

where, as before, Re (a2) > Re (e).
The formulas (5.8) and (5.10) are indeed useful in various other statistical

problems. Note also that by assigning special values to the free parameter 2, the
hypergeometric aF function occurring on either side of (5.10)can be replaced by
the Whittaker function Mk,,,,(z), the Laguerre polynomial L)(z), the parabolic
cylinder function D(z), the Hermite function H(z), the Bessel function Iv(z), the
incomplete gamma function 7(v, z) and of course the error function Erf (z), and so
on (see [3, pp. 268-269] and [4, pp. 271-274]). Since these special functions are of
frequent occurrence in problems of physics and engineering, our formulas (5.8) and
(5.10) might find applications in these areas as well.

For instance, in a number ofboundary value problems ofpotential theory, like
the Dirichlet problem for a parabolic cylinder discussed by Lebedev [4, pp. 293-
296], we may be required to express a real-valued function f(x), defined on the
interval (-oe, oe) and piecewise smooth on every finite subinterval [-6, 6], as a
Fourier-Hermite series

(5.11) f(x) c,,H,,(x), - < x < oe,
n=0

where H,,(x) denotes the Hermite polynomial of degree n. In order to determine the
unknown coefficients c,, we multiply both sides of (5.11) by exp (-xZ)Hm(x) and
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integrate term by term over the infinite interval (-o, ). Making use of the
orthogonality property [4, p. 66]

(5.12) e- Hm(x)Hn(x dx

where 6,,, is the Kronecker delta, we readily have

(5.13) c e-’f(x)H,,(x) dx, n O, 1,2,....

If we let f(x) x exp (Ax + Bx + C), and recall the known formula [3, p. 267]

(5.14) H,(x) 2"xW(} n, ; z2),
where W(a, c;z) is the Tricomi function defined by [3, p. 257]

(a, c;z)
F(a c + 1) F z

F(a)
z Fx z

2-c;

then substitutions in (5.13) will at once lead us to integrals of the type (5.1), provided
Re (A) < 0 and r is an appropriate integer.

Acknowledgment. I should like to thank my colleague, Professor Vincent
Uthoff, for fruitful discussions. Thanks are also due to the referee for kindly
suggesting a number of improvements in the original version of the paper.
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ON A PRIORI BOUNDS IN THE CAUCHY PROBLEM FOR
ELLIPTIC EQUATIONS*

L. E. PAYNE"

1. Introduction. In an earlier paper, the author 6] gave a method for
computing bounds for the solution of the Cauchy problem for the Laplace equa-
tion when the solution was restricted to lie in the class of uniformly bounded
functions. Although, in theory, the method could be used to obtain bounds at
arbitrary points in the domain D, the bounds.were, in fact, impractical at points in
D which were not sufficiently close to the portion E of the boundary on which
Cauchy data were given. The author’s method was generalized by Trytten [9] and
applied to Cauchy problems for certain classes of second order quasi-linear
elliptic equations, and further generalized by Schaefer [10] and applied to certain
nonlinear elliptic systems. A somewhat different system was subsequently con-
sidered by Conlan and Trytten [2].

In the work of Trytten, Schaefer, and Conlan and Trytten the same difficulty
in application at points away from the Cauchy surface still remains. The reason is
that in all of these papers, bounds at distant points were dependent on bounds at
intermediate points and the approximation error could accumulate quite rapidly.
In this paper, we show how, by introducing an approximate class of auxiliary
surfaces, one may include the point at which bounds are sought (at least in theory)
in an initial estimate and thus avoid the error accumulation problem.

Let D denote an open region in R,. The boundary cD ofD consists ofa portion
E on which Cauchy data are to be prescribed and a remainder OD E on which no
data are given. For the purpose of this paper, we shall assume that Z is a C’ surface
and that cD is a Lyapunov boundary.

Let L denote the elliptic operator

(1.1) Lu =- (ainu,i)q

where we have adopted the summation convention over repeated indices and the
comma denotes partial differentiation. The problem which we shall consider is the
following"

(1.2)
Lu in D,

u=g,
cxi hi onZ, i= 1,2, ,n,

where, g, and hi are prescribed data. As pointed out in [6], [9] and [10], one must
allow for error in measurement of the data; however, since this will be done as
indicated in these earlier papers, we do not go into the question here, but rather
restrict our consideration to the determination of the a priori inequalities them-
selves.

* Received by the editors February 10, 1969, and in revised form May 5, 1969.
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One could, in fact, handle the nonlinear problems discussed in [2], [9], and 10]
by the present method, but by doing so he would become unnecessarily involved in
details and perhaps obscure the method. Hence we limit our attention to solutions
of (1.2).

We shall assume that L is symmetric and strongly elliptic, i.e., the matrix aj is
symmetric and there exists a positive constant ao such that for all vectors , the
inequality

(1.3) aiji =. a0
i=1

holds at every point in D.

2. Inequalities anti error bountis. Let us now define a set of (not necessarily
closed) surfaces f const. This set is to be so chosen that for each satisfying

(2.1) 0<=< 1,

the surface f(x) intersects D and forms a dosed region D whose boundary
points consist only of points of and points on the surface f const. In [6], f
was chosen for n > 2 as

1 + (ro/r)-2
(2.2) f 1 (ro/r)"-2"

(We have made a slight alteration in order to make f satisfy (2.1).) In (2.2), ro and R
are appropriately chosen constants.

We shall assume that f(x) has continuous second derivatives in D. We assume
further that if f satisfies (2.1), then

(2.3) fl=<7 implies DcD, 0<fl=<7 < 1,

(2.4) Igradfl >6>0 in O1,

(2.5) Lf <= O, ]Lf] <= o62d in

We shall also assume that the surfaces have been so chosen that for satisfying
(2.1), D has nonzero volume measure, but that Do has zero measure. Using this
set of surfaces, we shall indicate how to obtain bounds for the solution u at points in
D, < 1.

We approximate u by a function b which is assumed to have bounded second
derivatives in D and bounded first derivatives in D I.J Z. We make no further
assumptions on b at this point. Let us now set

(2.6) w u b
and let

(2.7) F(e) ( rl) [aijw,iw,j + wLw] dx drl + Q,

where Q is given by

(2.8) Q= ko f, w2 ds + + k2 fu (Lw)2 dx.
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Here ko, k and k2 are explicit constants to be determined later. We shall show that
as a function of e, F satisfies a differential inequality of the form

(2.9) FF"-(F’)2 >= -K1FF’- K2F2
for explicit constants K1 and K2. The solution of this differential inequality will
then lead to the desired bounds.

A simple calculation gives

F’() [aw.w, + wLw] dx dri,

(2.10)
F"() ] aw,w, + wLw] dx.

D

We now write F() and F’() in more useful forms; e.g., using the divergence
theorems, we have

}+ wds dqIgrad fl
(2.1)

aijw,iwfidx + w ds dq.

Here S, denotes the portion of the surface f(x) q and E, is the portion of E
which lies on the boundary of D,. We have also made use of the fact that on S, the
component nj of the unit normal is given by fjIgrad fl- and have introduced the
expression O/Ov for the conormal derivative %n(O/Ox) on the boundary of D..
Using (2.11) we see that

;o yO.; }F(e) F’(q) dq + Q aiw.ifw dx + wds da dq + Q

fo:{lfs aijfijw2

lfz foIgradfl ds+ .aijniw2ds- w2Ldx
(z12)

}+ wdsda dq+Q

> ajffjw dx

for computable constants 71 and 72. It is clear then that we can choose the ki in Q
such that

(2.13)
d+l

pW2 dx + >- F(oO >= - pw2 dx +

where

(2.14) p aijf,if,j.
Before proceeding with the derivation of (2.9), let us first prove some auxiliary

lemmas.
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LEMMA 1. If F() is given by (2.7), then

(2.15) IF’I <= F’ 4- K2F

jbr a computable constant K2.

From (2.10) it easily follows that

(2.16) IF’] __< F’ + 2 wLw dx dl.

But by the arithmetic-geometric mean inequality, we have, for some positive con-
stant fl,

(2.17) 2 wLw dx drl <= fl w2 dx drl + - [Lw]2 dx drl.

But Bramble and Payne [1 have derived the explicit a priori inequality

(2.18)

from which it follows by integration and use of (2.13) that

W2 dx dr <= k4 w2]grad f[ dx + k4 W2 ds dr + k5 (Lw)2 dxdq

(2.18a) <_ k{p- algrad f[} max {2F(ct) Q} + k4 W2 ds drl
xDo

4- k (Lw)2 dx dr

Inserting (2.18a) into (2.17) and choosing all arbitrary constants appropriately, one
is led directly to (2.15).

LEMNA 2. If F(e) is given by (2.7), then

for computable constants K3 and K.
To establish the result, we consider the identity

fo (ct r/)p- aklfkw,lLw dx

lfo:s {2aklfkw,laijw,jni aklfknladW,iW,j}p-ldsdrl
(2.20)

aijw,iW,k

Note that from (1.3) and (2.4), it follows that max,o.{p- llgrad fl} -< (ao6) -1
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The expressions involving integrals over S, may be simplified as follows:

fO; fs {2aklf’kW’laijw’jni-- aklf’knlaijw’iw’j}p-l ds drl
(2.21)

f [2(aijf,iW,j)2p- aijw,iw,j] dx.
D

Solving (2.20) for this expression and using obvious inequalities we obtain at once

(2.22)

fo aijw,iw,:i dx 2 fo p- l[aifiw’j]2 dx

k9 flgo,
( rl)aijw’iw’j dx

We have made use of the arithmetic-geometric mean inequality and have employed
the ellipticity constant in computing the last term. As in the proof of the previous
lemma, we note that since

(2.23) f (0- rl)aijw,iw,j dx <= F’ + t (o- l)wLw dx
OD D

we may again use the results of[1] to complete the proof of (2.19).
We now form (using (2.13))

FF" (f’)2 >= pW2 dx aiw,iw, dx aijw,fw dx

(2.24)

fo fi:f + F wLw dx 21F’[ W-v ds drl

In arriving at (2.24), we have dropped a number of nonnegative terms on the right.
By use of the arithmetic-geometric mean inequality, the last two terms may be
easily handled in the sense that

wLw <= K5F,dx

(2.25)

w-v ds d <_ KF

for explicitly determinable constants K and K6. It is clear that, with a particular
choice of f, one might want to combine terms in different ways, thus obtaining
inequalities that are sharper than those we have indicated. For the term in braces,
we have, by Schwarz’s inequality,

fo pw2 dx fo aijw,iw,) dx 2(fo aijw,iwf dx) 2

(2.26) >= fo, pw2 dx{foa,jw,w,jdx 2 fo, P-[a,jw,ifj]2 dxt
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and Lemma 2 may be used to complete the bound. Thus, by (2.25) and (2.26),
together with Lemmas 1 and 2, we are led to (2.9) with computable K1 and K2

It is well known (see, e.g., Levine [5]) that a solution of (2.9) which vanishes for
one value of in the interval [0, 1] must vanish identically. Thus, without loss, we
may assume that F(00 > 0 for all (0 _< 1). Then setting

(2.27) o. e -K,
we find (regarding F temporarily as a function of o.)

d2

(2.28) do.2 {log [Fo.-K2/K]} => 0,

from which it follows, by Jensen’s inequality, that

(2.29) F(oOo. :/ <__ [F(1)o.-/2m]1-a)](1-l)[F(0)](-rl)/1-rl)
where

o.1 e

and F is now regarded as a function of . We note, by (2.7), that F(0) -= Q, an
expression involving only data terms.

The obvious method for choosing in order to make F(0) (_= Q) small is the
Rayleigh-Ritz method. The term F(0) represents the error made in the approxima-
tion of the data. As indicated in [6], one must in this expression also allow for
error in the measurement of the data. Since the approximation procedure was
discussed in [6], we do not go into it here.

As has been noted in earlier papers (see, e.g., John [3], Pucci [8]), in order to
make F() small for 0 =< < 1, it is not sufficient to make F(0) small. One must be
sure that at the same time F(1) does not become so large that the product is no
longer small. To stabilize the problem we therefore assume that the solution u lies
in a class /f/defined by the condition that

(2.30) U2 dx <= M2

for some prescribed M. Thus we first choose so as to make Q small;then we com-

pute / 2 dx and thus (using (2.30)) we can compute an M1 such that
OD

(2.31) F(1)o.-t2// =< M.
Insertion into (2.31) now gives

(2.32) F(o)

If we think of q5 as a solution u of (1.2) corresponding to different data -1, g 1, and
i, then we have the following stability theorem.

TI-IEOREM. If U // and u l are solutions to (1.2) corresponding to different
data, then the difference satisfies the following continuous dependence inequality

(2.33) t- [u u] 2 dx <= KM2)Q1-)
OD

for computable K, M1, and v(oO with 0 <_ v(oO <-_ 1.
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Here Q is given by

With a bound for F()we may use the Dirichlet problem estimates of Bramble
and Payne [1] to compute pointwise bounds for u in D.

Of prime importance in applications is the choice of the surfaces f . In
[2J, [6], [9] and [10] the particular choice (2.2) was made (with the exponent n 2
replaced by p). With this choice the surfaces were a family of hyperspheres with
origin outside ofD. Thus the initial bounds were obtained only at points sufficiently
close to E. These surfaces were particularly simple to work with but clearly such a
choice might not always be a good one. One could easily envisage problems in
which, for instance, ellipsoidal surfaces would be a more appropriate choice. A
possible choice for f in two dimensions would be the level curves of the first eigen-
function of the following Stekloff problem (assuming they are known):

(2.35)
L 0 in D,
=0 on OD- Z,

2=0 onE.

The first eigenfunction is clearly positive in D, the level curves cannot intersect, and
all of the level curves begin and terminate on E. If one knew and chose f /m
(where m supx ), then he could obtain pointwise bounds at any point in the
open region D with this single choice for f. As is usual in such problems, the bounds
become inapplicable as one approaches a point on the boundary.

3. Concluding remarks. With our bound (2.32) we could compute bounds for

aw,w,
dx for fl < e as follows" We define a function (f) by

(3.1) r/=
<f=<e,

and consider the identity

(3.2) f, rt2aw,iw,dx= f rl2aw,wndS- f rl2wLw dx-2 f rtairl,iw,w dx.

Clearly, we can compute a 7 such that

(3.3) tl2aijw,iw,j dx < 7F(e) + q2aijw,iw,j dx.

One merely makes use of the arithmetic-geometric mean inequality and the right-
hand side of (2.13). Thus from (3.3) we have (using (3.1)):

(3.4)
ft)

aijw’iw’j dx fo aijw’iw’jl’]2 dx

-< 27F() < 27aK’/K2M21[(1-)/(1-1)IQ(-)/(1-)
the desired inequality.
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In this paper, we have made strong use of the fact that L is elliptic. It is clear
from results of Payne and Sather [7], Knops and Payne [4] and Levine [5, that for
certain special classes of differential equations and geometries, the ellipticity
requirement can be relaxed. In all of the above cases, however, the problems were
such that the surfaces f-const, could be chosen as hyperplanes. We propose
now to see to what extent this requirement may be relaxed or eliminated.
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APPLICATIONS OF A CLASS OF SINGULAR PARTIAL
DIFFERENTIAL EQUATIONS TO GEGENBAUER SERIES

WHICH CONVERGE TO ZERO*

DAVID COLTON"

1. Introduction. Expansions in series of hypergeometric polynomials arise
frequently when the method of separation of variables is applied to a partial
differential equation and the resulting solutions are superimposed in an attempt to
solve certain boundary value problems. As was pointed out in [8] care must be
used in this approach since the solutions obtained by such a procedure will not
necessarily be unique due to the existence of nontrivial representations of zero. In
particular this occurs in the study of the singular partial differential equation

(2U 2U 2v cu
(1) cx--- + -J 0,

y cy
where v < -1/2. If v :/: -1, -2,... and interest is focused on solutions of (1)
which are regular on the singular line y 0, then separation of variables in polar
coordinates (r, 0) leads to solutions of the form

(2) r"C,](cos 0), n 0, 1,2,...,

where C, denotes Gegenbauer’s polynomial defined by the generating function

(3) (1 2r + r2)- r"C,({).
n=O

In view of the representation [8]
N

(4) lim (n + v)C,(cos 0) 0, uniformly for 0 [0, 2hi,
N n=0

it is not possible to solve uniquely the Dirichlet problem for the unit disc by a
superposition of the solutions given in (2). (We are concerned here with the
interior Dirichlet problem. This can be transformed to the exterior problem by
means of a generalized Kelvin transformation [3].) The existence of expansions
such as (4) leads to the conclusion that Dirichlet’s problem for the singular equa-
tion (1) defined in domains containing a portion of the singular line y 0 in its
interior is in fact an improperly posed problem. Equation (1) (known as the
generalized axially symmetric potential equation [7]) is far from being simply a
pathological example. The case when 2v is a negative integer describes axially
symmetric Stokes flow in n -2v + 2 dimensions, whereas from a mathematical
viewpoint, this equation is the simplest example of an elliptic equation with mero-
morphic coefficients. These remarks serve as motivation for a closer examination of
representations of zero by series of Gegenbauer polynomials. The purpose of this
paper is to initiate such an investigation through the utilization of some recent

* Received by the editors March 18, 1969, and in revised form May 14, 1969.

" Department of Mathematics, McGill University, Montr6al, Qu6bec, Canada, and Department
of Mathematics, Indiana University, Bloomington, Indiana 47401.
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developments in the analytic theory of partial differential equations. In particular
if 2v 4: 1, 3, ..., conditions will be given to assure that no nontrivial represen-
tation of zero exists, whereas if 2v 1, -3, ..., an upper bound to the number
of representations of zero will be given. These results enable one to determine
when a solution of the above mentioned Dirichlet problem is unique.

2. A basic lemma and its application. In the analysis that follows it is
assumed that v < -1/2 since for v => -1/2 the Dirichlet problem for (1) is well-posed
[6] and no representation of zero of the form of equation (4) can exist; it is further
assumed that the coefficients a, of the representation ,= o a,C(cos 0) 0 are all
real. We first require a few preliminary definitions.

DEFINITION 1. The m nontrivial representations of zero on the interval
[0, 27],=o a,jC,(cos 0), j 1, 2, ..., m, are said to be independent if there exist
constants C1, "’", Cm independent of n such that Cla,1 + + C,,,a,,, 0 for all
n. Representations which are not independent are dependent.

DEFINITION 2. If=0 a,C(cos 0) is a nontrivial representation of zero on the
interval [0, 2r] then the series o=o a,C,(1)z" is called the associated power series of
the representation.

Since =o a,C,(1) is convergent the associated power series will converge
absolutely and uniformly on compact subsets of the disc ]z[ < 1 in the complex
z-plane. In view of the fact that C(1) does not equal zero for 2v va 1, 2, 3,
(this follows from (3),) it is clear that if 2v- -1,-2,-3,..., then m non-
trivial representations of zero are dependent if and only if their associated power
series converge to functions which are linearly dependent on the real interval
(-1, +1).

In the use of Gegenbauer series to investigate improperly posed problems for
singular partial differential equations interest is focused primarily on those
representations of zero which converge uniformly for 0 [0, 2zc]. This is due to the
fact that the solutions of the differential equation being considered are usually
required to be continuous in the closure of their domain of definition (cf. [8]). The
fact that the Gegenbauer polynomials satisfy

(5) ]C(cos 0)1 O(n ), uniformly for 0 [0, 2zc],

(6) tg0C"(cs 0) sin OC+ (cos 0), n >__ 1,

leads in a natural manner to the following definition.
DEFINITION 3. A nontrivial representation of zero on the interval [0,27],

,=o a,C,(cos 0),is said to be ofclass C"if=o a,n
v+’’- is absolutely convergent.

We observe that a nontrivial representation of zero of class C where m

>= [-v + 1/2] does not exist since in this case it would be possible to differentiate
the series termwise and make use of (6) to conclude the existence of a non-
trivial representation of zero of class Co for a value of v greater than -1/2. As was
previously mentioned, this is not possible. We are now in a position to prove our
basic lemma.

BASIC LEMMA. Assume 2v v -1,--2,- 3,... and let =o a,C,(cos 0) be a
nontrivial representation of zero on the interval [0, 2r] which is of class C 1. Then the
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associated power series

_
o a,,C(1)z" is singular at either z + 1, z 1, or both,

and nowhere else on the circle [z[ 1.
Proof. Consider the function

(7) u(r, O) a,,r"Cf,(cos 0).
n=O

Since -o a,nv is absolutely convergent it is seen [6] that the series (7)
converges uniformly on compact subsets of the unit disc to a solution of (1).
Equations (5) and (6) furthermore show that the first partial derivatives of
u(r, 0) are uniformly continuous in the closed disc r <_ 1, 0 <__ 0 __< 2re. Since
u(1, 0) 0 it is possible [3] to analytically continue u(r, O) across the unit circle
r 1 provided 0 - 0, r, i.e., for all points on the unit circle not lying on the singular
line y 0. It is known from [1] and [2] that for 2v - 1, -2, -3, ..., the associ-
ated power series ,__ o a,C,(1)z is singular at z ei if and only if the solution of
(1) defined by (7) is singular at (1, 0). Since (7) is analytic at all points (1, 0) 4= (1, 0)
or (1, z), it is possible to conclude that the only possible singular points of the
associated power series are at z _+ 1. If neither of these points is a singular
point then the associated power series has no singularities on the unit circle
in the complex z-plane and hence converges for [z[ < 1 + 6 where 6 > 0. This
implies lim,_+ la,]/" < 1, i.e., = o a,C,(cosO) is a nontrivial representation
of zero of class C" where m > [-v + 1/2]. As was observed previously this is
impossible and hence the associated power series must be singular at either
z= +l,z- -1, orboth.

From the classical results on the relationship between the coefficients of a
power series and the location of singular points on its circle of convergence, many
theorems can now be given. Two typical examples of such results are given below.

THEOREM 1. Assume that 2v -1,-2,- 3,.... Then there exists no non-
trivial representation of zero which is of class C and of the form

a,C,(cos 0) 0, 0 e [0, 2],
n=0

where a, 0 except when n belongs to a sequence nk such that nk+ > (1 + 6)nk,
6>0.

Proof. Hadamard’s gap theorem shows that the circle Iz[-- 1 is a natural
boundary for the associated power series and the result follows by the basic lemma.

THEOREM 2. Assume that 2v g= -1,-2,- 3,... then there exists no non-
trivial representation of zero which is of class C and of the form

a,C,,(cos 0) 0, 0 [0, 2rt],
n=0

where m is an integer greater than or equal to three.
Proof The basic lemma and the fact that if the power series,0 a,C;,,(1)z

has a singularity at z + 1 or z 1, then a singularity will also exist at z e2=/m

or z eri/m.

3. The case when 2v 1, 2, 3, As was pointed out in the introduc-
tion, the case when 2v is a negative integer is of particular interest since (1) then
describes axially symmetric Stokes flow in n (-2v + 2)-dimensional space.
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The existence of nontrivial representations of zero by Gegenbauer polynomials
leads to the conclusion that the Dirichlet problem for the unit disc is an improperly
posed problem. If v -1,-2,... and interest is focused on solutions of (1)
which are analytic functions of x and y2 in a region containing the singular line
y 0, then separation of variables in polar coordinates leads to solutions of the
form

(8) r.pt.- 1/2,v- 1/2)(COS 0), / 0, 1,

where Pt,’) denotes Jacobi’s polynomial. For, =/3 v 1/2 these are essentially
renormalized Gegenbauer polynomials (note that from (3), for v -1, -2,
-3,..., C,() 0 for n >-2v) and by using similar techniques theorems
analogous to those obtained in {} 2 can be derived for these polynomials. If,
however, instead of requiring solutions to be even analytic functions with respect
to y, it is asked that they be odd, then it can be shown [7] that any solution u(x, y)
of (1) which is analytic in a neighborhood of the singular line y 0 must be of
the form

(9) u(x, y) yl u+ (x, y),

where u + (x, y) is a solution of

O2U O2U 2- 2v c3u
(10)

c3x2 + + y c3y

Hence if u(x, y) vanishes on the boundary of a domain D containing a portion of the
singular line in its interior, then u(x, y) vanishes on the boundary of D I"l {(x, Y)IY
> 0} and hence from the maximum principle for elliptic partial differential
equations [3], u(x, y) is identically zero if u(x, y)CZ(D)f] C(B). Using the
results of Parter [6] it can be shown that there exists a solution u(x, y) to (1)
such that u(x, y) yl-zVf(x, y) on the boundary of a domain D symmetric with
respect to the axis y 0, where f(x, y) f(x,- y) is a prescribed function con-
tinuous in the closure D of D. Thus Dirichlet’s problem for (1) can be made
well posed in the case v -1,-2,-3, ..., and for domains D containing a
portion of the singular line in its interior. We therefore turn our attention to the
case when 2v is a negative odd integer.

THEOREM 3. Assume 2v is a negative odd integer. Then there exist at most
-2v 1 independent nontrivial representations of zero which are of class C.

Proof. Suppose there exist -2v independent nontrivial representations of
zero

(11) anC,(cos 0), j 1,2, ..., 2v,
tl=O

and consider the following corresponding solutions of (1) in the unit disc,
f {(x, y)lx2 + y2 < 1}"

(12) Y’. a,jr"C,(cos 0), j 1,2,..., 2v.
n=0
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A linear combination of these solutions gives a solution u(r, O) to (1) of the
form

(13) u(r O) b,r"C(cos O)
2v-

such that u(1, 0) 0 for 0 [0, 27r] and u(r, O) C() f) C2(). Since for 2v 1,
-3,..., C,(1)- 0 for n >= -2v + 1, whereas C,(1) 0 for n < -2v + (this
follows from (3)) we have

CL (1) + b 2vC2(1)(14) u(1,0)

(15) u(1,) 0 b_2_ 2v-l(1) + b-2CL2(-1)

C (1) b 2C 2(1)b-2v- 2v-1

Equations (14) and (15) now imply that b_zv_ b_zv 0, i.e., along the singular
line y 0, u(r, 0) 0. Hence u(r, O)is a solution of(l) in + ((x, y)ly > 0},
vanishes on the boundary of +, and u(r, O) C(+) C2(+). By the maximum
principle for elliptic partial differential equations it is seen that u(r, O) 0 in +

and hence in . By noting that, for fixed 0, (13) is a power series in r and that
C(cos 0) is a polynomial of degree n in cos 0 it is possible to conclude that b, 0
for n 0, 1,2,.... Hence the representations given in (11) are dependent and
there cannot exist more than -2v- 1 nontrivial representations of zero of
class C.

The methods used in Theorem 3 can be immediately adapted to show that if 2v
is a negative odd integer, then for a given domain D containing a portion of the
singular line in its interior there exist at most -2v 1 solutions of (1) which are
linearly independent in D and vanish on the boundary of D.

By using the methods developed in [1] to examine the analytic theory of

O2u O2u 2v Ou 2fl Ou
(16) X2 + + +

X X
0

it is possible to derive results analogous to those obtained in 2 and 3 for series of
Jacobi polynomials which converge to zero.

For v > 0 the relationship between the singularities of (7) and the associated
power series was given in [4] and [5. For such values of v however there do not
exist any nontrivial representations of zero of class Co (see [63) and hence such
results are not applicable to our investigation.
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THE CONSTRUCTION OF SOLUTIONS FOR BOUNDARY VALUE
PROBLEMS BY FUNCTION THEORETIC METHODS*

R. P. GILBERT,"

1. Introduction. In this paper we develop a method of ascent by which one
may obtain a general representation formula for solutions of the differential
equation of n variables

(1.1)
(2U (U

=
+ a(r2) xi- + c(r2)u O,

(Xi

2 in terms of a representation formula for solutions of thewith r2-- X21 + + Xn,
differential equation of 2 variables

(1.2)

Indeed, we find that all regular solutions of (1.1) (about the origin) may be repre-
sented in the form

(1.3) u(r) h(r) + a"-1G(r; 1 tr2)h(ra2) dtr;

here h(r) is an arbitrary harmonic function, and

(1.4) G(r, 1 0"2) rR 1(tO’2 0 r, r),

where R(z, z* (, (*) is the Riemann function for (1.2), with z xl + ix2 Z* X

ix2
The formula (1.3) is a natural extension of the integral formulas of S. Bergman

and I. N. Vekua for n 2 variables. Indeed, for n 2 the G-function is an integral
transform of Bergman’s E-function. Also, by certain manipulations with Vekua’s
representations one may obtain our formula (1.3) when n 2. However, our (1.3) is
actually new even for the case of two variables. We present numerous examples to
illustrate its use. In addition, a reduction of the Dirichlet problem to a correspond-
ing Fredholm integral equation is given via (1.3) by equations (4.41), (4.42). It is
assumed here that c(r2) < 0 for r in the closure of the particular domain at hand.

2. Elliptic equations with analytic coefficients of two variables. As-a first step
in obtaining an approximate method for solving boundary value problems
associated with the real, analytic, partial differential equation

(2.1) e[u] =- Au + o(x, y)ux + (x, y)ur + y(x, y)u O,

we first seek suitable integral representations of a fairly wide class of solutions.

* Received by the editors April 25, 1969.

" Department of Mathematics, Indiana University, Bloomington, Indiana 47401. This work was
supported in part by the Air Force Office of Scientific Research through AFOSR Grant 1206-67.
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Two apparently different approaches to obtaining such representation formulas
may be found in the function theoretic methods of S. Bergman [1] and I. N. Vekua
[10]. However, as we shall point out in this section, their representation formulas
are essentially the same when viewed in a somewhat more general context. Indeed,
it is this observation which permits us to make a generalization of their results to
higher dimensional problems in a later section.

We assume, as do Bergman and Vekua, that (2.1) has coefficients which
permit an analytic extension to a bi-cylinder D x D* in terms of the independent
complex variables z x + iy, z* x iy, where x and y are complex. Equation
(2.1) then takes on a formally hyperbolic appearance, namely,

(2.2) Uz, + a(z, z*)U + b(z, z*)U, + c(z, z*)U O,

where b 2, c )(4, a ( i)/4. Yekua introduces the idea of a complex,
Riemann function for (2.2), R(, * z, z*), and obtains in terms of this function the
following representation for the class of real solutions of (2.1) [10, p. 123, (25.2)],
which are real analytic in D:

(2.3) u(x, y) Re {Ho(z, )q(z) + fo H(Z, , t)q(t) dt)
here H0(z, ) R(z, 0 z, ), H(z, , t) c3R(t, 0; z, )/c3t + b(t, O)R(t, 0 z, ), qg(z)
is an arbitrary holomorphic function in D, and is the restriction of z* to real
values of x and y. Furthermore, q(z) may be normalized by setting qg(0) qg(0).

Bergman, on the other hand, also has given a representation for the family of
real analytic solutions in D, [1, p. 23]. His representation for these solutions of(2.1)
has the form

(2.4)
u(x, y) Re exp a(z, t) dt + h(z)

Q"(z, ) (z )"qg(z) + ,, 2z,(7 + 1)
q() d

where he defines the coefficients Q")(z, z*)-- p(2n)(z, t)dt, by the recursion

formulas

(2.5)

p2)= -2F(z, z*)=_ 2(a + ab -c),

(2n + 1)p2"+2) -2 p2,) + Dp2n)+ F P2")dz*

See also Garabedian [4] concerning this.
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D h’(z) az dz* + b, h(z) is an arbitrary analytic function in D, and B(p, q)

is the beta function. 2

It is an interesting fact that by an appropriate choice of h(z) both these
representations can be seen to associate the same real solution u(x, y) with a
given but arbitrary analytic function qg(z). However, this identity evidently has
not been observed and hence has not been exploited to obtain any new representa-
tion formulas for solution. It is this very observation which we use in this paper
to generalize and extend the work of Bergman and Vekua. Indeed, this observation
gives us the clue for the extension to dimension greater than two.

LEMMA 1. If h(z) O, then the Bergman (2.4) and the Vekua (2.3) representations
associate the same real analytic solution with a given holomorphic function tp(z).

Proof. The complex Riemann function satisfies the characteristic conditions,
R(, *;, *) 1,

(2.6) R(z, *; z, z*) exp a(z, t) dt R(, z*; z, z*) exp b(t, z*) dt

hence, Ho(z, ) exp a(z, t) dt Next, since Bergman’s complex solution

U(z, z*), satisfies the Goursat data

(2.7)
U(z, 0) q(z),

U(0, z*) 99(0) exp a(O, t) dt

we may represent this solution as (see [5, p. 129] see also [1] and [10])

(2.8) U(z, z*) R(0, 0; z, z*)qg(0) + R(t, 0; z, z*)[qg’(t) + qg(t)b(t, 0)] dt,

which ifwe integrate by parts may be recognized as the complex equivalent of (2.3).
The previous identity suggests a new method for approximating solutions

for the interior Dirichlet problem for a domain bounded by a closed simple curve L

Bergman [1, p. 10] also gives an equivalent representation in terms of his E-function, namely

u(x,y,=Re {exp (- fa(z,t)dt+ h(z))f+__]E(z,,t)f([1- t2]}l_t),
where E(z, z*, t) satisfies the differential equation

0 (1 tZ)Ez,t -[Ez, + 2tz(Ezz, + DEz, + FE),

and a characteristic condition. Here we have also that

qg(z) f [1 2]
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(whose tangent is H61der continuous); i.e., we seek a solution u(x, y) to (2.1),
such that

u c(2)(D) (’1 ((D + L),
(2.9)

u-(t) f(t), L =- cD,

where f(t) cgt)(L) is real-valued and u-(t) is taken to mean the value of u(x, y)
as z x + iy from the inside of D. We recall that Vekua [10, p. 124], has
reduced this boundary value problem to a singular integral equation for the
H61der continuous function #(t),

(2.10) A(to)#(to) + f K(to, t)(t) ds f(to),
dL

where t, to L, ds is an arc length differential

(2.11)

with

A(to) =- Re [ictoVoHo(to)],

tHo(to)K(to, t) Re
k Z o tH(to, t)log

(2.12)

1-) + H*(to,t)],

H*(z t) f t[H(z, x) H(z, t)]
dtx.

t--tx

Here t dt/ds is evaluated at to, Ho(to) =- Ho(to, o) and H(z, t) =- H(z, , t).
The singular integral equation (2.10) has index zero and may be reduced to

a Fredholm type equation by applying to it the singular operator

(2.13) A(to)(. B(t_o) fL )-- dt
7(,1 o

where B(to) =- in Re [to’oHo(to)]. One obtains by an application of this operator
and the Poincar-Bertrand theorem that the reduced equation is of the form
[10, p. 129]

(2.14)

where

P(to) + L K*(to, t)#(t) ds f*(to),

1
K*(to, t) 2(to)2(Ho(to))2

A(to)B(to)
(2.15) A(to)K(to, t)

ci(t to)

1 IA(to)f(tof*(to) g2[toj2lHo(to)]2

B(t_o) fLK(tx, t)dtx1---to
B(t-) ft f(t) dt1"rott- to

THEOREM 1. The solution of the Dirichlet problem (2.1), (2.9) may be approx-
imated uniformly by the solution of an associated Fredholm integral equation from
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the sequence of integral equations

(2.16) (I + K’)/ =_ (to) + f. K’(to, t)#(t)ds -f*(to).

Here K’(to, t) is obtained from K*(to, t) by replacing H(z, t) =- H(z, , t) by its

uniform approximation

Q(z, )(z
(2.17) H(z, , t) =- Ho(z, )

Proof. To see H(z, t) H(z, t) on L L, or on D D* D for that matter,
see the paper of the author with Lo [7]. The functions H(z, t) permit us to approx-
imate uniformly the coefficients of the weak singular terms of the singular kernel
K(to, t) given in (2.11). This leads to the sequence of singular kernels

K,(to, t) Re (; Z tH,(to, t)log 1 + H(to,
(2.18)

,o(to) g tH,(z, S) s}Re(t-to + t-s d

The corresponding singular equations are of index zero and are reduced to a
Fredholm equation by the same singular operator (2.13). These Fredholm kernels
may be seen to uniformly approximate the function It- tolK*(to, t) on L x L
for e > 0 arbitrarily small.

Remark 1. By direct computation, the truncated kernel K(to, t) may be seen
to be represented in the form (see also in this regard [7])

K(to, t) Re trio(to)
trio(to) In 1

,= 22"B(n,n + 1)
p"-

where p,(z, t) = zk(z t)"-k/k.

3. The raial case for elliptic euations in two flimensions. In this section
we consider the special case of the elliptic equation (2.1), where the coefficients are
analytic functions of the radius squared, r (x2 + y2)/2, i.e., the equation

0w
(3.1) Aw + a(r2)r + c(r2)w O.

This equation may be simplified by the substitution, u(r,O)= w(r,O)

exp - a(ra)r dr to the form

r2
a2Au +F(rE)u=O, F(r2) -ar a +(3.

consequently, we investigate this equation, where F(r2) is analytic about the origin
in the rE-plane.
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LEMMA 2. For the elliptic differential equation (3.2) the associated partial
differential equation for the E-function is given by

(3.3) (1- t2)E- t-(t2 + l)E + tr(E + 2-Er + FE) 0.

Proof. Direct substitution in formula (2) of [1, p. 10].
LEMMA 3. Let h(r) be an arbitrary harmonic function defined in a disk centered

at the origin. Then the function defined by

B-2e"(rZ) ff(3.4) q(r) h(r) + ,.--1 a(a -1 h(aZr) da

is a solution of (3.2)/f the en(r2) are coefficients for the expansion of the solution of
(3.3) with the form
(3.5) E(r,t) 1 + e,(r2)t2".

n>=l

Furthermore, each cgo solution of (3.2) has a representation of the form (3.4).
Proof. First it has been shown in [1, pp. 27-28] that such solutions (3.5) of

(3.3) exist. Also every real, cgoo solution3 of (3.2) may be represented in the form
(see [1, p. 28])

(3.6) u(r, 0) Re
-1

E(r, t)f(z[1 t2])x//1, t2
where f(z) is analytic for z D. Since E(r, t) is real for r and real, one obtains

(3.7)

If we define

dt
u(r) _= u(r, O) E(r, t)Re {f(z[1 t2])} /1 2

dt
(3.8) h(r) Re {f(z[1 tz])}x//1 t2,

with Re {f(z)} ,o a,r"Y,(O), where the (0) are circular harmonics, then

r(k)r(n +(3.9) h(r)= Z F(n + 1)nO

It is clear that the harmonic function (3.9) converges uniformly in each disk Izl N a
in which the MacLaurin series forf(z) does. Hence, the indicated integration in (3.4)
may be performed termwise to the series (3.9) for h(r). Our result then follows
directly by comparing terms in the expansions for (3.7) and (3.4).

Remark 2. Our representation (3.7) differs from Bergman’s in that we have
replaced z/2 by z. This is of importance to us later, when posing boundary value
problems.

Remark 3. Iff(z) ,eo a,z" and we define G(z) as

G(z) a.z"a(.,
nO

Each real solution is also real analytic for the case considered.
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then

6(z)
-1

dt
f(z[1 t2]) 2’,/1

and then a complex solution of (3.2) is

(3.10)
e,(zz*)z-" fV(z, z*) G(z) + ,_1> 22"- Z 1)

(z t)"- 1G(t) dr,

reminiscent of the Bergman formula [1, p. 15, (4a)] however here G(z) is related
differently to f(z) than his function g(z). See also (2.4).

THEOREM 2. For the elliptic equation (3.2) the coefficients e,(r2) defined in (3.5)
may be found directly from the Riemann function for (3.2) by the formula

(3.11) e,(zz*)
F(n + 1/2)

(- z)" R(, 0; z, z*
=z

where e,(r2) e,(zz*), with z* restricted to f:.

Proof. From (2.3) and (2.4) we have in general for the analytic equation (2.4),
that e,(z, z*)z-"(z )"- H(z, )’, 2+ 1) Ho(z)n>l

(3.12) -R(, 0; z,z*) + B(,O)R(, 0; z,z*)
R(z, 0; z, z*)

where e,(z, z*) =_ z"Q")(z, z*). For the self adjoint case (3.2), this reduces to

e,(zz*)z-"(z )"- -R(, 0; z, z*)
(3.13) h-; 4- 1) R(z O" z z*)n=l

from which we obtain our result by expanding R(, 0; z, z*) as a Taylor series in
about center z, and noting that R(z, 0; z, z*) 1.

THEOREM 3. For the elliptic equation (3.2) the integral representation for a
solution (p(r), in terms of an arbitrary harmonic function h(r), has the following
equivalent representation in terms of a real integral, involving a real Riemann func-
tion"

(3.14) qg(r) h(r) 2z aRa(za2, 0; z, )h(a2r) da.

(The subscript indicates differentiation with respect to the first argument.)
Proof. Putting (3.11) into the expansion (3.4), we obtain,

q(r) h(r) + 2 >a (- 1)"z"
R( 0; z, ) a(1 az) h(ozr) da,

,= (n- 1)! =
from which we obtain our result by regrouping terms as the integral of a Taylor
series.

Example 1.

(3.15) Au 4- 22/,/--0.
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This equation appears to be the only one for which the E-function is already
known, namely E(r,t)= cos 2rt, ([1, p. 28], [5, p. 120]). Here we have e,(r2)

(- 1)"(2r)2"/(2n)!, and hence (3.4) becomes

q(r) h(r) + ,> (-1)"(r2/2)2"f"_1F(n)F(n + li a(1 tr2)n-lh(tr2r)dcr,

or equivalently

(3.16) qg(r) h(r)- 2r 0-’]1 )rx//1 a2 h(rEr) do-

w/1 0-2’
where J(z) is Bessel’s function of the first kind and order one. Formula (3.15),
however, follows from Vekua’s representation (2.3) by recognizing that the Riemann
function for (3.15) is Jo(2[(z )(z* .)]/2). One obtains in this case,

which we can put into the form (3.15) by integrating along a straight line from 0 to z

and using a real integration parameter a + x/-/z. Equation (3.15), however, is
already known and may be found in [10, p. 58].

Example 2. Au + 22r2(m- )u 0, m 2, 3, The solutions of this equa-
tion dependent only on the radius are the cylinder functions Zo((2/m)rm); hence, we
have as the Riemann function

(3.17) R((, (*; z, z*) Jo 0(z*
m

Using formula (3.13) one may compute the coefficients

B(Im, lm + 1) )ten(r2) m (- 1
l!(l- 1)!

en(r2) O, n =/= ml.

We obtain the general representation formula of the type (3.14),

(p(r) h(r) 2r all 0"2]m/2 1jl [l 0"2]m/2 h(ty2r) da,

and the following expression for the E-function"

F(lm)F(lm + 1)(-[4r2]m)2/4m2)
(3.18) E(r, t)= 1 + m >1 F(21m + 1)F(I) 1l--

which is a generalized hypergeometric series ofthe type studied by E. M. Wright [3].
Example 3.

42(2 + 1)Au + u=0.
(1 + r2)2
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The Riemann function for this case is given by Vekua [10, p. 21] to be

*’z z*)= Pz
(1 zz*)(1 *) + 2z* + 2z*(3.19) R(

(+zz*)(+*) !’
where Pz(z) is a Legendre function of degree 2, i.e.,

P(z) F(2 + 1, 2; 1 1/2(1 z)),
where F(a, fl;7;z) is a hypergeometric series. We then have

0"z z*)= F 2 + 1 -2"l"Z*(Z- t)lR(t +-z !’

-Rl(,O;z,z*
-2(2 + 1)z* (2 + 2)(-2 + 1)FZ*_(z . _)-]

1 + r2 t_>o (2)/! [ 1 + rE J

and that

-A(A + 1)z*
F

1 +r2

z*(z
2+2,-2+ 1;2; _-, ],

from which we have, after using Legendre’s duplication formula,

X// r2 )l F(2+I+1)F(1-2)e*(r2)
1 + r2 F(2 + 1)F(-2)/!F(/+ 1/2)’

and hence

(3.20)

1 r2t2
E(r, t) F 2 + 1, -2; 2; 1 ,2]

[ rt 1’/4 ,2(1 +r2--2r2t2)1 + r2 rZt2 Pz/ 1 + r2

Here, P, is taken to be an associated Legendre function. Finally, from Theorem 3
we may obtain a general representation formula

(3.21) q(r) h(r)
22(2+ 1)r2f1 +rE aF 2+2,1-2;2;

r2(1 a2)
1 +r2 h(ra2) da,

for solutions of this partial differential equation.
Example 4.

Au + aorur + ao + + 2f12r2(Ct- 1)IU O.

As before we may find the Riemann function by considering solutions dependent
only on r; it is

ag(z Q(z* (*)}’R(, (*;z, z*)= [(z- 0(z* (,)]/E exp --Jo([(z 0(z*
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The generalized representation is given by

q(r) h(r) exp r(1 exp

(3.22)

2
/0 Y2 21

Jo(czr[1 02]//2)h(ro"2) do-.
.)

As before, the E-function may be computed; however, in this case we must use
(3.12). Since Example 4 is not self-adjoint, the computations are somewhat more
detailed and hence we omit them.

Remark 4. It is apparent from the above illustrations, that the generalized
representation (3.14) is more convenient for doing analytic computations than
representations involving the E-function. Indeed, it is the more complicated
nature of the analytic computations involving E-functions which is partially
responsible for a scarcity of known E-functions.

The general representation formula (3.14) allows us to obtain for the radial
case, a real singular integral equation, which is the real analogue for the singular
integral equation formulation for the Dirichlet problem (2.1), (2.9) as provided by
Vekua [10]. If the boundary of the domain is sufficiently smooth, however, the real
formulation yields immediately a Fredholm equation.

THEOREM 4. Let D be a simply connected domain which is bounded by a closed
curve L having a parametrization x(s) + iy(s), where the functions x(s), y(s) are
Furthermore, let D be star-like with respect to the origin. Then the Dirichlet problem
(3.2), (2.9) may be reformulated as a real Fredholm integral equation. Furthermore, if
F < 0 then there exists a unique solution to the integral equation.

Proof. We begin by rewriting the general representation (3.14) in the more
convenient form

tp(x, y) h(x, y) ZO’2,zt7 X, y h(xo"2
3;0-2) da,

where /(, r/; x, y) R((, (*; z, z*) with z x + iy, ( + irl, etc. Suppose
h(x, y) may be given in terms of a double-layer potential of a continuously differen-
tiable distribution, (s), i.e.,

h(x, y)= -fa (s)-v log v/Ix- (s)]2-+ [y-/(s)] 2 ds,

where s is the arc length parameter and (s) + iq(s) L. It is known from the jump
discontinuity theorem concerning such integrals, [2, vol. II, p. 300], that as (x, y)

(x(t), y(t)) L, one has

h(t) =- h(x(t), y(t))= -n/(t)- f/(s)-8., log v/Ex(t)- (s)]2 + Ey(t)- r/(s)] 2 ds.

Now, since D is star-like with respect to the origin, the point (x(t)o"2, y(t)o"2) D for
a [0, 1]; hence, one obtains an integral relation to be satisfied for the distributions
t(t) which correspond to solutions of the Dirichlet problem (2.9):

#(t) --lf fL #(s)K(t, s) ds,
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where

K(t, s)= -1 (_-7_. log x//[x(t) (s)]2 -F [y(t) (s)] 2

G2 0"2
(3.23) / -z(t), llZ(t);x(t), y(t

log [x(t): (s)] + [y(t) ,(s)3: d}
Equation (3.17) follows by making a change in the orders of integration which

is justified by Fubini’s theorem. The first term in K(t, s) is a :-function since the
normal derivative is proportional to the curvature ofL. The second term has a weak
singularity; hence (3.17) is Fredholm. It is well known that F(&) 0 is necessary
and sucient for the Dirichlet problem (2.1), (2.9) (with F(&) analytic) to have a
unique solution. Since (3.14) may be written as a Volterra equation for h(r), by an
elementary change of variables, it is clear that the unique solution of the Dirichlet
problem corresponds to the unique solution of the Fredholm equation.

4. The equation Au + B(&)u 0, in p + 2 variables.
THEOREM 5. Let E(r, p), p Z + be a solution ofthe partial differential equation

(4.) ( t:), + (p )(t-’ t) + rt O,
r

where B(r) is an entirefunction ofr. Furthermore, let E(r, t; p) satisfy thefollowing
boundary conditions on the infinite strip {0 1} x {0 < }"

lim (t- E)r- 0, lim (1 tE)r O,
t0 t1-

(4.2)
lira E 1.
r0

Then, H(r) is an arbitrary harmonic function of n p + 2 variables, defined in a
star-like region with respect to the origin,

(4.3)
dt

q(r) E(r, t; p)tPH(r[1 t2])x//1 2

is a solution of
2U I2U

(4.4)
c3x - + -x2n + B(r2)u O.

Proof. This may be verified directly by substitution, and integration by parts.
Remark 5. The integral (4.3) is a natural generalization of (3.7) to p + 2

variables. An alternate integral representation for solutions of (4.4), with different
boundary characterizations (4.2) was found by the author and Howard, [6], [5].

Example 5.

Au + 22U O.
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We seek a solution of (4.1) of the form E(r, t; p) e(2rt/2), and find it must
satisfy the ordinary differential equation

hence

(4.5) E(r, t’, p) Cp(2rt) -(p- 1)/2j(p_ 1)/2(2rt),
where Cp is a constant. If we choose Cp 2(p- 1)/2F((p + 1)/2), then (4.3), with this
E-function, may be shown to generalize Vekua’s formula (3.16) to n dimensions; we
shall do this presently. First we establish several existence theorems.

LEMMA 4. If B(r2) is entire in the rZ-plane then there exists a solution E(r, t) to
(4.1) with the series expansion

(4.6) E(r, t; p) 1 + e,(r p)t2",
n>l

which converges uniformly and absolutely in D x {It[ _<_ 1 }, where D is any compact
set in C

Proof. Seeking a solution of (4.6) we obtain the following recursion formulas
for the coefficients" (p + 1)e’ rB,

(4.7) (2n + p 1)e’, (2n 3)e’,_ re_ rBe,_ 1,

n >= 2, with e,(0; p) 0, n >__ 1.
We now attempt the usual reduction of a system of this type, (see [1], [6] or [5,

p. 89]) by setting f,(r2) r 2ne’n(r p). We obtain

(4.8) (2n + p 1)f,(p) 2
df,-1 pl-, fo/p :2

(p) s"- L- (s) as,

n >__ 2. We next construct a sequence of functions F,(p) which majorize the f,(p),
f,(p) << F,(p). First, since B(p) is entire we may find an Mo, for each 0 > 0 and
arbitrarily small, such that IB(p)I << Mo(1 pO)-1 for all p of modulus less than
0-1. We choose and fix a value of 0; then we define

(4.9)
FI(p) =- M0(1 Op)- 1,

1 pl-nMo o(2n + p 1)F,(p)= 2
dF"-I(p)

dp 2 1 Op

n _>_ 2. Using the method of dominants we may now show that

pl-, (2n + (MoO- )/21,(4.10) F,(p) <<
F(Zn 2 + 1) 1 pO

n>l.

To this end, we first note that the above is true by assumption for n 1. Assuming
it is true for n k we attempt to show this implies its validity for n k + 1. If we
call (2n + 1/2MOO-)" the coefficient M,, then we have

M,, >o F(1 + n)
pl-n+ lol.F,,(p) <<

F(2n + p + 1)i_ /!F(n)
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hence,

(4.11)
dF,(p) M, >o F(/+ n) tol_no
dp

<<
F(2n + p + 1)l= l!F(n------I1- n + 11

It follows from this, that

(4.12) p, dF,(p) nM.
)(1 Op) -(n+ 1)

dp
<<

F(2n+p+ 1

Next, we must estimate the integral. A direct computation yields the majorant

(4.13) s"- 1F,(s) ds << p"F,(p).

Combining the estimates (4.12), (4.13), with (4.9)

(4.14)

p"(2n + p + 1)F,+ <<
1 .2nM, + pMoM,/2tF(n + 2p + 1)( (1 0- i

Mn+
F(n + 2p + 1)(1 Op)"+1"

We realize now that the series for rEr(r, t) must be majorized as follows

(4.15)

r . e’n(r)t2"= r2nfn(r2)t2n << E r2"fn(r2)t2n
n>=l n>=l n>_l

,1 F(2n + p 1)

2

1 Or2

A short computation with the ratio test yields that the dominant series converges
whenever Itl 2 < e(1 01rlZ), and hence Irl 2 < 0-(1 e-a), which concludes our
proof.

THEOREM 6. Let B(r2) be entire in the r2-plane, and h(r; p) an arbitrary harmonic
function ofp + 2 variables defined in a spherical neighborhood of the origin, U(O).
Then

(4.16)

with

q)(r) h(r;p) + C,(r;p) crP+l(1 cr2)n-lh(rcr2;p)dcr,
n>_l

2e,(r; p)F(n + p/2 + 1/2)
(4.17) C,(r p) =_

F(p/2 + 1/2)F(n)

is a solution of the differential equation (4.4).
Proof. LetH(n, ml, ..., +_rap;X1, ..., xp+2)= H(mk; +_ ;r)= r"Y(mk; O; q)),

where 0 stands for 01,02, "", Op, be a surface harmonic of degree n, [3, vol. 2, p.
240]. Then, if H(r) is a harmonic function, regular on a spherical neighborhood of
the origin, it has an expansion of the form

H(r) an(mk -F_)H(mk ;r),
rl,mk



BOUNDARY VALUE PROBLEMS 109

which is Abel-summable on the surface of this sphere [8. On any set, relatively
compact in this sphere, the convergence is uniform, and hence the following term-
wise integration is permissible:

1 dt
h(r; p) =- tVH(r[1 t2])x/ri 2

(4.18) a(m; +_)r"Y(m;O;q)) t[l t-/ dt
n,mk

F((p + 1)/2)r(n + 1/2)r"Y(mk- a,(mk +_
r(n + p/2 + 1)

;0", q).
tl,mk

Since,

F(n+p/2- 1)n 1 +O asn,

it is obvious that h(r; p) converges in a ball at least as large as H(r) does. Hence,
in this ball we may perform a termwise integration of the harmonic series for
h(ra;p) in the integral

ap+ (1 a2) h(ra; p) da.
0

Putting these terms into (4.16), and comparing this formal series with the repre-
sentation obtained by termwise integrating (4.3) with E(r, t) given by (4.6), yields
(4.17). The termwise integration of (4.3) is valid because ofLemma4. This concludes
our proof.

Example 6. We return to the expression of the E-function given for the
Helmholtz equation, namely,

,4.,9, J(_

and consider the corresponding expression (4.16). Since

= nF(n + (p + /

we have by (4.6)that e(r; p)= (-1)(2r/2)’[((p + 1)/2).n] -, and hence the
integral representation (4.16) takes on the rather simple form

(4.0 e( h(; p- +J( h( if2

An elementary change of integration parameter shows that this integral formula
is identical to Vekua’s extension of (3.16) to higher dimensions [10, p. 59, (13.14)].
Hence, Theorem 4.3 provides a natural generalization of Vekua’s method to the
higher dimensional equations of type (4.3). We proceed to give several other
examples to underscore the use of the representation (4.16), (4.17).



110 R.P. GILBERT

Example 7.

( + 1)
Ap+ 2U + (1 + r2)2

u O.

We seek a solution of (4.1) of the form E(r, t;p) g(X), with X r2t2/(1 + r2)
and find (X) must satisfy the hypergeometric differential equation

X(1-X)+ (P +2 1
2X 2(2+ 1)6=0.

Hence we have

(4.21)

E(r,t;p) F(2 + 1,

=F

2.P+1 r2t2
1

[ rt )1 (1 p)/4p + 1
1 + 2 p(l-p)/2

2 r2(1
1 + r2 2r2t2

1 +r2

which reduces to the two-dimensional case for p 0. The coefficients of (4.17)
are given by

r2 )I(2+1),(-2),Cz(r; p) 2
1 + r2 !(l 1)

and the representation (4.16) becomes

qg(r) h(r; p)

(4.22) 22(2 + 1)r2 fj1 + r2
0.P+ 1f 2 + 2 1 " 2"

r2(1 0.2)/h(r0.2" p) do..
l+r

Hence, we have found an extension of the representation formula (3.21) to (p + 2)
variables.

We next turn to an alternate method of computing the E-function. We notice
that the function K(r, t) =_ tP(1 t2) /2E(r, t) satisfies the differential equation
[6], [5, p. 87]

(4.23) (1 t2)Krt t-(t2 + 1)Kr + rt(Kr, + p +r 1K + BK

If we define the transformed function k(r, ) by

(4.24) k(r, e) (1 t2)g(r, t) dr, >__0,

then it may be seen that k(r, ) satisfies the ordinary differential equation in the
variable r,

k + l(p + 2e + 1) + B(r2)k O,
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or in terms of y rp/2 +k, the equation

r2 -+- r + Ir2B(r2)
We notice that by a change of integration parameter k(r, ) may be represented as
a Laplace transformation,

(4.25)
K(r, [1 e-U] 1/2) -u/2}k(r, a) . ii17 e

where q,{f} = e-"’f(u) du.

Since K(r, t) tP[1 t2] 1/2E(r, t), we have the two initial conditions,

(4.26) k(0, 00

and

F((p + 1)/2)F(a + 1/2)
F(a+p/2+ 1)

(4.27) k (0, ) 0,

recalling that the e’,(0; p) 0 for all n >__ 1. Turning to our example B(r) =_ 22

again, we see that

2
F + Jp/2+(2r),

and that

(4.28) K(r, t) [(e" 1)1/20 l{k(r, 1/2)}],= -In(1-t2)

Using the convolution theorem for the Laplace transform, we obtain,

K(r, t)
F((p + 1)/2)
v/r(p/2) w/1 -t2

-In (1 2)

[1 (-- (U S))p/2 -1
exp(- (p 1)s/2)exp

[e 1] 1/2

(2rx//1 e -s) ds i nCOS

F((p + 1)/2) 2t flx/F(p/2 V/1

_
t2 (t2 0"2)p/2-1 COS (rcr)da

2tPF((p+l)/2) fr/2 COSp- q COS (2rt sin q) dox/r(p/2)x/1 t.,o

tPF((p + 1)/2)

x//1 2

which agrees with (4.19).

/t) (p )/2

J(p- 1)/2(,rt),
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In order to develop an approach similar to Vekua’s for elliptic equations
in two independent variables, for the partial differential equation

2u
(4.4) cqx-- + + -x2, + B(rZ)u O,

it is of interest to represent (4.16) in the form

(4.29) q0(r) h(r; p) + rp+ G(r, 1 o2)h(ro2; p)do,

and to obtain simple methods for determining the function G(r, r). To this end we
establish the following lemma and theorem.

LEMM 5. The function G(r, z) which appears in (4.29) and is defined by the
formal series

(4.30) G(r, "c) Z Cn(r P)"cn-1
n>l

satisfies the partial differential equation,

(4.31) 2(1 z)Gr- Gr + r(G + B(rZ)G)= O.

Furthermore, G(r, r) is independent of the parameter p n 2.

Proof. Direct substitution of the G-function into (4.30) and use of the recursion
formulas (4.7) and the definition of the coefficients C,(r;p) by (4.17) yields the first
part of the lemma. That G(r, ) is independent of p follows from the differential
equation (4.31) and the initial-boundary data, G(0, r) 0, and

G(r, O) C (r p) =- rB(r2) dr.

THEOREM 7 (A method of ascent). The G-function may be represented in terms

of the Riemann function by means of the formula
(4.32) G(r 1 0"2) 2rR (ra2 0 r, r).

Proof. For the case of n 2 variables (4.29) becomes (3.14); hence we may
form the identification

(4.33) G(r, 1 0-2) 2zRl(Z0-2 0" Z )

However, since G is a real function of r2 2’ each appearing in the right-hand
side of (4.33) must combine with a z to appear only as an r2. This permits us to
extract (4.32).

Example 8. For B(r2) 22, one finds that

-r2
J(2r x//1 0-2)G(r, 1 0"2)

w/1 0-2

satisfies (4.31) and the initial data. This also agrees with (4.20) and (3.16).
Remark 6. The method of ascent given above permits a representation of

(p + 2)-dimensional solutions in the form

(4.34) qg(r) h(r; p) 2r op + R (r0-2 0; r, r)h(r0-2 p) do-.
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THEOREM 8. Let S(p) Ilrll p}, and let q)(r) be any solution of (4.4) defined
in S(p) and continuous on ?S(p). Furthermore, let o(r)l=o o(p O; o) be expandible
in terms of hyperspherical harmonics as

(4.35) qg(p; O; (p) 2 a,(mk; +_)Y(mk; O; q)).

Then q(r) may be expanded in the following series which is uniformly convergent for
all D c S(p):

(]" J"(r; P)
a,(mk; + )Y(mk; O; q)),(4.36) qg(r)

t,! J,(P’P)

where J,(r; p) tE(r, t; p)(1 t)-/ dr.

Proof. Following the arguments used by Bergman ([1, p. 66]) for the three-
dimensional case we can show if there exists a positive, continuous function A(r)
defined in S(p), such that (p(r) satisfies the inequality

199(r)1 A(r) max Iqg(r)l,

then qg(r) may be expanded as in (4.36) where the convergence is uniform. Clearly,
the existence of such a function A(r), with the above properties, follows from the
existence of a Green’s function for Au + Bu 0 for the sphere. That this is indeed
the case, when B(r2) is entire, is known to be true; see for example [4, Chap. IX, 1 ].

Remark 7. The equation (4.34) may be rewritten as the Volterra integral
equation

(4.37) @(r; 0; qg) H(r; 0; q)) e 1(/9, 0; r, r)H(p O; q)) dp,

with (I)(r, 0; q) rP/Zq)(r), H(r; O; qg) rP/Zh(r), and 0 (01,02, ".’, Op). Hence
(4.34) considered as an integral operator on the class of harmonic functions,
regular in a region star-like with respect to the origin, has an inverse, namely,

(4.38)

where

with

h(r; 0; q) (p(r 0; q) + r- p/2 r(p, r)pp/2 q)(p 0 q)) dp,

F(p, r) , Ktt)(p, r),
l>l

(4.39) K(l + 1)(p, r) =_ K(1)(t, r)K(l)(p, t) dt

and Kl)(p, r) R I(P, 0; r, r).
The inverse kernel F(p, r) may be seen to converge uniformly for all finite r

when B(r2) is entire [5, Chap. III].
LEMMA 6. If q0(r) is a regular solution of (4.4) in a domain D, star-like with

respect to the origin, then the harmonic function h(r;p) which generates q(r) by
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means of the linear operator equation (4.34) is also regular in D, and vice versa.

Proof. This follows immediately from (4.37) and (4.38).
THEOREM 9. Let D be star-like with respect to the origin and B(r2) an entire

function, such that B(r2) < 0 in D. Furthermore, let cD be a Lyapunov boundary
and f(r) be a continuous function of r c3D. Then, there exists a unique solution of
(4.4) such that for r cD, q(r) f(r), which may be represented as

(4.40) q(x) h(x)- 2r rp+lRl(rff20"r r)h(x2)dff r- Ilxll
with

xD,

(4.41) h(x) re,/2 /(y) 2 do)y,

and where the double-layer density #(y)t is a solution of the Fredholm integral
equation

f(x) p(x) + p(y)
yll._ 2

(4.42)
2r + R 1(r, 0" r, r doy

o Ixa2 yl]"- 2

xOD.

Proof. It is well known that for B(r2) < 0 and sufficiently derentiable in D
the Dirichlet problem is well-posed (see for instance [4, Chap. 8]); hence, there
exists a unique solution satisfying the continuous boundary data of our hypothesis.
The condition that the boundary be Lyapunov is sufficient that the first boundary
value problem for Laplace’s equation be reducible to a Fredholm integral equation
by means of the double layer potential representation (4.41). Equation (4.42)
arises by putting (4.41) into (4.40) and computing the residue as x tends to a boundary
point from the inside.

REFERENCES

[1] STEFAN BERGMAN, Integral Operators in the Theory of Linear Partial Differential Equations,
Springer-Verlag, Berlin, 1961.

[2] RICHARD COURANT AND DAVID HILBERT, Methods of Mathematical Physics, vol. II, John Wiley,
New York, 1962.

[3] ARTHUR ERDLYI, Higher Transcendental Functions, vols. I, II, III, McGraw-Hill, New York,
1953-1955.

[4] PAUL R. GARABEDIAN, Partial Derential Equations, John Wiley, New York, 1964.
[5] ROBERT P. GILBERT, Function Theoretic Methods in Partial Differential Equations, Academic Press,

New York, 1969.
[6] ROBERT P. GILBERT AND HENRY C. HOWARD, On a class of elliptic partial differential equations,

Portugal. Math., 26 (1967), no. 3, pp. 353-373.
[ ROBERT P. GILBERT AND CHI YEUNG LO, On the approximation of solutions of elliptic partial

differential equations in two and three dimensions, to appear.
[8] CLAUS MOLLER, Spherical Harmonics, Lecture Notes in Mathematics, vol. 17, Springer-Verlag,

New York, 1966.
[9] S. L. SOBOLEV, Partial Differential Equations of Mathematical Physics, Pergamon Press, New

York, 1964.
[10] ILYA N. VEKUA, New Methodsfor Solving Elliptic Equations, John Wiley, New York, 1967.

See Sobolev [8, Lecture 15].



SIAM J. MATH. ANAL.
Vol. l, No. l, February 1970

NOTE ON CONTOUR INTEGRAL REPRESENTATIONS FOR
PRODUCTS OF AIRY FUNCTIONS*

N. A. LOGAN AND K. S. YEE

J. C. P. Miller [1] has shown that when z is real the differential equation

d3y 4zdY(A)
dz 3 z 2y 0

is satisfied by products of solutions of the Airy differential equation

dEy
(1)

dz2 zy O.

In this note we derive integral representations of solutions of this equation by
the Laplace transformation method. These solutions have "rotational" symmetry
properties which are hard to see from other representations.

Properties of the solutions of (1) are well known. Three solutions as definite
contour integrals have been given by Jeffreys and Jeffreys 2] and others:

Ai(z) exp (-t3 zt) dt,
31

Bi(z) + iAi(z) _1 fL exp (1/2t 3 zt) dr,
’ 21

Bi(z) iAi(z) _1 L exp (1/2t 3 zt) dt,
2Z 23

where the various contours are shown in Fig. 1.
Power series for Ai(z) and Bi(z) are given by

(2)

where

and

Ai(z) 0g,(z) flgz(z), Bi(z) /(0g,(z)- flg2(z)),

fl 3-’/3/F(1/2),. 1? 1.4.7
gl(z) 1 + Z3 - Z6 " 9

2 , 2.5
zg2(z) z / .z +-. 7 + ....

Z9 -3V ...,

Integral representations of the solutions of (A) can be derived by means of
the Laplace transformation method [3]. This yields the following three linearly

* Received by the editors May 20, 1969, and in revised form June 27, 1969.- Department of Mathematics, Kansas State University, Manhattan, Kansas 66504.
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FIG. 1. Complex t-plane

independent solutions"

1
(3a) yl(z) 7exp

1
(3b) y2(z)

:3

exp

(3c)

dr,

y3(z) exp tz + -t3 dr.

A branch cut is placed in the negative real axis to insure single-valuedness of
the integrand; thus rc < arg < ft. We first show that y3(z) is a constant multiple
of AiZ(z).

From (3c) we find

{fo ;o X3erci/3 1 3 1 --(4a) y3(0)
ooe-,-/3

+
0 jexp -f dt -- exp dx

4(12)- 5/61-’

(4b) y;(0) + exp dt -i 4.3-1/2F
rci/3

{f J ei/3) t3) ()(4c) y;(0)= + 3/2 exp - dt i4(12)-1/6F
e- ri/3
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And from the power series (2) we obtain

1
(5a) Ai2(0) 34/F(2/3),

d 2
(5b) dx[Ai2(x)]x; o 3 v/6F( 1 )r(2/3)’

d 2 2
(5c)

dx2 [Ai2(x)]x_o 32/3{F(1/3)) 2.

It is easily verified that the ratio of the right sides of (4a) and (Sa) is 4i73/2, and
that the same is true of (4b) and (Sb), and also of (4c) and (5c). Hence we obtain
the desired result

(6) Y3(2)--- fL31t exp (--tz + t3/12)dt--i4rc3/2Ai2(z),

where L31 is the path of integration shown in Fig. 1.
The corresponding results for y(z) and yz(z) are easily obtained by rotation

of the paths of integration. This gives

(7) yl(z) e- 2ri/3y3(ze2ni/3).

Using the known relation

(8)

we find

Bi(z) + iAi(z)= 2e’W6Ai(e2i/3z),

(9)

similarly

(10)

yl(Z) _2irc3/Z {Bi(z) + iAi(z)}2

yz(z) 2irc3/Z{Bi(z)- iAi(z)} 2.
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ASYMPTOTIC EXPANSION OF LAPLACE TRANSFORMS
NEAR THE ORIGIN*

RICHARD A. HANDELSMAN AND JOHN S. LEW?

1. Introduction. Let f be a locally integrable function on [0, ) and let Lf
be its Laplace transform, when this exists. Then for functions f having a finite
number of well-defined moments

(1.1) t tmf(t) dt, m O, 1,... n,

it is well known that

(1.2) [Lf](s) m( s)m/m! -1- O(Sn)
m=0

for small s with Re (s) > 0.1 Thus for functions f having all their nonnegative
moments well-defined, one can obtain the standard expansion of Lf by moments,
which is in general an asymptotic, but not necessarily convergent, power series.
(Consider, for example, f(t) exp (- 2tl/2).)

We point out, however, that the moment #m is simply the value at m + 1 of the
Mellin transform Mf. Indeed, in this paper, for functions f with a rather general
asymptotic form near + , we shall relate Lf to Mf, and thereby generalize (1.2) in
two ways. (a) When the integral for Mf converges in some vertical strip, we will
show in Theorem 5 that a function meromorphic in the right half-plane can be
obtained as the continuation of Mf, and, using this, that an infinite expansion, not
limited by any fixed o(s"), can be given near zero for [Lf] (s). Usually this expansion
will consist of a regular part, generalizing the expansion by moments, in which the
#m are replaced by the values ofthe continued Mf, and also a singular part, reflecting
the poles of this continued Mf, in which the terms are obtained from the detailed
form near + c off. (b) Even when the integral for Mfconverges nowhere, so that
no positive nor negative moments offare defined at all, we will nevertheless show in
Corollary 5.1 that, remarkably, a function Mf can still be defined by analytic
continuation, and an expansion of Lf in terms of this function can be obtained as
before.

Results like ours, which obtain the limiting behavior of Lf from that off, are
called Abelian theorems, while converse results, which recover properties off from
Lf, are called Tauberian theorems. The usual Abelian theorems give only a leading
term and an error estimate [10, pp. 180-183], [4, Volume I, pp. 455-460], and only a
few special results yield full series expansions [4, Volume II, pp. 97-100], [2]. We

* Received by the editors March 18, 1969.
f Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. This

work was supported in part by the Office of Naval Research under Contract NONR 562(36) and by
the Department of Defense Advanced Projects Agency under Contract SD-86.

Since we shall be concerned only with values of which are small, we shall use the symbol O(sk)
throughout this paper (and o(sk) similarly) to mean O(s) as 0 for Re (s) > 0.
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obtain, on the other hand, an infinite asymptotic expansion of Lf, through assump-
tions on f more restrictive than for some other Abelian theorems, yet sufficiently
broad to include essentially all special functions with well-defined Mellin trans-
forms.

We recognize that in the theory ofgeneralized functions [6, especially Chap. 1,
Section 3] there are developments which parallel some of our work and might
therefore extend some of our results. However, from this theory we would probably
obtain statements involving, say, the finite part of an integral or the regularization
of a function, and for an explicit expansion we would then need to compute these
entities, which are defined originally through analytic continuation. Thus we have
chosen to use more elementary methods in our main discussion, which anticipate
the final computation by explicit reliance on analytic continuation, but in con-
cluding we have added, as Corollary 5.3, a result for a limited class of generalized
functions.

2. Fundamental results. For any locally integrable complex-valued func-
tion f on [0, ), let Lf and Mf denote respectively, when they exist, the Laplace
and Mellin transforms off. That is, for the complex variables s and z x + iy, let

(2.1) [Lf (s) exp (- st)f(t) dt,

(2.2) [Mf](z) tz-af(t)dt

whenever these defining integrals converge. For future use, it is convenient also to
note that Mf can be expressed as a bilateral Laplace transform, since the change
of variable exp(u) in (2.2) yields

(2.3) [Mf] (z) exp (zu)f[exp (u)] du.

Of course, the integrals (2.1) and (2.2) need not converge anywhere, and thus
need not converge absolutely; but whenever they do converge, it is well known,
[10, pp. 46-48, 240-241] that Lf and Mf converge absolutely in regions of form
So < Re (s) and a < Re (z) < b respectively, where a, b and So are either real num-
bers or + .

We shall now review, in Lemma 1, some properties of the Mellin transform
Mf that will be used both implicitly and explicitly below. We shall then derive in
Theorem 1 and exploit in Theorem 2 a fundamental relation between the two
transforms Lf and Mf. Theorem 2 may be considered the main result of this
section.

LEMMA 1. Let [Mf](z) be absolutely convergentfor a < Re (z) < b, and let I be
any compact interval in (a, b). Then [Mf] (z) is holomorphicfor a < Re (z) < b with
its derivative uniformly boundedfor Re (z) in 1, and

(2.4) N(f, I; y) sup {][mf](x + iy)] "x e I}

is continuous for < y < + o with limy_. +__ N(f I; y) O.
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Proof For a < Re (z) < b it is well known [10, pp. 240-241] that [Mf](z) is
holomorphic and we will not reproduce here a proof of this fact. it is also clear that

(2.5) [Mf]’ (z)
d[Mf](z) z-1 log f(t) dr.

dz

Now if g(t) If(t) log tl then [Mg](z) is absolutely convergent and I[Mf’(x + iy)l
__< [Mg] (x) in this same strip, so that

(2.6) I[Mf]’(z)l =< K sup {[Mg] (x)’x e I}

for Re (z) in I. However Mg is continuous and I is compact, so that K is finite.
For any z l, z2 with Re (zi) in I this implies by the mean value theorem that

(2.7) [[Mf] (zl) [Mf] (z2) Klzl z21

which, in turn, implies that

]N(f I; yl) N(f I; Y2)I =< KlYl Yz].

Moreover [Mf](x + iy), for each fixed x in I, is by (2.3) the Fourier transform ofan
absolutely integrable function, so that limy_ _+ [Mf] (x + iy) 0 pointwise by the
Riemann-Lebesgue lemma. However, if F(x) [Mf](x + iy) for x in I then the
family {Fy:-oe < y < oe} is equicontinuous by (2.7), so that uniform and point-
wise limits in y coincide [7, Theorem 7.15].

THEOREM 1. Let [Mf](z) be absolutely convergent for a < Re (z) < b with
a < 1. Then

(2.9) [Lf] (s) (2ri) -1 [Mf] (z)F(1 z)sz- dz

for any s with Re (s) > 0 and any c with a < c < min (1, b).
Proof. If we put g(t) exp (-st) with Re (s) > 0 then we find the transform,

[Mg](z) F(z)s -z, absolutely convergent for Re (z) > 0, so that[Mg] (1 z) is
holomorphic for Re (z) < 1. Also from Stirling’s approximation for F(z) we can
obtain the estimate [1, (6.1.45)]

(2.10) Ir(x + iy)l (2c)/21ylX- a/2 exp (-1/2lyl), lyl --* ,
so that [Mg] (1 c iy) is absolutely integrable on o < y < oe. But xf(t) is
absolutely integrable on 0 =< < oe since by hypothesis a < c < b, and thus

(2.11) fO fc
+i

[Lf] (s) f(t)g(t) dt (2ri)- [Mf] (z)[Mg] (1 z) dz

by the Parseval theorem for the Mellin transform [9, Theorem 42]. Moreover, this
identity can be continued to all s for which both sides of(2.11) are well-defined and
analytic.

THEORFM 2. Let Re (s) > 0 and 0 arg (s). Let [Mf](z) be absolutely conver-
gent for a < Re (z) < b with a < 1, and be continuable to a meromorphic function in
a < Re (z) such that for each compact interval I in (a, ) there exists an e > 0 for
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which N(f, I; y)exp [(e + [0[ z/2)ly[] is bounded as [y[- o). 2 Then for any real
k > a and 6 > 0 we have (see footnote 1)

(2.12) [Lf3(s) Res {-[Mf](z)F(1 z)sz-’} + o(Isl-6-’).
Re(z) < k

In (2.12) and hereafter, we use Mf to denote not merely the given absolutely
convergent Mellin transform but also the assumed meromorphic continuation,
when it exists.

In other words, the series obtained when we let k is by definition [5,
pp. 11-12] an asymptotic expansion of Lf near s 0 for Re (s) > 0. Moreover,
this series is uniformly valid in each sector [0] < 0o with 0o < (1/2). (The occur-
rence of 6 in (2.12) is to allow for possible logarithmic terms in the series.)

Proof. For any k > a we can choose fi arbitrarily small and such that
[Mf](z)F(1 z) has no poles with k- 6 __< Re (z) < k. Then under the stated
assumptions we can shift the contour to the right and obtain

[Lf] (s) Res {-[My] (z)F(1 z)s ’}
(2.13)

< Re(z)

+ (2zi)- [Mf] (z)F(1 z)s dz.
d k

However an upper bound for the last term is clearly
io

(2.14) (2)- ls[k-- ][Mf](z)F(1 z)] exp (-Oy)ldzl
k-6-io3

in which the integral is absolutely convergent and bounded on each sector [0[ =< 0o
by (2.10) and our hypotheses.

COROLLARY 2.1. If [Mf](z)F(1 --z) has a pole at Zo with a < Re(zo)< b,
and if its Laurent expansion at Zo has singular part ,=o am(Z- Zo) , then
to our expansion of [Lf] (s) the point Zo contributes the terms

(2.15) s- a,,(log s)/m !.
m--0

Proof. The expression a,s- (log s)"/m! is precisely the residue at z Zo of

(2.16) am(Z Zo)-"- ls- s- aa,,(z Zo)-"- exp [(z Zo) log s].

COROLLARY 2.2. Ifno positive integer rn is a pole of [Mf] (z), then each such rn
is a simple pole of [Mf] (z)F(1 z), and to our expansion of[Lf] (s) contributes the
term mf](m)(-s)"-l/(m 1)!. If zo(:/: 1,2, ...)is a simple pole of mf](z), then
it is a simple pole of [Mf](z)F(1 z), and contributes a term -Res ([Mf](z); Zo}
F(1 Zo)S- 1.

Proof. The points z m 1, 2,... are the singular points of F(1 z), and
are simple poles with residues (-1)"/F(m).

In the next section we will show that these seemingly artificial restrictions on [Mf](z) are in fact
satisfied for a large class of functions f(t), including all those with asymptotic form near :

f(t) exp (-ctp) 2 c,,.t"(lg t)".
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Example 2.1. For any complex number r let

0 on [0, 1),
(2.17) f(t)

Then [Mf](z) is absolutely convergent to -1/(z + r- 1) on the left half-plane
Re (z / r)< 1, so that [Mf)(z) is trivially continuable into the entire complex
plane as a function with a pole only at z 1 -r. Thus, by Corollary 2.2 for
r 4: 0, -1, -2,..., we have

(2.18) [Lf](s) F(r)s-- (n + r)-l(-s)"/n!;
n---0

and by Corollary 2.1 for r -m 0, -1, -2,..., we have

(2.19) [Lf](s) [logs O(m + 1)](-s)m/m! 2 (n m)-(-s)"/n!,

where O(z) F’(z)/F(z).
Now [Lf](s)= s-rF(r, s), where F(r, s) is an incomplete gamma function.

If r - 0, -1, -2, ..., then [Lf](s)can be written

(2.20) [Lf] (s) s-rF(r) r- M(r, r + 1 s),

where M(a, e;z) is Kummer’s solution of the confluent hypergeometric equation.
If r 0, 1, -2, ..., then [Lf] (s) can be expressed in terms of the exponential
integral

(2.2"1) E(z) t- exp t) dr.

However, in both cases, the standard series for these special functions [6, (5.1.11)
and (13.1.2)], yield agreement with the expansions (2.18) and (2.19).

We finally note that Theorem 2 is a nontrivial extension of the expansion
of [Lf](s) by moments, since this result holds even for large positive r, in which
case no moments of f(t) are defined.

3. Suttieient conditions for expansion. For those locally integrable functionsf
which satisfy the hypotheses of Theorem 2, we have just obtained an expansion
near s 0 of the Laplace transform [Lf] (s). For Re (s) > 0 and s 0, the resulting
series has been shown to be asymptotic, and through a later example it will be
found not always convergent. The object of this section is to provide more con-
structive and explicit conditions on f than those assumed in Theorem 2 for this
expansion to be valid. In order to accomplish this, it will be convenient to split
the function f at 1, and to put

(3.1)
fl(t) f(t) on [0, 1), 0 on [1,

fz(t) 0 on [0, 1), f(t) on [1,

If the domains of definition for Mfa and Mf overlap, then clearly Mf Mfl
+ Mf2 on the common domain. We, of course, are concerned here with the
expansions for small s of Lf and Lf.. It is well known that the expansion by
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moments of [Lfl] (s) holds although the assumptions of Theorem 2 are not quite
satisfied. We will, however, recover this expansion of [Lfl] (s) through the use of
Theorem 2, so that combination with corresponding theorems on [Lf2] (s) can
then be easily achieved in the following section.

LEMMA 2. If f(t) is locally integrable on [0, ), then [Mfx] (z) is absolutely
convergent and hence holomorphic for Re(z)> 1, though not necessarily for
Re (z) >= 1. Iff(t) is also continuous at 0 then [Mf](z) is absolutely convergent
for Re (z) > 0.

Proof. The representation (2.3) exhibits [Mf] (z) as a one-sided Laplace
transform, for which these results are well known.

THEOREM 3. Let f(t) be locally integrable on [0, c), and let k be any positive
real number. Then for Re (s) > 0

[Lfl](s) [Mfl](1)+ Res {-[Mf,](z)r(1 z)sz-} +
<Re(z) <k+

(3.2)
[k]

[mix] (n + a)(-s)"/n! + O(Is]k).
n=0

Here [k] denotes the greatest integer less than k.
Proof. The assumptions of Theorem 2 are not quite satisfied, since [Mfl](z),

by Lemma 2, may converge at no points with Re (z) < 1. However for e > 0,
by Lebesgue’s theorem

(3.3) [Lf](s) lim exp (- st)tf(t) dt
e0

and hence for 1 e < Re (z), by Lemma 2, the Mellin transform of tf(t) converges
absolutely to Mf (z + ). Thus we can let 1 e < c < 1 < c’ < 2 in Theorem 1
and obtain

[Lf](s) lim (2ri)-1 [Mf] (z + )F(1 z)sz-1 dz
O

(3.4)
lim [Mf] (z + e) + (2i)- [Mfl] (z + e)F(1 z)s d
e0 c’ -i

The preceding shift in contour is permissible by Lemma 1, and we may now
continue as in Theorem 2. Also Mf] (z) is contuous on [1, ), and hence
we can put e 0 in (3.4). However the integrand in (3.4) has poles only at positive
integers, so that if k 1, 2, ..., then the > 0 of Theorem 2 is unnecessary and
our error estimate is O(Isl). Moreover, the integrand has only simple poles,
so that if k 1, 2,..., then the contour may be shifted to k + 6 + 1, and our
error estimate is [Mf](k + 1)(--s)k/kl + O(Isl+).

Theorem 3 is valid for arbitrary f, but the transform Mf2 need not even exist
for arbitrary f2. However, if f(t) O(tb) as for some real b, then Mf] (z)
will converge absolutely for Re (z) < b; but without further restrictions Mf2] (z)
may still not be continuable as assumed in Theorem 2. Thus we require in the
next two lemmas that as ,
(3.5) f(t) exp (-ctp) Cmj(log t)n.

m, 0
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Here p > 0, Re (c) >__ 0, Re r,, - as m , and the set {n’cm, 4: 0} is finite
for each m. For any real k we also define

(3.6)

Re(tin + k) 0
{exp (-ctP)c,,trm(log t)"),

and

(3.7)

0=<t<l,

f*(k, t) f(t) g(k, t).

LEMMA 3. If Re(c)> 0, then [Mf2](z) is absolutely convergent and hence
holomorphic on the entire z-plane. If Re (c)= 0 then [Mfz](Z) is absolutely con-
vergent at least .(or Re (z + ro) < 0.

Proof. By assumption, for any 6 > 0 there exists K > 0 such that

(3.8) [fz(t)[ -<_ K exp [- Re (c)tP]tRe(r)+ 0 < <

The result then follows from Lemma 1 and the estimate

(3.9) It lf2(t)[ dt <__ K exp [--Re (c)tP]tRe(z + to)+ -1 dt.

LEMMA 4. If C 0 then [Mfz](Z) can be continued to a meromorphic function
on the entire z-plane, with poles at z-= -r,, and for any compact interval I in

(3.10) lim N(L I; y) 0,

where N(f, I; y) is defined by (2.4). If c i7 for some real 7 O, then [Mf](z)
can be continued to a holomorphic function on the entire z-plane; and for any compact
interval I in (-, ) there exists an integer n(I), depending only on the upper limit
of I, such that

(3.11) N( I y) O(]y] "tI)) as [y] .
Proof. For any k > -Re (ro) we will show that [Mfz](z) has the asserted

properties in the region Re (z) < k. In both of the cases to be treated we write
f(t) g(k, t) + f*(k, t) and recall that g(k, t) is a finite linear combination of terms
of the form exp (-ctP)V(log t)" with Re (r + k) > 0. It then follows from (3.5),
(3.7) and Lemma 3 that [Mf*](z) is absolutely convergent for Re (z) < k. Also for
any compact interval I in (-, k) we see by Lemma 1 that

(3.12) lim U(f*, I; g) 0,
ym

and hence the asserted properties of Mf2 depend only on g.
If c 0 and Re (z + r) < 0 then we compute

F(n + 1)
(3.13) t+-X(lgt)"dt

(-z r)+"

Thus [Mg](z), being a finite linear combination of terms of the form (3.13) for
Re (z) sufficiently negative, is continuable to the entire z-plane as a meromorphic
function with poles at z r in Re (z) < k. Moreover, N(f, I; y) has the required
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limit since from (3.13),

(3.14) lim N(g, I y) O.

If c i7 va 0 and u p then we can write

(3.15) exp (_ ctP)t +r,,- 1(log t)n dt p-"- G(z + rm, n),

(3.16) G(w, n) exp (-cu)u(w/p)- X(log u)" du

and observe that G(w, n) converges absolutely for Re (w) < 0. But, upon integrating
by parts in (3.16), we obtain

(3.17) G(w,n) c-[exp (-C)6o, + p-l(w p)G(w p,n) + nG(w p,n 1)],

where 6o, is the Kronecker delta. Then, upon using (3.17) we can write (3.15),
which converges absolutely for Re (z + rm)< 0, as a sum of integrals which
converge absolutely for Re (z + rm)< p. Thus by induction we can. continue
[Mg] (z) in a finite number of steps, say steps, to a function holomorphic for
Re (z) < k. However, at each step, we multiply certain terms in the continuation
by linear factors in z. Hence the form obtained after steps, with Re (z) in I, will be
a linear combination of integrals which are bounded by Lemma 1 and whose
coefficients are polynomials in z of degree N I. Therefore, we have that N(g, I, y)

O(lylt), lyl .
THEOREM 4. Let f(t) be locally integrable on [0, ) and as let

(3.18) f(t) exp -c at-q c,,,V"(log t)",
l= m,n=0

where a0= 1, Re(c)>_0, p and q >0, Re(r,,)$-o as m and the set

{n :c,,, :/: 0} is finite for each m. Then [Mf2](z) is absolutely convergent at least for
Re (z + to) < 0 and is continuable to the entire z-plane as required in Theorem 2.
Thus for Re (s) > 0 andfor any k > -Re (to), 6 > 0,

(3.19) [L/2] (s) Res {-[Mf2](z)F(1 z)s-’} + O(]slk-a-’).
Re(ro) =< Re(z) < k

Proof. If t(u) is a strictly increasing C function from [1, ) onto [1, oe)
then [Mfz](Z)can be rewritten

(3.20) [Mf2] (z) It(u)] If It(u)] (dt/du) du.

We can construct [5, pp. 22-24] a function t(u) such that as u ---, oe, dt/du has an
expansion given by

(3.21) dt/du bju -3q, bo 1,
j=0

and such that the change of variable t(u) takes =o atp-*q into up. Then by
substitution fit(u)] dt/du has an asymptotic expansion of the form (3.5), and
h(u) [t(u)/u] has an asymptotic power series in u -q whose coefficients are
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polynomials in z. For any k > -Re (r0) we can truncate the series for h(u) after
so many terms that the part of (3.20) which contains the remainder is absolutely
convergent for Re (z) < k. The preceding terms in this series all yield integrals
of the type considered in Lemma 4 each multiplied by a polynomial in z. Thus the
integral (3.20) satisfies the conclusions of Lemma 4.

In (3.18) the terms attp-lq with p <= lq are redundant, since in

exp -c 2 altp-lq Cm"t’(logt)
[(p/q) + 1] m,n 0

formal series expansion and multiplication yield a result like the second sum alone.
Thus in (3.18) the first sum can always be assumed finite with positive exponents
only. We point out that for a linear differential equation with analytic coefficients,
the solutions near an irregular singular point at are known [3, pp. 168-169]
to have asymptotic expansions of the form (3.18) with this restriction. Thus
Theorem 4 includes all such f, and hence effectively all standard functions f,
for which [Mf2](z) exists.

Our concluding results, which recombine Lfl and Lf2, will be presented in
the next section, together with two illustrative examples.

4. Conclusions. We shall now assemble the results of the previous sections
and state the immediate conclusion as Theorem 5. We shall then add several
corollaries which extend this theorem to certain functions having no Mellin
transform, and to certain generalized functions. Also two examples will be given
to illustrate these results. The first of these will show that, in general, our expansion
of [Lf](s) is no more than asymptotic. Throughout this section we shall use the
functions fl and f2 defined by (3.1).

THEOREM 5. Let f(t) be a finite linear combination of functions each locally
integrable on [0, oe) with the asymptotic form (3.18), and let [Mf](z) be absolutely
convergent for a < Re (z) < b. If > 1, 6 > O, and Re (s) > 0, then

(4.1)
[Lf](s) [Mf](1)+

b _< Re(z) =<

<Re() <

Res {- [Mf2](z)r(1 z)s }

Res {-[Mf](z)F(1 z)s 1} + O(isl,-- 1),

Proof. By hypothesis [Mf](z) and [Mfz](Z) are absolutely convergent and
thus holomorphic for a < Re (z) and Re (z) < b, respectively. However we can
continue Mf2 by Theorem 4, and can thus continue Mf Mf + Mf2, to a
meromorphic function on a < Re (z) which satisfies the conditions of Theorem 2.
Moreover by Lemma 2 we may select a __< 1. Hence Mf is defined for < Re(z) <
so that the right-hand side of (4.1) is also defined. Now Mf2 has no poles with
Re (z) < b, and we may choose c’ with < c’ < 2 so that Mf2 has no poles with
1 < Re (z) _< c’. It then follows from Theorem 2 that

(4.2)

Res { [Mf2] (z)l-’(1 z)sz-’ )
b -< Re(z) < c’

+ ioo

+ (2ri)- [Mf](z)F(1 z)sZ-dz.
’C’ --io
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Upon adding (3.4) to (4.2) with the same c’ we find

[Lf] (s) [Mf] (1) + Res { [Mf2] (z)r(a z)s-}
(4.3) +

+ (2hi)- [Mf] (z)F(1 z)s dz,

from which we get (4.1) by shifting the contour as in Theorem 2.
Example 4.1. For any fl > -k and Re () > -fl let

(4.4) f(t) xJ2(2tx/2).

Then by the change of variable u2 and an identity in Bessel functions [1,
(11.4.16)],

(4.5) [Mf](z) r( + + z 1)/r(B z + 2),

for 1 fl < Re (z + ) < 5/4. However, as predicted by Lemma 4, and as seen
from (4.5), Mf can be continued to a holomorphic function on (1 fl) < Re (z +
with a zero at z fl + 2. Thus by Theorem 5 we have

(4.6) [Lf](s) F(a + fl + n)(-s)"/F(fl - n + 1)F(n + 1).
n=0

On the other hand we find directly [1, (11.4.28)] that

(4.7) [Lf] (s)= [F(a + fl)/F(Zfl + 1)]s-’-M(a + fl, Zfl + 1; + 1/s),

where M(a, e; z) is again Kummer’s solution of the confluent hypergeometric
equation. As is well known, M(a, c;z) has no convergent expansion near z
but only asymptotic expansions in various sectors. If we substitute into (4.7) the
asymptotic expansion of M(a, c;z) valid for large negative z [1, (13.5.1)], then
we find

[Cf](s) oF(fl-a-n+ 1)F(n+ 1) + F(Zfl+ 1)
(4.8)

Yo r(1 + )r(1 ) r(n )

Upon comparing (4.5) and (4.8) we can conclude that our procedure in this instance
yields an asymptotic expansion of [Lf] (s) and, as indicated by its error estimates,
does not recover terms which are exponentially small.

We now point out that the conclusions of Theorem 5 will often hold even
when the integral for [Mf](z)converges nowhere. Indeed by Lemma 2 we know
that [Mf](z) converges absolutely in the region a < Re (z) for some a N 1. Thus
if [Mf2] (z) can be continued to the entire z-plane, then we can define

(4.9) [Mf](z) [Mf](z) + [Mfz](Z), a < Re (z),

even when (2.1), the integral for [Mf](z), does not converge. By using this
generalized definition of the Mellin transform we shall now obtain Corollary 5.1
as an extension of Theorem 5, and Corollary 5.2 as an important special case.
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COROLLARY 5.1. Let f(t) be a finite linear combination of functions each
locally integrable on [0, oo) with asymptoticform (3.18), and let [Mf] (z) be defined by
(4.9) whether or not the integral for [Mf](z) converges anywhere, lf > 1, 6 > 0
and Re (s) > 0, then (4.1) holds for any b such thatf(t) O(t -b) as oo.

Proof. For Re (z) < b, Mf2 is absolutely convergent and hence holomorphic.
We may then proceed as in the proof of Theorem 5 to obtain (4.1) since nothing
in that proof required a < b.

COROLLARY 5.2. Let f(t) be a locally integrable function on 0, oo) such that

(4.10) f(t) Cmt" as t- oo,
m=0

where Re (rm) -oo. If mf is defined by (4.9) and if no r -1,-2,..., then

(4.11) F//](s) Z cr(r + 1)s -r-,-x + [Mf](n + 1)(-s)"/n!.
m--O n--0

Proof. By Lemma 4 we find that Mf2 has singular points only at z -rm
for m 0, 1, 2, ..., and that these are all simple poles with residues --Cm. Thus
the expansion follows by Corollary 5.1 as in Corollary 2.2.

Example 4.2. For any real v let

(4.12) f(t) (1 + t2) 1/2

and note that Corollary 5.2 applies whenever 2v - integer, since

(4.13) f(t) 2v-1 E t-2m t-- O0
m=O /11

Then by definition (4.9), Mf can be shown meromorphic in z for 0 < Re (z),
with poles at z=2m+ 1-2v, m=0,1,2,..., and Mfcan be shown mero-
morphic in v for complex v, with poles at v m + (1 z)/2 for each .fixed z.
However if Re (v 1/2) < 0 < Re (z) < Re (1 2v) then the integral for [Mf](z)
converges to yield [1, (6.2.1)]

(4.14) [Mf](z) r(1/2z)r( - v)/r(1/2- v),

so that for all other v (4.14) holds by analytic continuation except at the singular
points. Thus by Corollary 5.2, for 2v - integer,

[Lf] (s) r(2v 2m)s2m- zv

m=O m
(4.15)

+ 2 r(1/2n + 1/2)r(-1/2n- v)(-s)"/r(n + )r(1/2- v).
n--O

In particular (4.15) holds for v > 1/2 although [Mf](z) then converges nowhere.
However [1, (12.1.8)], for all v > -:,

(4.16) [Lf](s) 1/2r(k)r(v + 1/2)(s/2)-V[Hv(s) Yv(s)],

where H(s) is the Struve function and Y(s) the Bessel function of second kind.
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Finally, when the standard series for these functions [1, (12.1.3)], are inserted into
(4.16), we obtain agreement with the expansion (4.15).

The form of our conclusions suggests that they might also hold for suitable
generalized functions, but an optimal result of this kind would require a corres-
ponding generalized theory of Mellin transforms [11, Chap. 4]. That is, we would
need to introduce suitable Mellin test functions on [0, oo), and to obtain a space
of generalized functions f, growing slowly at 0 and oo, for which Mfcould be
conveniently defined. Such a theory will not be developed or utilized here; but
for a limited class of generalized functions we can obtain directly the following
extension of Corollary 5.1.

COROLLARY 5.3. Let f(t) be a generalized function on [0, ) which is locally
integrable outside a compact interval [z, fl] in (0, ) and is a finite linear combination
of functions with asymptotic form (3.18). Then Mf satisfies the assumptions of
Theorem 2, whence Lfsatisfies the conclusions of Theorem 5.

Proof. By hypothesis f g + h, where g is a function of the kind treated in
Corollary 5.1 and h is a generalized function with support contained in [, fl].
Thus, by linearity, we need only prove that the expansion by moments is valid for h.
However, a well-known theorem [8, p. 91], states that h is the nth derivative of a
continuous function H for some nonnegative integer n, where H may be assumed
the zero function on [0, 0) and a polynomial of degree n 1 on [fl, ). Thus

(4.17)
[Mh](z) t-lh(t)dt

Now the integral on [, fl] is absolutely convergent for any z, while the integral
on [fl, oo) yields a rational function of z with poles at z 1,..., n, all of which
are canceled by the factor (1 z)... (n z). Hence Mh is holomorphic on the
entire z-plane, and satisfies the assumptions of Theorem 2. Finally, Theorem 1
holds for h, since the Parseval theorem may be used to define Mh [6, pp. 166-168],
[8, p. 250], so that the expansion of h may be obtained from Theorem 2.

In Corollary 5.3 we could prove by a different argument that the expansion
of Lh by moments is actually convergent, but this must then be combined with
an expansion of Lg which, we have seen, may be no more than asymptotic. Obvious
examples for Corollary 5.3 are the finite derivatives of any delta function or any
H(t), but these have few novel features and will not be considered here.
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of helpful conversations with Professor M. L. Cartwright concerning the results
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ON THE HAHN POLYNOMIALS*

M. WAYNE WILSON-

Abstract. The Hahn Polynomials are discrete analogues of the Jacobi polynomials. Here we try to

ascertain the depth of the analogy, by examining the relation between these two sets. We also obtain
bounds on the integral of the Hahn polynomial which corresponds to the Legendre polynomial.
The paper contains certain implications for least squares curve fitting applications.

1. Introduction. The Hahn polynomials

Q,(x o, fl N + 1) 3F2(-n,-x,n + o + fl + 1;0 + 1,-N; 1),

for 0 =< n __< N are a discrete analogue of the Jacobi polynomials,

P,(x;o,fl) =_ 2Fl(-n,n + o + fl + 1;0 + 1;(1 x)/2).

(In our normalization, P,(1, , fl)= 1. The conventional polynomial P’)(x) is

{n + Olp(x;,, fl).) Karlin and McGregor [4], whose notation we will generally

follow, give several properties of these polynomials, including the relation,

(1.1) lim Q(Nt; , fl, N + 1) P(1 2t; ,, fl),

uniformly on compact sets of the complex plane. For computing applications, the
discrete orthogonality relation of the Hahn polynomials,

N

(1.2) Q,(x , fl, N + 1)Qm(x o, fl, N + 1)p(x) 0, m 4 n,
x=0

where

p(x) p(x o, fl, N + 1)
N + + fl + 1)N

is preferable to the continuous relation,

(1.3) j t(1 t)tP,,(1 2t; , fl)Pm(1 2t; , fl)dt O, m v n,
0

of the Jacobi polynomials. We note also that the polynomials, Q,,(x; 0, 0, N)
Q,,(x;N), are the classical Chebyshev or Gram or "orthogonal" polynomials

used in least squares approximation of data over a set of N equidistant points; see
Jordan [3], for example.

Received by the editors May 22, 1969.
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In 2, we examine the relation between the two sets of polynomials more
closely than is expressed by (1.1). We develop and examine the asymptotic (in N)
series,

(1.4) Q,(Nt’, a, fl, N + 1) P,(1 2t’, a, fl) +
q(t,n’a, fl)

k=l

and use this to examine how well the Hahn polynomials satisfy the orthogonality
relation of the Jacobi polynomials.

There is an immediate application of this result to data analysis. Let f(t) be
continuous on [0, 1], and consider its Fourier series development in the natural
inner products suggested by (1.2) and (1.3), given by

(1.5) f,(t) aP(1 2t;a, fl),
j=0

(1.6) F,(t) AjQj(Nt; a, fl, N + 1), N >= n.
j=0

It is quite evident from the analysis shown here, that if F,(t) is expected to mimic the
properties of f,(t), as is reasonable to suppose from (1.1), one should take N at
least n2/2.

In 3, we obtain bounds on the integral

(1.7) I,,(N + 1)= Q,,(x,N + 1)dx,

which, in addition to reinforcing the above conclusions, are used in Wilson [7],
where it is shown that a sufficient condition that there exists a quadrature formula,
of degree n, involving N equidistant points, is that N >= Cln2, C1 a constant. For a
different constant, the same condition is also shown to be necessary.

The author gratefully acknowledges the constructive criticism of R. Askey of
an earlier version of this paper. In particular, he suggested the use of asymptotic
series (1.4), stating the formula,

Qn(Ut;,fl, U + 1)
(1.8)

P,(1 2t; a, fl) + t(t- 1) d2

2N dt2
P"(1 2t; , fl) + O(N- 2).

2. Asymptotic (in N) expansions. Our first task is to develop the series (1.4).
Since many classes of orthogonal polynomials on discrete sets are similarly related
to known classical polynomials, the methods may be applied elsewhere.

Let
(-n)(n + + fl + 1)

(2.1) T(n, a, fl)
(1 +

where (a)o 1, (a) a(a + 1)... (a + k 1).
Then, from the definitions as hypergeometric series,

(2.2) P,(1 2t;a, fl) T(n, , fl)t
k=0
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and

fl)(--Nt)k(2.3) Q,(Nt;a, fl, N + 1) Tk(n, a,
k=O (--N)k

LEMMA 2.1. If (--Nt)k/(--N)k 0N-b(t, k), then
min(a,k)

(2.4) O(t k) E S(kk- j)(_f(k-1) k-J
k+a-j-

j=O

where S(k) and 5f are respectively the Stifling numbers of thefirst and second kind.

Proof. First,

(--Nt)k (Nt)(Nt 1)... (Nt k + 1)
N)k N(N 1)...(N-k+ 1)

From Abramowitz [1, pp. 824-825] we have
k

x(x- 1)...(x-k+ 1)= StkI)X
j=O

and

1 E ’c’Pm)Xi-m(1 x)(1 2x)... (1 mx) i=m

Substitution and rearrangement gives the desired result.
LEMA 2.2.

(i) Po(t,k) k,

(ii) /1(t k)-
--t(1-- t)DEtk

2

(iii) 2(t k)= t(1 t){t(1 t)D4

8 3

where D =_ d/dt.
Proof. From Jordan [3, Chap. 4], we have

S 1, Sf(_-() 1,

(1 2t)D3 D_2_ tk+

S(kk-1)

S(kk- 2)__ 3 + 2 (-
3 (k+ II 3 +

4

Substituting into (2.4), and using "operator" formulas like

fo D k

r!

k+l
3

we obtain the above expressions.



134 M. WAYNE WILSON

COROLLARY 2.2.1.

Q,(Nt;a, fl, N + 1)- P,(1 2t;,fl)-
t(1 t)D2

2N
P.(1 2t;a, fl)

t(1-t){.t(1-t)D4 (1 2t)D3 D2}(2.5) + N2 8 +
3 2

P"(1 2t, a, fl)

+O(N- 3).

Proof. The proof follows immediately from (2.2), (2.3), (2.4), and the lemma.
Further terms could be developed, but even the third term requires a large

amount of calculation. However, it is worth pointing out that further terms could
be developed using a computer and a symbol manipulation routine.

From (2.5), it is clear that, for N large, Q,(Nt; a, fl, N + 1) P,(1 2t; , fl).
But Q.(Nt; a, fl, N + 1) is defined, for given n, a, fl, for N In, ). If we let a fl,
and n 2m, then Q,(1/2N; a, a, N + 1) is, by symmetry conditions, a local extremum
of Q,(Nt;a, a, N + 1). Evaluating (2.5), we obtain

n(n + 2 + 1)Q.(1/2N; , o, N + 1) P,,(0; e, e) 1 +
2N

I (n-2)(n+2a+ 1)-41}+O(N_3)1 +
4N

where

P.(0, , ) (-- 1)ran! I-’(1 + a)
2"m! F(1 +a+m)"

For Njust larger than n, the higher order terms swamp the first term. In fact, N
must be approximately n(n + 2 + 1)/2, in order that the second term be of the
same order of magnitude as the first term. Thus, it would appear that in practical
applications, if we want Q, to resemble P, we should take N at least n2/2, or larger.

The above is a one point comparison. We can obtain a global estimate of how
well Q, approximates P, by considering the integral

I,(a, fl, N + 1)=_ t(1 t)tQ,(Nt, a, fl, N + 1) dt,

recalling that, for n >= 1, the corresponding integral of P,(1 2t; , fl) vanishes, by
orthogonality.

For this computation, we require the following formulas" Szego [6, (9.4.1)],

(1 2=+/+1F(1 + )F(1 + fl + n)r(n + ).+ x)$p=+ ",)(x) dx
F(2 + + + n)F(o)n

Erd61yi [2, 10.8, (32)],

xp,, + 1,t)(x p,, + 1,fl)(x

(2 + a + fl + n)
[(n + 1)P,)(x)- (1 + a + n)P.’t)(x)]
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Erd61yi [2, 10.8, (17)],

d
(. (1 + a + fl + n)mp( + m,t + m)(x);dx,.P.. ’)(x)

2

Erd61yi [2, 10.8, (37)],
pt,,m(x pt,+- ’)(x) -,+lot+ 1,re(x).

We define the operator R,{f(a, fl)} f(a, fl) + (- 1)"f(fl, a).
Integrating (2.5), we obtain

I.( fl N + I)
J"(’ fl) K.(, fl) ()N + N2 +O

where
-nF(1 + a)

J.(, )
2F(1 + + n)F(1 + + fl + n)

R"F(2 + + +

nF(1 + ) FK.(, )
r(1 + + n)r( + + + n)R" (2 + )(1 + + 8)

In particular, we have, for n even, n >__ 2,

N + 1)=
-n!(1 + 00IF(1 + )]2 II.(’’ F(1 +2+n)N _1 +

and

I.(O,O,N + 1)= 1 + 6-------
By symmetry, I.(a, a, N + 1) 0, for n odd.

(2- 3)n(n + 2 + 1)
12N

+O

n=>l,

Again, we see that N, the number of points considered (less 1) should be much
larger than the highest degree polynomial considered, in order that Q. be like P..

As a final check, we compute the inner product of Qm and Q. for fl 0. In
this case

Qm(Ut;U + 1)Q.(Ut; U + 1) dr
0

+ + +o-
[_ n(n+l)+m(m+l)+

6N2

O,
for comparison against

Pro(1 2t)P,(1 20 dt
0

n=m,

+0 ,ng:m, n / rn even,

n + modd,

2n+l"
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For m n- 2, where n is the highest degree being considered, [n(n + 1)
+(rn)(m + 1]/6 (n2-n + 1)/3, so that again, we would need N >= n2/3 in a
practical problem, if we expect the polynomials Q, to imitate the behavior of the
P, set.

3. Bounds on the integral of Q,(x;N + 1). In this section, we bound the
integral

I,(N + 1)= Q,(x; N + 1)dx N Q,(Nt; N + 1)dt.

By symmetry, for n odd, I,(N + 1) 0. For even n, n >__ 2, we show that

(n 1)(n + 2) N+I I (n-1)(n+2) 1 1(3.1) 1 +
6(N + 1)

< -I,(U + 1)< 1 +N 6(N 1) 1

where, on the right, 1 + N __> (n + 1)2/3x, z (0, 1). We already have the asymptotic
behavior

n(n + 1)(1)-I,(N + 1)= 1 + 6N
+O

P.(1-2t)= (--1)k
k=0

and we rewrite (2.2) and (2.3) as

and

,=o k (--N)k"

Direct integration of (3.2) is not very fruitful; however, we do have the exact values

N
Io(N + 1)= N, I2(N + 1)-- N-I’

N[3N2 8N + 18]
I,(N + l)=

3(U 1)(U 2)(N 3)"

LEMMA 3.1. For n even, n >= 2,

(3.3) I,(N+ 1)

_
where p(x) (1 + x)(N x).

d/(x)Q,_ x(x 1,1, N) dx,

Proof. Levit [5, (43)] gives the recurrence relation

-NQ,(x;N + 1) (1 + x)(x N)Q,_I(x; 1,1,U)

x(x N 1)O._ (x 1;1,1, N).
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Integrating both sides, from 0 to N, we have

NI,(N + 1) t(x)Qn_ (x 1,1, N) dx

x(x-N- 1)Q,_(x- 1;1,1,N) dx.

Changing variables in the second integral, x x 1, we obtain

-NI,,(N + 11 9(x)Q_,(x; 1,1,N)dx /(x)Q_,(x; 1,1,N)dx.
-1 -1

For n even, using the symmetry of (x), and antisymmetry of Q,_ x(x; 1, 1, N)

about 1/2N, we obtain -NI,(N + 1)= 2 O(x)Q,_ x(x; 1, 1, N)dx, which com-

pletes the proof.
We now write

(3.4) A,,(N + 1) 0n_l(-1; 1, 1,N),

and

(3.5) B,(N+I)=-Id-Q,_l(X’l1, ,N)] x=0
LEMMA 3.2. For n even, n >_ 2,

A,(N+ 1)- 1]B,(N + 1) N+I
1+(3.6) 1 +

3
< -I,(N + 1)< N 3

Proof. Q,_ x(x; 1, 1, N) is an orthogonal polynomial with respect to an inner
product which is a weighted summation over the integer points 0, 1, ..., N 1.
Hence, its zeros lie in the interval (0, N 1). Thus, on [- 1, 0], Q,_ x(x; 1, 1, N) is
convex, and decreases monotonically from A,(N + 1) at -1, to Q,_ (0; 1, 1, N)

1. Hence we have the bounds [1-B,,(N+ 1)-x] =<Q,_(x;1,1, N)=< [1
+(1 A,,(N + 1). x)].

For a constant K,

f.o 3N+l I2N+ 11(1 Kx)O(x) dx + K_
6 2

so that

o N NB,,(N + 1)
(1 B,(N + 1). x)d/(x) dx > - +_

6

and

(1 + (1 A,(N + 1)x))d/(x) dx <
N+I N + 1

[A,(N + 1)- 1].
6

Lemma 3.1. implies the result.
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From (2.1) and (2.3), we have

(3.7) Q,(x;1,1,U/ 1)= tk(n,U+ 1)
k=0

where

(3.8) t(n, N + 1)

Immediately, we have

(3.9)

On the other hand,

d
dx

so that

(-x)(-x + 1)..-(-x + k- 1)
k

n+k+2)k
(k+ 1)

n-1

A,(N + 1)= t(n- 1,N).
k=O

(-x)(-x + 1)... (-x + k- 1)1=o
(3.10) B,(N + 1)= ,_-1 t(n 1,N)

-(k 1)!

From (3.10), we obtain two lower bounds on B,(N + 1), namely, x(n 1, N)
and t,_ l(n 1, N)/(n 1), which, with (3.6), gives

(3.11) -I,(N + 1) > 1 +
and

(3.12) -I,(N + 1)> 1 +

(n- 1)(n+2)
6(N 1)

2n)
3n(n 1) N-l)"n 1

It is clear from (3.12), for N just larger than or equal to n, that -I,(N + 1)
is very large. For N __> 2n + 1, however, (3.11) is the more appropriate bound. In
order to obtain an upper bound, we require an upper bound on A,(N + 1).

LEMMA 3.3. For n >= 2, and for a (0, 1),

(n / 1)2 tl(n 1, N)
(3.13) N + 1 > implies A,(N + 1)<

3a 1 a

Proof. From (3.7),

A,+I(N+2) t(n,N+ 1)
k=0

1 + t(n,N + 1)I1 + RiRi-IR.
i=1
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where

R(n, N + 1)=

The ratio

t, + (/’/, N + 1) (n k)(n + k + 3)
tk(n, N + 1) (k+2)(N- k)

k= 1,2,...,n- 1.

rk(n,N + 1) R+ l(n, N + 1)
R(n,N + 1)

(n-k- 1)(n +k+4)(k+2)/
(n-k)(n+k+-)(k+ 3) 1 +

1
N-k-1

k= 1,2,...,n-2,

is monotonic decreasing with increasing N, for fixed k, n. Thus

ra(n, N + 1) < ra(n, n) (k + 2)(n + k + 4)
<1,

(k+ 3)(n+k+ 3)

k= 1,2,...,n-2, n>=0.
Hence, Rl(n N + l) > R2(n, N + 1)> > R,_x(n, N + 1), and

n-1

A,+I(N + 2)_<_ 1 + tx(n,N + 1) [RI(n,N + 1)]k.
k=0

Now, for a e (0, 1), n >__ 1, N + 2 >__ (n + 2)2/3a implies Rl(n, N + 1) __< , so that,
by summing a geometric progression, using < 1, we have

(n + 2)2 tl(n,N + 1)
N+2> implies A, + (N + 2) =< 1 +3 1

which gives the lemma.
The right-hand side of (3.1) is immediately obtained from (3.6) and (3.13).

In particular, N + 1 >__ (n + l)2 implies

(n- 1)(n + 2)](3.14) -1,(N+ 1)<N+ 1
1 +N 4(N 1)

Although we have obtained an upper bound on 1,(N + 1) for N in the range
In, (n + 1)2/3], we will not give it here. In this range, it is the lower bound, indicating
the large size of -I,(N + 1), which is important.
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SOME EXAMPLES OF SINGULAR PERTURBATION PROBLEMS
WITH TURNING POINTS*

FRED W. DORRt

1. Introduction. In this paper, we consider the asymptotic behavior as
e 0/ of solutions y(t) y(t, e) to boundary value problems of the form

(1)
ey"(t) + tdp(t)y’(t) O, a < < b,

y(a) A, y(b) B,

where a < 0 < b. We assume that tdp(t) is continuous, b(t) is bounded, and either
()(t) ()1 < 0 or )(t) ()2 > 0 for a =< b. Thus (1) has a simple turning point
at 0 (see [3], [5] and the references in these works). These problems are closely
related to recent work of O’Malley [4] and Dorr and Parter [1].

In 2 we treat the case b(t) < 0. We will show that, under appropriate con-
ditions,

lim y(t,e)= y:, a < < b,
--0

and, by choosing 4)(0 properly, y can be any value between A and B.
In 3 we consider the case 4(t) > 0, and then

A a<t<O
lim y(t e)=
o+ B, O<t<=b.

This result can also be extended to quasi-linear equations of the form

(2)
ey"(t) + tkF(t, y(t))y’(t) O,
y(a) A, y(b) B,

a<t<b,

where 0 < F1 = F(t, y) <= F2 and k is a positive odd integer.

2. Linear examples. In the remainder of the paper we assume, without loss of
generality, that A < B. If A > B we can apply this analysis to the function -y(t),
and if A B we would have only the trivial solution y(t, ) A, which we do not
want to consider. For convenience, we will use the function

q)(t) xck(x) dx.

The solution to (1) is then given by

(3) y(t, ) A + (B A) Eq)(x, e) d Eq)(x, ) dx
-1

* Received by the editors July 8, 1969.
]- Los Alamos Scientific Laboratory of the University of California, Los Alamos, New Mexico

87544. This research was supported by the United States Atomic Energy Commission under Contract
W-7405-ENG-36.
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where

Eq(x, e) exp -!q(x)).
THEOREM 1. Assume that q(t)e Cl[a, b] fl C2[a, 0] f’l C2[0, b]* satisfies:

(i) (p(a) q0(b)= 0,
(ii) (p(t)>0!fa< <b,
(iii) [q’(a)]2 + [q/(b)]z > 0.

If y(t) y(t, ) is the solution to

(4)

then

ey"(t) + q)’(t)y’(t) O,

y(a) A, y(b) B,

lim y(t, e)
eO

where

Eq)(x, e) dx

a<t<b,

a<t<b,

-1

Using conditions (i) and (ii), it is easy to show that there exist two constants

Ci Ci(6) > 0 such that

0<= B- A
(y(b 6) y(a + 6)) <_e exp

lim (y(b 6, e) y(a + 6, )) O.
e-.O

for 0 < e =< eo. Thus

Therefore, we can conclude that there exist a sequence e, 0 + and a constant
e [A, B] such that

(6) lim y(t, ,) y, a < < b.

Integrating (4) by parts, we obtain

(7) e(y’(b, e) y’(a, e) Atp’(a) Bq)’(b) + q)"(x)y(x, e) dx.

Since 0(a) q0(b), from (3) we see that y’(b, e) y’(a, e). Thus we can let e en 0
in (7) to find that

0 Aq)’(a)- Bq/(b) + y(q/(b)- (’(a)).
*We will use this notation to mean that (p(t)eCl[a,b] f-)C2[a, 0)f-)C2(0, b], and both

limx-O- (p"(x) and lim,o+ (p"(x) exist.
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Frorn conditions (i) through (iii) we have q’(b) 4: qg’(a), so that y is given by (5).
Since y is unique, (6) remains valid for all sequences e, 0 /, and this completes the
proof of Theorem 1.

Example 1. By letting a -b and qg(t)= 1/2(b2- t2), we find that, if y(t)
y(t, ) is the solution to

y"(t)- ty’(t)= O, -b < < b,

then
y(-b)=A, y(b)=B,

lim y(t,e) 1/2(A + B), -b < < b.
e-.O

Example 2. On a nonsymmetric interval, we can use the function

--(a2 t2), a < O,
99(0

(b2 t2), 0 <=,t <= b,

and then
1 I(bA aB).

b a

We now show that the constant y in Theorem can be any value in the
interval [A, B].

THEOREM 2. Let 7 6 [0, 1] be given. Then there exists a piecewise continuous

function dp(t), which is linear on [a, O) and [0, b] and satisfies dp(t) <= c/)1 < 0 for
a <= <= b, such that

lim y(t, )= yA + (1 /)B, a < < b,
E--0

where y(t, e) is the solution to (1).
Proof Given parameters z > 0 and fl >= 0 with (X2 -- f12 ) 0, we want to

exhibit a function qg(t)e C l[a, b] fq C2[a, 0] ["] C2[0, b] satisfying

>0, a<t<0,

q’(t) =0, t= O,

<0, O<t<b,

and the following conditions:
(i) qg(a)= q(b)= 0,
(ii) p(t)>0ifa< t<b,
(iii) q/(a)= a,
(iv) q’(b) ft.

It is easily verified that a suitable function is:

(3da2 +z)(t_a)2d(t- a)3 +
2a

o(t)

+ a(t- a),

cb) fl)(t- b)2 fl(t- b)c(t- b)3 + 2b

a<=t<=O,

O<_t<b.
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Here c is any constant satisfying

c > max

and

If we now define

1
-u,’(t), # o,

(t)
lim lip’(x), 0,

x--*O X

then from Theorem 1 we have

limy(t,e)== xfl)A+e--’O A-

Thus we have only to choose and fl such that

7= cz+

No

3. Quasi-linear examples. Let y(t) y(t, e) be a solution to a quasi-linear
boundary value problem of the form of (2). We assume that, for a =< =< b and
A _< y __< B, we have"

(i) tkF(t, y) is continuous,
(ii) IF(t, Y)I <= FM < , and either F(t, y) =< F_ < 0 or F(t, y) >= F+ > O,
(iii) k is a nonnegative integer.

It is well known [2] that there exist bounding functions z (t, e) and z2(t, e) such that

Zl(t,g) =< y(t, e) <= Zz(t, e,), a <= <= b.

Specifically, if F1 <= F(t, y) <= F2 with FIF2 > 0, we define the following functions"

k even G l(t) F1, a =< =< b,

k odd

G2(t) F2, a =< =< b,

F2, a<=t <=0,
Gl(t)=

F1, O<t<=b,

F1, a<=t <_0,
Gz(t)=

F2, O<t<=b.
Then zi(t, ) can be defined as the solution to the boundary value problem

ez’(t) + tkG(t)z(t) O, a<t<b,

zi(a)-- A, zi(b) B.
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(8)

We therefore now consider problems of the form

ez"(t) + ttP(t)z’(t) O,

z(a) A, z(b) B,
where

W(t)
W2, O<t<=b,

a<t<b,

Case 2. If k is even and W(t) < O,
lim z(t, e) A,
e--0

a<=t <b;

Case 3. If k is odd and tiff(t) > O,

lim+ z(t, e)
A, a<=t<O,

O<t<b.

Remark. Cases 1 and 2 reflect the fact that, for k even, the point 0 is not a
turning point for the differential equation, since the function tkw(t) does not change
sign at 0. Case 3 corresponds to the general condition b(t) >= thz > 0 in (1).
Note that this is the opposite of the cases treated in 2, and the asymptotic behavior
is quite different. Also note that the conclusion for Case 3 holds when the order of
the zero at the turning point is of an arbitrary (odd) degree.

COROLLARY. Let y(t) y(t, ) be a solution to (2). Then we have:
Case 1. Ilk is even and F(t, y) > 0,

lim y(t,e)= B, a< <=b;
e-,O

Case 2. If k is even and F(t, y) < O,

lim y(t, e) A,
e--- 0

a<=t<b;

Case 3. If k is odd and F(t, y) > 0,

lim y(t,e) =A’ a <= <0,
(9)

-o+ (B, O<t<_b.

As a consequence of Theorem 2, we know that the asymptotic behavior of
z(t, e) in the case k odd, W(t) < 0, cannot be independent of tg and W2. Indeed,
we have the following interesting result.

and W1Wz > 0. If k 0 we require that W1 klJ2, SO that the function tkt!fl(t) is
continuous for all values of k. In many cases, it is possible to determine the
asymptotic behavior of y(t, e) because z(t,e) and Zz(t, e) converge to the same
limiting function. For example, this technique is applicable when the solution
z(t, ) to (8) converges to a function that is independent of tgl and W2. The next
result gives several examples of this.

THEOREM 3. Let z(t) z(t, e) be the solution to (8). Then we have"
Case 1. If k is even and tP(t) > O,

lim z(t,e)= B, a < <=b
e--.0
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THEOREM 4. Let z(t)= z(t, e) be the solution to (8) with k odd and P(t) < O.
Then, for a < < b, we have:

2

I a) (aa) I !)k+lim z(t, e)
b P

o+ b
A + b

B
2

B,
W2

>

The proofs of Theorems 3 and 4 follow by direct computation, and hence are
omitted.

Two conclusions can be drawn from these results. First, the use of bounding
functions is, in general, not applicable to the case k odd and F(t, y) < 0. Second,
for k odd, there is a fundamental difference between the cases W(t) > 0 and (t) < 0:
if (t) > 0, the asymptotic behavior is very regular (cf. (9)), whereas if(t) < 0 the
asymptotic behavior can be quite arbitrary (cf. Theorem 2).

Acknowledgment. I am grateful to Professor Seymour V. Parter for many
helpful ideas related to the results in this paper.
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ERROR BOUNDS FOR ASYMPTOTIC APPROXIMATIONS OF
ZEROS OF TRANSCENDENTAL FUNCTIONS*

HERBERT W. HETHCOTE"

1. Introduction. Precise error bounds on asymptotic approximations are
useful both theoretically and numerically. In this paper general theorems are
presented which show how error bounds for the asymptotic approximation ofboth
real and complex zeros depend on error bounds for the asymptotic approximation
of the functions. There are many possible applications of the general theorems in
addition to those in this paper 33.

2. General theorems. F. Tricomi 10] pointed out that the asymptotic behavior
of the zeros of a transcendental function can be deduced from the asymptotic
behavior of the function itself. Tricomi’s method uses the Taylor series repeatedly.
L. Gatteschi has used the intermediate value form of the Taylor series remainder
to obtain error bounds on the asymptotic approximations of real zeros. New
applications of the following theorem and corollary derived from his method 2
are given in 3 and 4.

THEOREM l. In the interval [b p, b + p], supposef(x) g(x) + e(x), where

f(x) is continuous, g(x) is differentiable, g(b) 0, m min Ig’(x)l > 0, and

E max le(x)l < min {Ig(b p)l, Ig(b + p)l}.

Then there exists a zero c of f(x) in the interval such that Ic b[ <= Elm.
COROLLARY 1.1 In the interval nn p, nn + p-l, where p < n/2,

suppose f(x)= sin (x + ) + e(x), f(x) is continuous and E max le(x)l < sin p.
Then there exists a zero c off(x) in the interval such that [c (nn )[ <- E/cos p.

The next theorem summarizes another result of Gatteschi [1.
THEOREM 2. In the interval [nn- d/ p, nn k + p] where p < n/2, suppose

f(x) [1 + g(x)] sin (x + 0) + h(x)cos (x + d/) + e(x),

where ]h(x)] < 1, g(x) > 1, and

max I(x)l + max Ig(x)h(x)l + 1/2 max Ih(x)l
<1o

1 + rnin g(x)

If c, denotes a zero of f(x) lying in the interval, then

[c, + h(c,) (nn 0){ =< # 2 + (1/2n 1),3

Received by the editors March 18, 1969, and in revised form September 19, 1969.
"f Department of Mathematics, University of Iowa, Iowa City, Iowa 52240. The results of this

paper constitute part of the author’s doctoral thesis written at the University of Michigan. This work
was supported in part by the National Science Foundation under Grants GP7445 and GP8355.

F. W. J. Olver has pointed out that Corollary can be improved by using p =< 1/2n and

]c (nn 0)1 Isin- e(c)] <_ sin- E <= Ep cosec p,

the last inequality being a consequence of the fact that sin- x/x is an increasing function when x e [0, 1].
This result does not significantly change the error bound in 3.
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Moreover if h(c.) k/c., where k is a constant and c. > O, then

-(n ) =<(n-0)c. + l+(n_6)c
Our final general theorem concerns complex zeros and appears to be new.
THEOREM 3. Supposef(z) g(z) + e(z), wheref(z) and g(z) are holomorphic in

the disk Iz bl <- p and g(z) has exactly one zero b in the disk. Let m min0 Ig(b
+ pei)[, E max0 [e(b + pei)[, and m max0 [g’(b + pei)l. If m > E, then f(z)
has exactly one zero c in the disk and [c b[ <= Ep2M/m(m E).

Proof The hypothesis m > E implies Ig(b + z)l > ]e(b + z)] on the circle
Izl p. By Rouch6’s theorem, there exists a simple zero a of f(b + z) and a is the
only zero off(b + z) inside the disk Izl =< p.

There exists some R > p such that g(b + z) is holomorphic for Iz] < R and
g(b + z) :/: 0 for 0 < Izl < R. By Rouch6’s theorem g(b + t) + e(b + a) has one
simple zero inside C’ltl =p and this zero is a. Thus g(b + t)+ e(b + a)

(t a)h(t), where h(t) is holomorphic and h(a) :/: O. The residue at a of

is a. Hence

The series

tg’(b + t) th’(t)
g(b + t) + e(b + a) t-a h(t)

1 tg’(b + t) dt

2rciJc g(b + t) + e(b + a)
--a.

1

g(b+ t)+e(b+a)
[-e(b + a)]k[g(b + t)]

k=0

is uniformly convergent with respect to if Itl-- p and I(b + a)l < m(1 6),
where c5 > 0. If we multiply by the bounded function tg’(b + t) and integrate term
by term, then

a [-e(b + a)]
tg’(b + t)dt

Since g’(b + t)/g(b + t) has a pole of order one at 0, the first term of the above
series vanishes. If we let c b + a, then

Ic- bl- lal <= , Ekm+i
pzM

< Ep2M

= m(m- E)

COROt,AR 2. 2 Suppose f(z) sin (z + O) + e(z), where f(z) is holomorphic
in the disk [z (nrc O)[ <_- P < re/2. If

E max0 [e(nn 0 + pei)[ < sin p,

F. W. J. Olver has also noted that Corollary 2 can be improved using the method of footnote
since [sin-a zl -<_ sin-llzl, This result would improve the error bound in 5 by a factor of about
two.
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then f(z) has exactly one zero C in the disk and

Ic (nT )l <= Ep2 cosh p
sin p(sin p E)"

3. The negative zeros a. of the Airy function Ai(z). An asymptotic approxima-
tion of the Airy function of negative argument is

rcl/2xl/4Ai(-x) sin (( + 1/4t)P(()- cos (( + 1/4t)Q((),(3.1)

where 2x3/2/3,
5.7.9.11 9.11.13.15.17-19-21.23

(3.2) P(’) 1- +
2! 21622 4! 21644

and

3-5 7.9.11-13.15.17
Q() +

1 !216( 3 !2163(3

[4, p. B17]. It has been shown that the error in truncating the expansions for P(()
and Q(() is less than the first omitted term [12, p. 206].

Iff(() in Corollary 1 is equal to the left-hand side of (3.1), then

[e(()l =< 0.0695 -1 + 0.0372( -2.

(3.3)

In this paper, the last significant figure in decimal numbers is the result of rounding
to the nearest digit except for numbers in inequalities, which are rounded to obtain
the weakest inequality. Using ( > 2.3, p 0.04 and re/4 in Corollary 1, we
find E < sin p so that there exists a zero c, in the interval and

[c. (n 1/4z)[ =< E/cos p __< 0.086/(mz 1/4z 0.04)

if n >= 1. The assumption that ( => 2.3. is justified since c belongs to the interval
[2.32, 2.40].

If a, denotes the nth negative zero of Ai(z), then Taylor’s formula applied to

a, -(3c,/2)2/3 yields

a, -[-c(4n- 1)]2/3(1 + e,),

where

le.I =< O.130[--rc(4n- 1.051)] -2

for n 1. This bound on e, is quite good since 0.130 is only slightly greater than the
coefficient 5/48 of the next term in the asymptotic expansion of a, (see [4, p. B48]).

Ifwe apply Theorem 2 with the left-hand side of(3.1) as f((), the second term of
(3.2) as g((), and the first term of (3.3) as -h((), then

]e(()] 0.0577 -4 -F 0.0380 -3.

If we use p 0.04 and => 2.3, then Ih(C)l 1, g() > 1 and

2 =< 0.222[-rc(4n- 1.051)]-3 1

for n >= 1. Using the known existence of a zero c, in the interval and k 5/72 in
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Theorem 2, we have

5
c,

72(nn 1/4n)
forn > 1.

Taylor’s formula applied to a, -(3c,/2)2/3 yields

5/48
a, [n(4n 1)] 2/3 1 + [.-n(4n 1)] 2

where

(nn 1/4n) __< 0.243[-n(4n 1.051)] 3

le,[ < 0.256[-n(4n 1.051)] 4

for n > 1. The constant 0.256 in the error bound is less than twice the coefficient
5/36 of the next term in the asymptotic expansion of a, (see [4, p. B48]).

4. The first positive zero Jv, of Jv(z). To obtain error bounds on the uniform
asymptotic approximation of the Bessel function J(vz) for large real v, we use the
results of Olver [8, pp. 206-210] except that we apply Theorem 1 of [7] instead of
Theorem 1 of [8]. We obtain

(4.1) (1 z2) 1/4 eF(v + 1)J(vz)= ni(v2/3)
Vv+ 1/621/2

where

(4.2) le(u)l =< 0.700[et’’3v(") 1]M(u).

The quantities z(), F(u) and M(u) are defined in [7, pp. 750-751]. From [6, p. 9 we
find F(v2/3) <= 0.2103/v.

Let us now apply Theorem 1 with v2/3 as the independent variable, f(v2/3)
equal to the left-hand side of (4.1), g(v2/3)= Ai(v2/3), b at -2.33811 [4
and p 0.17 Now v2/3 <= b + p implies M(v2/3) <- 0.47 (see [7, p. 752]). These
values yield E _<_ 0.116 if v _>_ 1. From tables of Airy functions [4], we find
m > 0.67600 and

min {]ai(at P)I, Iai(at + p)l} >- 0.117.

Hence v2/3 at + 6, where

]gi] __< 0.486e.32/ 1] =< 0.21/v

forv > 1.
Now Jv, vzt, where

Z 1 z-113l + 1/2lZ"(0)
with 0 as some intermediate value [5, p. 336]. If we use t (at + i)v -2/3, then

J,t v at + v-t/3[-v/32-t/3 + 1/2(at + )z"(O)

v + 1.85576v 1/3 + v-t/3.
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If v > 1, then IV2/32 1/361 0.167, 4.70 <_ (31 + 6)2 6.30 and -2.508 <_ 0 < 0.
It can be shown by analyzing the derivatives of z"(() that z"(() is an increasing
function of ( (see [3, pp. 85-88]) and, consequently, 0.284 __< z"(O) <__ 0.378. Combin-
ing these inequalities, we find 0.500 =< __< 1.357 for v >__ 1. Similar reasoning
yields 0.935 _< cz _< 1.105 for v >= 10 (see [3, p. 21]). These bounds on are reason-
able since the coefficient of the v-1/3 term in the asymptotic expansion of jr,1 is
1.03315 (see [11]).

5. The complex zeros Jr,, of Jv(z). An asymptotic approximation for the
Bessel function J(z) is

(5.1) (nz/2)l/2J,,(z) sin (z 1/2vn + 1/4n) + e(z),

where

14V2- 1] Z]4V2- 11(5.2) Ie(z)l <= [[eiz-i"’/2l + 1/2nie-iz+i’/2[-I exp
81zl 8lzl

for larg zl _-< n/2 (see [9, p. 179]). In this application of Corollary 2, let f(z) be the
left-hand side of (5.1) and -1/2vn + 1/4n. If Re(z) >__ 0 and z -# 0, then f(z) is
holomorphic. If we choose p 0.2, then ]z (nn q)] __< p implies

and

]z[ n(n 0.314 + 1/2Re v)

1.0014v2 II I 14v2-11 ](5.3) E __<
8(n 0.314 + 1/2Re v)

exp
8(n 0.3- - 1/2Re v)

Let us find how large n must be to imply that the right-hand side of (5.3) is
less than 0.1. Now y <= k/(1 + k) implies y exp y <= y/(1 y) <= k. Thus we need

14v2- 11 0.1
Y 8(n 0.314 + 1/2Re v)

<
-(1.1)(1.00)

which is equivalent to

(5.4) n >__ 0.314 1/2Re v + 1.38[4v2 1[.

Now [z (nn /)1 <= P and (5.4) justify our assumption that Re(z) >= 0. If (5.4)
holds, then E < sin p so that f(z) has exactly one zero c in the disk. Since Re(z) _>_ 0
and z -# 0, c is a zero of Jv(z), which we denote by j,,. Hence (5.4) implies

0.9014v2 11
]j,,,- (nn- vn/2- n/4)l <= n(n 0.314 + {-Re v)"

The constant 0.90 in the error bound is considerably greater than the coefficient 1/8
of the next term in McMahon’s asymptotic expansion for j,, (see [12, p. 507]). An
error bound on the two term McMahon asymptotic approximation ofj,, is given
in [3, pp. 34-38].

Acknowledgment. The author is grateful to Professor N. D. Kazarinoff for
guidance during the development of this research.
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SIMPLE TURNING-POINT PROBLEMS IN UNBOUNDED DOMAINS*

WOLFGANG WASOW?

Abstract. Differential equations of the form e2U" p(X)U, where p(x) is a polynomial, are reduced
to Airy’s equation by linear transformations ofthe dependent variable that admit asymptotic expansions
in powers of e. It is shown that such transformations may either be required to be valid in bounded
regions containing one simple zero ofp(x) (Condition L) or to be doubly asymptotic, as 0 or x ,
in certain unbounded domains (Condition F). These conditions are shown to be, in general, incompati-
ble. Asymptotic connection formulas between the distinct fundamental solutions obtained by these
two methods are derived which permit the continuation into the zeros ofp(x) of the asymptotic evalua-
tion for solutions based on Condition F.

1. Introduction. The best known of the so-called turn&g-point problems is
concerned with the properties, as e- 0+, of differential equations of the form

(1 1) ;2d2u- p(x, )u 0

in regions of the complex x-plane where p(x, 0) has zeros. Many of the essential
features of this problem are present even in the simple case that p(x, e) p(x) is
a polynomial, independent of e. To avoid secondary, primarily technical difficulties
this assumption will here be adopted.

I shall be primarily interested in regions of the plane that contain exactly
one turning point, say x xl. A decisive restrictive condition will be imposed:
this turning point is to be simple, i.e.,

(1.2) p(x,) O, p’(x) O.

Under this assumption it is possible to solve the differential equation

(1.3) ;2d2u p(x)u o,

and considerably more general ones, by a combination of Airy functions and
asymptotic series in powers of e.

In many applications one is interested in the asymptotic nature of the solutions
of the differential equations (1.1) or (1.3) with respect to the passage to the limit
as x , as well as with the passage to the limit as e - 0. These two questions
are distinct but closely related, and a theory that pays attention to both simul-
taneously is especially valuable. In other words, one should aim at approximate
solutions such that the errors are small when either x is large or e is small.

It is well known that there are particular solutions of the differential equation
(1.3)--or (1.1)--which tend exponentially to zero, as x tends to infinity in certain
sectors. They are called subdominant solutions in such a sector, and they are
uniquely characterized, to within an arbitrary constant factor, which may depend
on e, by this asymptotic property. Fedoryuk [2], [3] has shown that for an appro-

Received by the editors June 5, 1969, and in revised form October 12, 1969.
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priate choice of the constant factor the resulting subdominant solution admits
a series expansion which is doubly asymptotic in the sense that the error terms
become small of increasingly high order of magnitude both in e and in x, as more
terms of the series are included. Theorem 4.3 below, which is proved in [2], gives
a precise statement. We shall refer to such solutions as being of Fedoryuk’s type.
Fedoryuk and Evgrafov have developed this result into a global theory of the
asymptotic behavior of these solutions, which is probably the most complete
such analysis in existence. It does not include, however, the neighborhoods of
the turning points.

The existence of solutions of Fedoryuk’s type implies the possibility of
transforming the given equation (1.3) into Airy’s equation by means of functions
that also have doubly asymptotic expansions as e --, 0 or x --, oe. This is proved in
Theorem 4.2 below. A formally very similar transformation was used by Langer
([4] and many other papers) and generalized by Wasow [8], [9] to transform the
given equation into Airy’s equation in bounded domains that contain a turning
point. The power series involved are asymptotic as e 0. Olver ([5], [6], etc.) has
shown that these expansions can be chosen so as to be uniformly valid even in
certain unbounded domains. The solutions so obtained do not, however, have the
convenient doubly asymptotic expansion. As all these constructions contain
arbitrary constants, it is natural to ask if they can be chosen so as to be valid in
unbounded domains containing a turning point and, at the same time, to have
the doubly asymptotic property described. Theorem 3.1 below answers this
question essentially in the negative and thus dashes the hope that the "matching"
of different solutions could be obviated in this way. By treating the two require-
ments, viz., validity at the turning point and doubly asymptotic character at
infinity, in analogous ways, the present paper attempts to make these matters
more transparent. I also believe that the matching procedure explained in 5
and illustrated in 6 is comparatively simple.

The matching could also have been based on the work of Cherry in [1],
which is based on transformations ofthe independent variable, but the computations
would be more involved. There is hope that some of the methods of the present
paper can be extended to differential equations of higher order. Transformations
of the independent variable are probably too special for that purpose.

In [7] Olver develops a theory for the approximate solution of linear second
order differential equations which does not introduce a small parameter explicitly.
Instead, solutions are constructed which differ from known solutions of simpler
equations, such as Airy’s equation, by quantities for which explicit estimates are
derived. Olver then shows how this approach can be developed so as to give
approximate lateral connection formulas for various turning-point problems. For
many applications, particularly those where the small parameter is only a mathe-
matical device to express precisely the idea of a "slowly varying" function, this is
a most appropriate procedure. For more precise requirements, such as approxima-
tions to any degree of accuracy at and away from a turning point in problems with
a physically important parameter, Olver’s technique probably involves as much
additional work as went into Fedoryuk’s theory. Moreover, as asymptotic series
in powers of x- or of e are in general use, a comparative study of different such
expansions as attempted in this paper may be of interest.
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2. Preliminary transformations. We need the analytic functions and of x

(2.1) {(x,, x) pl/2(z) dr, {(xl, x) O,

(2.2) t(x x) {(x x

Whenever no misunderstanding is to be feared, we shall replace {(x, x), t(xl, x)
by the shorter notation {(x), t(x). While {(x) has a branch point at x x, the
right member of (2.2) represents three holomorphic functions in a neighborhood
of x l, which are obtained from each other by multiplication with a cube root of
unity (see Wasow [9, pp. 161-162]). We need the following facts on the mappings
induced by these functions.

At x x,, there meet three curves on which Re {(x)= 0, forming equal
angles there. Generally speaking, any curve of the family Re {(x)= const, that
contains a turning point will be called a Stokes curve. Evgrafov and Fedoryuk [2]
have shown that the Stokes curves divide the x-plane into a set of unbounded
simply connected regions that contain no Stokes curves. They may be called
Stokes regions. In each of the three Stokes regions that abut on x x, each
holomorphic branch of {(x, x) has a nonvanishing real part. A branch of {(x, x)
in such a Stokes region will be referred to as recessive or dominant according as
Re {(x,x)< 0 or Re {(x,x)> 0 there. The mapping (2.1) takes each Stokes
region into a region of the {-plane that is either a vertical strip or a half-plane
bounded by a parallel to the imaginary {-axis. (All these facts and many related
ones are explained in detail in Evgrafov and Fedoryuk [2] .) Accordingly, we shall
distinguish between Stokes regions of strip type and of half-plane type. The example
and the figures in } 6 may be helpful.

A canonical region in the x-plane is defined as a union of two or more Stokes
regions together with the boundaries between them which has the property that
its image under a holomorphic branch of {(x, x) is the whole schlicht {-plane
except for a finite number of cuts. These cuts are images of Stokes curves and are
therefore parallel to the imaginary axis, extending from the image of some turning
point to infinity. Let us call a canonical region consistent or inconsistent, according
as these cuts in the {-plane do or do not all tend to infinity in the same direction.

We shall be primarily concerned with a consistent canonical region D having
the turning point x, on its boundary. Let {(D) designate the image of such a D
in the {-plane. The condition (x,, x) 0, together with the stipulation that the
boundary cuts of {(D) are to approach infinity in the direction of increasing
imaginary parts, determines a unique branch of the function {(x,, x) in D. Since
d{/dx p/2(x) does not vanish in the simply connected region D, the function
{(x, x) has a holomorphic inverse in {(D).

The function (}{)2/3 from (D) into the t-plane maps {(D) onto a simply
connected region consisting of a sector of central angle 4/3, bounded by two
of the three rays arc g /3, , except that the images of the boundary cuts
of {(D) other than the one beginning at { 0 have to be deleted. We specify the
branch of (}{)2/3 in (D) by requiring that the corresponding sector in the

defined by
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x))/ is now a uniquelyt-plane be 7r/3 < arg < 5rc/3. The function (23-(xl,
defined function, holomorphic in D. It can even be continued, as a holomorphic
function, into the larger domain D U K if K is a sufficiently small disk with center
at Xl. Let Rt be the image of D U K in the t-plane under the mapping t(x 1, x)

((xl, x))2/3. For K small enough this mapping is univalent and Rt is simply
connected. The inverse of t(xl, x) is then a holomorphic function in Rt.

The importance of the function t(x, x) stems from the fact--which can be
verified directly--that the transformation (2.2) takes the given differential equation
(1.3) into

(2.3)

where

e’2
d2u t- tu + ;2g(t) 0,

(2.4) g(t)=
dZx

2 - -;d2 dt -2

Thus, g(t) is holomorphic in Rt, and (2.3) can be regarded as a perturbation of the
simpler equation

(2.5) 2 t/)l 0
dt2

which is equivalent to Airy’s equation

d2
(2.6)

dz2 z 0

by virtue of the transformation

(2.7) z te-2/3.

The further simplifications of (2.3) become more transparent if (2.3) is replaced
by the equivalent system

(2.8) -= + e y [Ao(t) + eA,(t)]y,
0 -g(t)

where

(2.9) y Ao(t) A(t)
Y2 edu/dt -g(t

3. Formal reductions to Airy’s equation. Our aim is to reduce the system (2.8)
to the system form of (2.5), i.e.,

dv
(3.1) e--r: Ao(t)v,

al

by means of a change of the dependent variable of the form

(3.2) y P(t, e)v..
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This will be achieved if and only if P(t, ) satisfies the matrix differential equation

dP
(3.3) -- Ao(t)P PAo(t) + eA(t)P.

The essence of Langer’s method and its generalizations in Wasow [8], [9] is to
satisfy (3.3) formally by a power series

(3.4) P.(t)e
r=O

for P in such a way that all Pr(t) are holomorphic in a fixed neighborhood of the
turning point 0. We shall now describe a variant of the procedure in Wasow [9]
that has the advantage of leading to a unified analysis of solutions of Langer’s type
as well as of those of Fedoryuk’s type. Insertion of (3.4) for P into (3.3)and a formal
rearrangement produces the recursive sequence of equations

(3.5r) Ao(t)Pr PAo(t)
dt

-AI(t)P_x, P-1 O, r =0,1,2,...

In scalar form (3.5r) reads

pr21 tffx 2 if22 prl
(3.6r)

t(p] Pz z) tp] 2 P2
Pll p-l

r-1 r-1
P21 + gff2-1 D2-2 + gP22

Here, P, {Pk}, the dot means differentiation with respect to t, and the argument
has been omitted for brevity.

The four linear algebraic equations for the Pk, J, k 1, 2, collected in (3.6r)
are compatible if and only if the right members satisfy the same linear identities
as the left members, i.e., if

r-1
P ,1 -k- pr2-2 + gff2-2 O,

(3.7r)
t/] +/i + gvi 0

(cf. Wasow [9, p. 164]). If Pr_ l(t) has already been determined so that the compatibil-
ity conditions (3.7r) are fulfilled, then any P(t) that satisfies the two equations

(3.8r) PI lP]2 -1, P2 PI 1]-1

from (3.6r) will satisfy all four conditions (3.6r). To find the ones among these
matrices P(t) for which the next set of compatibility conditions, namely (3.7(r + 1)),
is also fulfilled we differentiate (3.8r) and eliminate P2, P. There result then the
two uncoupled linear differential equations

g 1
.-1)(3.9ra) /}1 -4- P]I -(i0] + gP12 r O, 1,

1
),(3.9rb) tiO2 + (1 + gt)p] 2 -- (f3rl-1 -+- gDrl--1 r O, 1,’’"
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To any solution p l(t), p2(t) of (3.9r) one finds then corresponding functions
pl(t), pE(t) from (3.8r). Every formal solution (3.4) of (3.3) can be obtained in this
manner. This proves the following lemma.

LEMMA 3.1. The series =o Pr(t)d is a formal solution of the system (3.3) if and
only if the entries pk(t), j,k 1, 2, r 0, 1,2, of Pr(t) satisfy the recursive
conditions (3.8r), (3.9r), where P_ =_ O, by definition.

Let us write, for abbreviation,

(3.10) q(t)=

with a fixed, but arbitrary holomorphic determination of the square root in Rt.
Then the general solutions of (3.9r) can be written, by using also formula (2.4) for
g(t),

-q(t)l fl -dp](t) cq(t) q(z)--2[]-E(’c)q- 2(z)] dr,

(3.11r)
/2 d

p]2(t) C2rt i/2q(t) -t /2q(t) Z q(z)Z[/5]S(z)q 2(’1) dz,

where Clr C2r are arbitrary complex constants and a,, 02r are arbitrary points in Rt.
The choice of the constants in (3.11r) depends on the properties we want the

solutions to possess. Two sets of conditions are of interest to us.
CONDITION L. In some disk It] __< to,
(a) det Po(t) O,
(b) all P,(t) are holomorphic.
CONDITION F. For every > 0 and for R, It] >= t,
(a) det Po(t) # O,
(b) there exist constants c,(tl) such that

(3.12) IlP(t)[[ -< Cr(tl)[t[ -, r O, 1,2, ...,
where fl is a positive constant.
These conditions lead to solutions of Langer’s or of Fedoryuk’s type, respec-

tively, as is shown below.
LEMMA 3.2. There exists a formal solution =o P(t)d of the system (3.3) which

satisfies Condition L. This solution is not unique.
Proof In (3.11r) choose aar (XZr 0 for all r; let Co 1, C2o 0, and c

c2 0 for r 1, 2, .... Then one finds

(3.13) P(t) q(t)I.

The right members of (3.1 lr) and the solutions of (3.8r) turn out to be holomorphic,
as required.

However, the conditions c 0, air 0, r > 0 are not all necessary, as the
next lemma shows.

LEMMA 3.3. The series =o/r(t)d is a formal solution of (3.3) which satisfies
Condition L ifand only if

(3.14)
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as a relation among formal power series. The 7r are arbitrary scalar constants with
7o - 0.

Proof. The right member of (3.14) when expanded and arranged according to
powers of satisfies (3.3) formally, because the formal power series in e with holo-
morphic coefficients form a ring with differentiation. The coefficients Pr(t) of this
power series are holomorphic in Itl =< to, and/o(t) 7oPt(t), which is a nonsingu-
lar matrix. Conversely, let the left member of (3.14) be a formal solution of (3.3)
satisfying Condition L. Then the formal transformation y (-0 P(t)e)v takes
(2.8) into (3.1), as does the transformation y (=o P(t)e)v" Hence, the com-
posite transformation with matrix

(=oP’(t)er (=o ’(t)e

takes (3.1) into itself. The last matrix is to be interpreted as the formal series

=o Q(t)er, obtained by expanding and multiplying the product above. This
implies that the Q,(t) satisfy the same recursion formulas (3.5r) as the P(t) with the
specialization that q(t) 1. Solving the equations (3.1 lr) successively in this special
case and remembering that all Q,(t) are holomorphic at 0, one finds, succes-
sively, that Q(t) 7r/, as was to be proved.

LEMMA 3.4. There exists a formal solution=o Pea(t) of the system (3.3) which
satisfies Condition F in the strengthenedform that

(3.15)
l_lplx(t)l IP2(t)l Itl /2

for ]tl >= > 0, Rt. (Here m is the degree of p(x). This inequality combines four
scalar inequalities in a self-explanatory manner.) The inequalities may be differ-
entiated.

Proof. Let Pg P. As

(3.16) q(t) O(t -(m- 1)/[2(m+2)]) as ,
the inequalities (3.15) are then true for r 0. It is clear that

q’(t) O(t -’’- )/t2tm+ 2)1- ),

i.e., that (3.16) may be formally differentiated. Assume that (3.15) and the corre-
sponding inequalities for the derivatives are true for r k 1, k >= 1. Then choose
Cjk 0, jk ,J 1, 2, and take the paths of integration in (3.11 k) in the region R
at a positive distance from the boundary. A short calculation based on (3.11k), the
inductive hypothesis and (3.16) then yields the required order of magnitude for
P 1(0, P2(t) Calculation of p(t), p2(t) from (3.8k)then completes the proof by
induction.

LEMMA 3.5. Every formal solution of the system (3.3) which satisfies Condition F
is of the form 70 Lo PF(t)e’, 3o 4: O.

Proof. By analogy with the reasoning in the proof of Lemma 3.3 the argument
can be reduced to showing that the equations (3.11) and (3.8), with P_ -= 0, when
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specialized by setting q(t) 1, have no solutions other than

Po=/oI, p}k=0, j= 1,2, r >0,

if Condition F is imposed. That this is the case is easily verified by induction.
THFOREM 3.1. The formal solution of Fedoryuk’s type, ff=o PF(t)er, also

satisfies Condition L ifand only if the infinitely many conditions,(:)q(3.17r) r, /2q(r,)--dv[pt -2(r)] dr 0 r 1,2,...,

are satisfied. The path of integration is to be in Rt.
Proof. If (3.17r) is true, then (3.1 lr) and (3.8r) with the choice of the constants

cjr, ejr,J 1, 2, as in the proof of Lemma 3.4, show that all PV(t) are holomorphic at
0. Conversely, with this choice of the constants, (3.11r) yields a p]2(t) holo-

morphic at 0 only if (3.17r) is satisfied.
The relations (3.17r) are truly restrictions on p(x). Even for r 1, i.e., for

p]-,v(t) q(t), it is not difficult to construct polynomials p(x) with the required
properties for which the integral is not zero. This can, e.g., be done with the help of
the Weierstrass approximation theorem. We omit the details.

4. On the analytic reduction to Airy’s equation.
THEOREM 4.1. There exists a transformation y P(t, )v ofthe given differential

equation in the form (2.8) into Airy’s equation in the form (3.1) such that the matrix

P(t, e) has, uniformly in some disk Itl <= to, the asymptotic expansion

(4.1) P(t, e) Pf(t)d, e -. 0 +.
r=0

This theorem was stated in Wasow [9, p. 181]. The proof there contains an
error, but a correct proofhas been given in the expanded Russian translation ofthat
book.

The formal solution of Fedoryuk’s type described in Lemma 3.4 is the asymp-
totic expansion of another solution of (3.3). The domain of validity of that expan-
sion can be described as follows" Let 6 > 0 be arbitrary. From (D) delete circular
neighborhoods of radius 6 about the endpoints of the cuts, as well as sectors of
central angle 6 that have their vertices at the endpoints of the cuts and are bisected
by the cuts. The resulting domain in the -plane may be called (D, 6). The corre-
sponding domains in the x- or t-plane will be denoted by D or Dta, respectively.

THEOREM 4.2. There exists a "transformation y PV(t, e)v of (2.8) into (3.1) such
that the matrix pF(t, e) has in Rt the doubly asymptotic expansion

(4.2) PV(t,
r=O

More precisely, for every integer N >= 0 and every sufficiently small 6 > 0 there exists
a constant C(N, 6) such that

(4.3) PV(t,e)- Pr(t)d <= C(N, 3)ltl -m-a)/t2’+2) It1-3/2)N+
r:o [_It] /2 1

for R, 0 < e <= eo. (Formula (4.3) is to be understood as combining four scalar
inequalities. The left member is not a norm, but the matrix formed by the absolute
values of the four entries, each of which satisfies the corresponding inequality.)
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Theorem 4.2 can be proved in a manner analogous to the method in Wasow
[9, 30.1 30.4]. This leads to independent proofs of the theorems in 3 and 4 of
Evgrafov and Fedoryuk [2]. For simplicity the opposite route will be taken here.
We shall use the following results from the last mentioned paper.

THEOREM 4.3 (Evgrafov and Fedoryuk). The differential equation (1.2) has two
particular solutions u + (x, e) with the following asymptotic properties"

(4.4) u-V (x, e,) p-1/4(x)t-V(x, e)exp -(x)
where

(4.5) /-V-(x,e) /(x)er, /(x)= 1 aseO+ orxooinD,
r=0

in the precise sense that

(4.6)
N

ax, ) y aS(x)
r=0

C(N, 6)(Ixl-(m+ 2)/2)N +1

for x D. Here, C(N, c5) is a constant. The functions - (x) are holomorphic in D, and

(4.7)
These asymptoticformulas may beformally differentiated.

Each formula above combines two’take the upper or lower sign, throughout.
Each solution is uniquely determined by its asymptotic representation.

The solutions u-(x, e) are uniquely defined only if the branch of p-1/4(x) is
specified. According to (3.10),

(4.8) p- 1/4(x) q(t)t- 1/4.

We shall take

(4.9) t/3 <argt< 5r/3 inRt, and argt=eargt in (4.8).

Proof of Theorem 4.2. If the two scalar solutions u + (x, e), u-(x, e) are trans-
formed to the variable t, then the matrix YV(t, e) whose first row consists of u +, u-,
in this order, while the second row is (e du +/dt, e du-/dt), is a fundamental matrix
solution of (2.8). Its asymptotic form in Rt, as calculated from Theorem 4.3, turns
out to be, after some straightforward calculations,

(4.10) yF(t e.) (p(x(t))_ l/4[; 1/20 ] ’F(t e,)
exp{----t3/2} 0

0 exp -t
with the rule (4.9) applying. The matrix v(t, e) has an asymptotic expansion

(4.11) v(t, e) g(t)e, fo(t)
i,,0

in the strong sense that, for 0 < e < Co, e Rt,

II(4.12) f’F(t, e) =0 g(t)e <= C2(N, cs)(Itl-3/2e)N+ 1.



162 WOLFGANG WASOW

C2(N () is a constant whose value depends on the choice of the matrix norm. The
(t) are holomorphic in R,6 and of the order of magnitude

(4.13) (t) O(X -(m+2)r/2) O(t -3r/2) as .
For p(x) =- x, in particular, the matrix (4.10) solves the simpler equation (3.1). In
that case it will be called V(t, e). It has the form

( 2 3/2]

(4.14, V(t,e,__t_l/,E; 1/zO]Q(t’8, xPiet ;
0

0

{ 2t3/2}exp -with an expansion for P(t, e), which is a special case of(4.11), (4.12). The domain of
validity corresponding to Rt6 in this case is defined by

(4.15)
3

<argt<
3

It[ > /}/6
Our choice of branches for the various multivalued functions was made so as

to deal with a region symmetric to the real axis in the t-plane. This preference
implies that xe2ti/3 for (3.1), which is somewhat unnatural. Accordingly, we
can take q(t) =_ e2i/3 (e-/2 would have been another possible definition), but not
q(t) =-- 1.

Let us define P(t, ) by

(4.16) Yv P(t, e)V, i.e., P(t,

and observe that

0
’F(t,e)P-i(t,e)

0 /2(4.17) P(t, e) p-1/4(x(t))
tl/2

One verifies directly, with the help of formulas (4.11) to (4.13), and the correspond-
ing formulas for P(t, e), that the expansion of v(t, )’- l(t, e) has the form

f’v(t, e.)’- l(t, e) , Z,(t)d, Zo(t =_ I,
r=0

where
N

f’v(t, .) "- i(t, e) Zr(t).
r=0

<= C3(N, a)(I tl- 3/z) +1

for Itl e R,a, and
Zr(t) O(t-3r/2) as oo.

Combining these facts, formulas (3.10), (3.16), (4.16) and (4.17), one is led to

N

P(t, e) Pr(t)d
r--O

=< C(N cS)ltl -(m- )/t2m + 2)Fll_ t111/2
for R,a (the meaning of this formula is as in (4.3)), and

P(t) O(t1-(m- 1)/[2(m+2)]-3r/2),Po(t) q( t)I r 1,2,....
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This last relation shows that the series =o Pr(t)er satisfies Condition F. Also,
P(t, ) must satisfy the system (3.3) because of (4.16). From Lemma 3.5 it follows
that Pr(t) PF(t) for all r. This completes the proof of Theorem 4.2.

5. Central connection formulas.
LEMMA 5.1. The particular solution matrix V(t, ) of (3.1), as given in (4.14), has

the following expression in terms of special functions:
[--e-ni/63- -i/3- X/6Ai (e-4i/3,- 2/3t)q2/2_1

X/6Ai (e-2’i/3e-2/3t) e

(5.1)V(t’ e) x/- e7ni/631/6Ai (e_ 2ri/3g._ 2/3 t) e,i/3e.X/6Ai, (e_4ni/3._2/3t) -_].
Here, Ai(z) is Airy’s function and Ai’(z) dAi(z)/dz.

Proof. Ai(e4’i/3e-2/3t) and Ai(e2’i/3e-2/3t) are solutions of (2.5) that tend to
zero in rc/3 <argt<n and n<argt<5n/3, respectively, as toe. This
property characterizes them uniquely except for arbitrary constant factors.
Theorem 4.3, applied to (2.5) with x t, also supplies two solutions that tend to
zero in the same sectors, respectively. The constant factors of proportionality
connecting these two sets of solutions can be determined by comparing the leading
terms of their asymptotic expansions for --, oe in these sectors, as given by the
theory of Airy’s function and by formulas (4.14), (4.11). Now, the first row of
V(t, e)consists precisely of this latter pair of solutions of (2.5), while the second row
is then obtained by operating with e d/dt on the first row (cf. (2.9)). Thus, a straight-
forward calculation leads to (5.1).

The importance ofLemma 5.1 lies in the fact that the matrix V(t, e), introduced
in 4 through its asymptotic expansions in certain regions, is now completely
known throughout the t-plane.

We now consider the two particular solutions

(5.2) YV(t,
of the system (2.8) and proceed to calculate the asymptotic form of the matrix
C(e) in the formula

(5.3) yF(t, e) yL(t, e)C(e),

which must connect them. This can be done by substituting into the right member
of the formula

(5.4) C(e) [yL(t,

the asymptotic expansions of the several matrices at a point at which they are
all valid. Applying (4.1), (4.2) and (4.14) and remembering that pL and pF have
the same leading term in their expansions, we find, after some manipulation, that

{4111() 12(/3) 1 -- /33)11( ]12(t, e)exp --gt3/2

C(e)
f 4 3/}(5.5) C21(e C22(e y2a(t,e)exp kt 1 + e722(e

where the ])jk have asymptotic series in powers of e as e 0, valid in R, V) (I tl to).
We choose to e4ri/3 to calculate c2(e) and to e2i/3 to calculate c2(e),
and find that
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4 to3//1 + eV(e) 2(e)exp

(5.6) C()

{ 4
to3/2} 1-+-])2 2(g)?2(e) exp

Here P2(e) and Pz(e) have asymptotic series in powers of e. In obvious scalar
notation (5.3) now becomes

{ 4 //2}yf(t,e) (1 + ey(e)yl(t,e) + pz(e)exp -- y2(t,e),

y2(t, e) P2(e)exp -tg y(t, e) + (1 + e722(e))y2(t, ),
(5.7)

{ 4t/2}Y2(t,y(t,e) (1 + eyl(e))y(t,e) + p2(e)exp -{ 4t/2} y(t,e)+(l+ey2z(e))y2(t,e)y2(t,e) P2(e) exp -Since the asymptotic form of C(e) is known, formulas (5.7) extend our asymptotic
knowledge of Y into the disk It] N to, where Y is asymptotically known.

We now return from the system (2.8) to the original scalar equation (1.3)
and define solutions u[(x, e), u[ (x, e) of that equation by

u(x, ) y(t(x), ), u(x, ) yi(t(x), ).

These are two of the solutions studied, in different notation, in Wasow [9, 30].
Their asymptotic expansions anywhere in a full neighborhood of the turning point
x x are known, thanks to Theorem 4.1, (5.2) and Lemma 5.1. Formula (5.7)
implies the following theorem.
To 5.1. Let a > 0 be such that [t(x)l < to for [x x] a. Then there

is a function w(e), with w(e) 0 as e 0 +, such that

lu+(x’e)-(l+e7(e))u[(x’e)l}<w(e)exp { 2}_t/2(5.)
lu-(x, ) ( + ())u(x, )1

for Ix xl a.

Pro@ The asymptotic properties of Airy’s function applied to V(t, ) in (5.1),
combined with Theorem 4.1 and (5.2), show that

IIg(t,)ll Kexp t/ Itl < t < to 0 < < o

for any t, with 0 < t < to. The constant K depends on o and l. Hence, for
j,k ,2,

{- 4 t/2}y(t, e) exp

2
t/2
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2 t/21w(e) exp -ee
w() having the required property. Insertion of the last inequality into (5.7) proves
the theorem.

The right member of (5.8) is small of higher order of magnitude than u(x, e)
or uZ(x, e) as e 0 + as long as t(x)l _-< to, provided is not a zero of u or uZ.
The zeros of Airy’s function are all on the negative real axis. From (5.1) it follows
then that the zeros of u(x, e) are, for small e, in narrow sectors containing the
boundary of D. With these remarks in mind, (5.8) can be replaced by the simpler,
but weaker and less precise statement, that

(5.9) u + (x, ) ( + ())u,(x, ), u- (x, ) (1 + 7 ())u; (x, )

for x e D f’l (Ix x l] < a).
I do not know if w(e) is actually different from zero. This is a theoretically

interesting question, but it has little bearing on the actual connection formulas.

6. An example. Let

(6.1) p(x) X3 1.

FIG. 1. Stokes regions in the x-planefor p(x) x
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An elementary, but not entirely trivial analysis, which will not be reproduced here,
shows that the patterns ofthe Stokes regions are as illustrated in Fig. 1. The turning
points are at 1, co e2i/3 and 0z e’i/3.

To fix the ideas, we choose the turning point x 1 and the consistent
canonical region D D1 12 /12 [’-J D2 (J 124 [,-J D4, which is the unshaded part of
Fig. 2. (For comparison, the canonical region D1 0 112 LJ D2 (.J 125 (.J D5 is
inconsistent.) The image (D) of D in the -plane, with the branch of (xl, x)
chosen according to the rule in 2, can be seen in Fig. 3. Corresponding parts of
D and (D) are designated by the same letters, with a tilde over the images in (D).
Finally, Fig. 4 shows the region Rt in the t-plane for this example.

The ray x > 1 is mapped onto the ray arg 2n/3. By indicating the correct
branches to be taken on these two rays for the various analytic functions that
enter our calculations, those branches are specified for the whole regions in
question.

On argt= 2n/3 we have arg(dt/dx)= 2/3 and we may take arg(q(t))
arg (1/2) 2n/3. (-n/3 would have been the other possible choice.) Observe

that (1, x) has to be calculated with arg (p(x) 1/2) n, for x > 1, to obtain the
correct branch in (D). Furthermore, (4.8) gives

(6.2) (x 1)- 1/4 ](x 1)- 1/41eni/2 for x > 1

FIG. 2. A canonical domainfor p(x) x3-1
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FIG. 3. Image in the i-plane of the canonical region of Fig. 2

as the correct branch to be used in (4.4), by our conventions. Finally, dq/dt is real
on arg 2rc/3.

The following facts are easily established. As x 1 on x > 1,

p(x)= 3(x- 1)[1 +(x- 1)+1/2(x- 1)2],
pl/2(X)--e’il3(x- 1)IX/Z(1 -F 1/2(x- 1)+ -(x- 1)2 -+-O((x- 1)3)),

(x)- e’’/213-’/2[l(x- 1)3/21(1 + (x- 1)+ s(x- 1)2 -k-O((x- 1)3)),

(6.3) t(x) e2’’/313/31(x- 1)(1 + 1/2(x- 1)- 3-o(X- 1)2 + O((x- 1)3)),

dt/dx e2/313/31(1 + (x- 1)- ]o(X- 1)2 + O((x- 1)3)),
131,"dx/dt e 2/313 a/31(1- (x- 1)+ s-o--otx- 1)2 + O((x- 1)3)),

q_ x/2_ e,/313-x/61(1 1/2(x- 1)- -to26(x- 1)2 + O((x- 1)3)),

dq. dx e=l 3- /21(1 + ]-(x 1) + O((x 1))).dl=dx dt

For abbreviation, we set

1 (" -/2 d
(6.4) h(t) Jo r q()-v-[(r)q-2(r)] dr.
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FIG. 4. The region R in the t-plane corresponding to the canonical domain ofFig. 2

An inspection of the arguments of the factors in the integrand on arg z 2n/3
shows that h(t) is real on the ray arg 2n/3. With the help of (6.3) one can verify
that

(6.5) lim It- 1/2h(t)]--e-ri/36-@131191 5/61
tO

This result will be needed below.
From (3.11r) and (3.8r) with r and the initial conditions prescribed in

Lemmas 3.2 and 3.4, we find that

[ 0 -t-/2q(t)h(t)lpL(t, ) q(t)I + + O(e2)
-t’/2q(t)h(t) + (l(t) 0

(6.6)

[ 0 t-’/2q(t)(h()-h(t))1 2),pF(t, ) q(t)I + e + O(e
t’/2q(t)(h()- h(t)) + (l(t) 0

(6.7)

and, hence,

0 t- 1/21(6.8) (pL)-,pv= I + ,/2
h()e + 0(2).

0
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If this is combined with (4.14) and (5.4), there results, after some manipulations,
the formula

1 + h()/3
(6.9)

0

o
1- h()/3

+ 0(/32)"

Next, we calculate the asymptotic expansion for V(t,/3) in Rt, up to the
second term. This can be done by expanding the Airy functions in (5.1) into their
asymptotic series. We find

V(t /3) t- 3/2/3 4- O(t- 3/32
0 1/ 1 7

(6.10)

xp /3
3/ 0

0 exp -t-
Combining (6.7) with (6.10) one can calculate YV(t,/3) as defined in (5.2):

yF(t,/3)_ q(t)It-1/4 0 ]{I1 1]0 1/ --1

+
(6.11)

5
h() h(t) 4- s-xt -3/2

7 -3/2 0(t) -1/2h(c h(t) -4 + - 5 3/2-h(o) 4- h(t) 4--t-
7 3/2 t(t) 1/h() h(t) + -t- ---t-

q(t)

4- 0(t-3/32)/
exp --t3/

0

0

2
t3/2exp --This implies, in particular, that

(6.12) u+(x,/3) p-1/4(x)(1 + (h() h(t(x)) + 7--I(X)/3 4- ") e(x)/.

The expansion (6.12) is valid in D. To obtain an expansion for the same
solution that is valid near the turning point x 1 we first calculate yL from (5.1),
(5.2) and (6.6), concentrating on the first entry, YI. Clearly,

Yl(t, /3) q(t)vl l(t,/3) t- 1/2q(t)h(t)v21(t, e)

2x/q(t){e-’i/6/3 1/6Ai (e-2.i/3/3-2/3t)
+ t-1/2h(t)eri/6/31/6Ai’ (e-2i/3/3-2/3t)}.

Therefore, the formula

u+(x,/3) (1 + h()/3 + ...)ya(t, )
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enables us to calculate u +(x, e) asymptotically throughout Ix iI _-< a. For x 1,
i.e., at the turning point itself, the result is

u+(1, e)= 2x/q(0)(1 + h(oo)e + O(e2))

{e-i/6e- 1/6Ai (0) + lim (t- 1/2h(t))e’i/%l/6Ai’(O)}
t--,o

or

u+(1,8,) 2x/i(1 +
3- 5/6 119.3-4/3- 1/6 8,1/6
F(2/3) 600F(1/3)

_[_ 0(8,1 1/6).

The factor in this formula is a consequence of our rules concerning the branches
of the analytic function to be taken, as explained in (6.2). As p(x) x3 1 is real
for real x, the solution iu + (x, 8,), which is real on the real axis, might be preferable.
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LIE THEORY AND q-DIFFERENCE EQUATIONS*

WILLARD MILLER, JR."

Abstract. A factorization method is established for systems of second order linear q-difference
equations. The factorization types are shown to correspond to irreducible representations of infinite-
dimensional Lie algebras. If the q-difference equations degenerate to differential equations (as q
approaches 1) a Lie theory of hypergeometric and related functions is obtained in the limit. If the
q-difference equations degenerate to ordinary difference equations a Lie theory of special functions ofa
discrete variable is obtained in the limit.

Introduction. In 1951 Infeld and Hull discussed a technique, the factorization
method, which could be used to construct solutions of families of second order
linear differential equations arising in mathematical physics [1]. The hyper-
geometric functions and their various limits were obtained from this analysis. In
all there were shown to be eight factorization types: A, B, C’, C", D’, D", E, F, each
one associated with a class of special functions. Later it was realized that the
factorization types corresponded to irreducible representations of the four-
dimensional Lie algebras C(a, b) and the six-dimension Lie algebra 6 (see 5)
[2], [3]. The special functions corresponded to basis vectors and matrix elements
of these representations. This second approach yielded many more properties of
special functions than did the original factorization method since it allowed
application of the machinery of group theory, particularly the Lie theory of local
transformation groups.

Recently the author constructed a factorization method for families of second
order linear difference equations [4]. Six factorization types were constructed
(, ’, fl, fl’, , ’), and among the special functions obtained were the polynomials of
Chebyshev, Hahn, Charlier, Meixner and Krawtchouk. Again the factorization
types corresponded to irreducible representations of the Lie algebras f#(a, b). In
addition it was shown that the Hahn and Chebyshev polynomials also transformed
according to representations of the six-dimensional Lie algebra (94.

In the present paper, which is essentially a commentary on some aspects ofthe
work ofW. Hahn [5], [6], we construct a factorization method for families ofsecond
order q-difference equations. It turns out that there is an infinite variety offactoriza-
tion types. This is not unexpected since there is an infinite variety of q-analogies
of well-known special functions. Here, we choose two families of factorizations
which are as simple as possible, yet rich enough to obtain all of the fourteen
factorization types for differential and difference equations in the limit as q - 1.
It is well known that many q-difference equations can be parametrized so that
as q 1 they converge to either differential or difference equations [5]. Similarly,
we show that we can parametrize our factorizations so that as q - 1 we get all
fourteen factorization types mentioned above. The special functions associated
with the factorization types are q-analogies of familiar special functions.

Received in revised form by the editors September 22, 1969. Presented by invitation at the
Symposium on Special Functions, sponsored by the Air Force Office of Scientific Research, at the
1969 National Meeting of Society for Industrial and Applied Mathematics, held in Washington, D.C.,
June 10-12, 1969.

" Mathematics Department, University of Minnesota, Minneapolis, Minnesota 55455.
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As usual, the factorizations for q-difference equations have a Lie algebraic
interpretation. In this case the Lie algebras are infinite-dimensional. However, they
have the special property that the centers of their universal enveloping algebras
contain elements of the second order (q-analogies of Casimir operators). With the
parametrizations mentioned above we find that as q --, the infinite-dimensional
Lie algebras degenerate to one of the Lie algebras if(a, b), 6, (94.

Since there is no convenient analogy of the local Lie theory of transformation
groups for q-difference operators, our relation of factorizations to Lie algebras is
not as useful as it was in the case of differential operators. Nevertheless, we show
that all ofthe q-analogies of special functions discussed by Hahn have factorizations
and transform according to irreducible representations of certain Lie algebras.
This provides us with useful algebraic tools for uncovering the properties of these
functions. In particular many of the techniques for differential operators due to
Weisner [7], [8], [9] can be carried over to q-difference operators, though the
computations are much more difficult. We work out a few examples in 6.

It should be noted that there are many factorizations for q-difference operators
in addition to those constructed in this paper. The factorizations selected here are
introduced primarily on the basis of their simplicity. The point is that the q-
analogies of familiar special functions can be studied by the factorization and
related Lie algebraic methods.

1. Resum ofthe faetorization method. The basic idea underlying the factoriza-
tion method has been presented many times before [1], [3], [10], but will be
reviewed here for the convenience of the reader. Let {Xm}, m S {mo, mo +_ 1,
mo +_ 2,...} where mo is a complex number, be a sequence of linear operators
defined on the complex vector space U. The operators (Xm} admit a factorization
if there exist sequences of linear operators {Lm+ }, {L2, on and constants {am}
such that

(1.1) Xm Lm+L + am =- L2,+ 1L++ + am+ for all m e S.

If the {Xm} admit a factorization then the eigenvalue equation

(1.2) Xm Y.(m) 2 Ya(m) m S,

is equivalent to the two equations

(1.3) L+ L2, Y(m) (2 am) Y.(m), ,Lm+, Y.(m) (2 am+ ,)Y.(m).L2,+ +

Furthermore, the following lemma is easily verified.
LEMMA. Let Y(I) be a solution of (1.2) for m 1. Then L+ Yx(I is a solution

of(1.2) for m + 1 and L- Yx(I) is a solution for m 1.
Thus, the existence of a factorization implies the existence of recurrence

relations for the eigenvectors Ya(m). There is an important class of factorizations
with the property" There exists an mo e S such that am,, 2. In this case any non-
zero solution of L, Y(mo) 0 is automatically a solution of X,,Y(mo) 2 Yx(mo),
and from the solution Ya(mo) we can construct a family of eigenvectors Yx(mo + n),
n 0, 1,2 by applying the "raising operators" L++ recursively. Such a
factorization is said to be bounded below. Similarly, if there is an m e S such that

am + 2 the factorization is bounded above.
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2. Solutions of q-difference equations. Let a, b, c, d, x, q be complex numbers,
0 < [q[ < 1. The Heine series [5], [6, [11],

3q2(a,b,x;c,d;q)= h,,q",
n=O

(a- 1)(aq- 1)... (aq"-’- 1)(b- 1)(bq- 1)-.-(bq"-’- 1)(x- 1)
h

(c- 1)(cq- 1)-.-(cq"-’- 1)(d- 1)(dq- 1)... (dq"-’- 1)
(2.1)

(xq 1)... (xq"-’ 1)
(q- 1)(q2- 1)-.-(qn__ 1)’

ho= 1,

converges absolutely and satisfies the q-difference equation

(x 1)(qabx cd)F(qx) [xZ(a + b)q x(abq + cd + (c + d)q)

(2.2)
+ cd(1 + q)]F(x) + q(x c)(x d)F(q-’x)= O.

A second solution of (2.2) is

]-[l--qJxJ)/ "3(D2(7 bqxqdqq2
f)

;-, ;q.F(x)
1- i c c c c c

The basic hypergeometric function

2P l(a, x; c; qb) h,(qb)",
n=0

(a 1)(aq 1)-.. (aq"-1
(2.3) h,

1)(x- 1)(xq- 1)... (xq"-1- 1)
(c- 1)(cq- 1)... (cq"-1- 1)(q- 1)(q2- 1)... (q"- 1)

ho= 1,

converges absolutely for [b[ < 1, ]q] < 1 and satisfies the q-difference equation

(x 1)(abx c)F(qx)- [x2b x(ab + c + q) + c(1 + q)]F(x)
(2.4)

q(x c)F(q-ix) O.

A second solution is

jl--Io 1- q x qa qx q2
F(x)= 1-qJ;xx/c 2q c’ c c’b

Also, the function 20 (a, b c x) is a solution of

(2.5) (c abx)F(qx) [c + q (a + b)x]F(x) + (q x)F(q-’x) O.

Another solution is

where q c.

F(x) x -Y2q) X
C



174 WILLARD MILLER, JR.

The basic confluent hypergeometric function is defined by

q(a; c; x) lim q a, b c; hx,
n=O

(a- 1)(aq- 1)... (aq"-- 1)q"-/
(2.6) h,

(c- 1)(cq- 1)... (cq"-x- 1)(q- 1)(q2- 1)... (q"- 1)’

ho= 1,

and converges absolutely for all a, c, x if Iql < 1. This function is a solution of the
equation

(2.7) (c ax)V(qx)- (c + q x)V(x) + qF(q-ix) O.

A linearly independent solution is

where c q.
We note for future use that in the case where a q, b q, c q, x q,

d q and e, fl, ),, , 6 are constants, then

lim q2(a, b, x; c, d; q) aFt(e, fl, 7, 1),
q--*l

(2.8) lim q (a, b c; z) F(e, fl; 7 z),
ql

lim qo (a; c; (q 1)z) 1F(; ),; z),
q-*l

where the F, F, F are hypergeometric functions. Furthermore, if f is a
differentiable function of x then the relation

f(qx) f(x) df(2.9) lim’ --(x)
q-l (q 1)x dx

is valid [5], [11]. It follows from these last remarks that in the limit as q - 1 the
q-difference equations (2.5), (2.7) become the usual differential equations satisfied
by the hypergeometric and confluent hypergeometric functions, respectively.

3. Factorizations by q-difference operators. To begin, we seek factorizations
of the form

(3.1)
L r(x)T + + g(x)q-" + h(x),

L, R(x)q’T- + G(x)q + H(x),

where

T+f(x) f(q+-’x)

and r, g, h, R, G, H are functions to be determined. It follows immediately from the
form of the q-difference operators L, that the constants a,, can be written as

(3.2) am-- Aq -+- Bq-m,
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where A and B are to be determined. Substitution of (3.1), (3.2) into (1.1) and a
straightforward though tedious computation yield the result"

(3.3)
Lm++ (k2x q_ c5)T + + c3q-m-1 -I-" 2X,

L (k1x -+- ca,)q"T- + c xq" + C6,

where

(3.4) kk2 C1C2 A -c,,c5, B --C3C6

(3.5)

Except for the requirements (3.4) the k’s and c’s are arbitrary constants. The
second order q-difference operators X,, defined by (1.1) become

X (k2x + cs)(c6 + cxq"+ )T+ + {X(ClC3 + C2C6)

+ qm[(klk2q + ClC2)X2 -Jr-(klCsq + kzc4)x]}
-+-(klX + 4)(3 -- q"xc2)T-.

Note Expressions (3.3) are not the most general solution of the factorization
equations. The general solution is of the form L+’,,+ [p(x)]-1Lm++ lP(X), L,

[p(x)]-IL, p(x) where p is an arbitrary function which is never zero. We have
normalized our solutions so that r(x) and R(x) are first order polynomials in x.

We shall investigate a number of special cases of the above factorizations and
show that they yield q-analogies of familiar special functions.

Example 1 Set k q- k2 c, c q- qab/d, c4 q-,2 mC, C3

c5 -1, c6= -d-l. Then,

abL+., (cx 1)T + + d+1 CX,

(3.6) L (-x + 1)qm-lT + xqm-1 d-1,

ab
am--- qm-1 +-q-m+l

The basic vectors f,,(x) associated with this factorization are of the form 3(.t92 In
fact, the functions

(3.7) fro(x) 3q92(a, b, x- 1., c, dq", q)

satisfy the recursion relations

(3.8)

+ (aq d)(dq" b)
Lm+lfm f,,+x,

d(dq 1

L,f,.
(dq’-I 1)f._l

d

and the q-difference equations

Smfm Aim,
a+b



176 WILLARD MILLER, JR.

Ifwesetx qZ, a q,b qa, c qLd q6andletq 1 theabovefactoriza-
tion becomes

(3.9)

+Lm+lf
(a- ( m)(6- fl + m)f,,,+ 1,

(6 + m)
L,fm ( + m- 1)fro-1,

+ m),L,,+I =(7 +z)E + (o + b 7 6 z

L -zL + (6 + z + m- 1),

fro(Z) 3F2(., fl, z; 7, ( + m; 1),

where

Ef(z) f(z + 1), Lf(z) f(z- 1).

(Note" In this and some of the following examples it is necessary to multiply one or
both of the operators L,,++ 1, L, by the factor (q 1)- before going to the limit.)
If a is a negative integer, the eigenvectors fro(Z) are the Hahn polynomials [12]. In
any case the factorization (3.9) is the type a" factorization by first order difference
operators classified in [4].

Example 2. Set k 1, /2 0, C ----6/, C2 0, C3 --dq, c =-d-,
c5 -bd, c6 c/bd. Then the above factorization becomes

+ -bdT +Lm + + dq

(3.10) L (x d- 1)qmT- axq + c/bd,

C +1am= bq -q
The second order q-difference equations obtained from this factorization are
closely related to (2.5). Indeed the functions

fro(X) 2q)l(a, bqm; c; q dx)

satisfy the recursion relations

(c- bqm)
(3.12) + Lfm bdEra+ fro d(q b)fm+l, --fro-1

and the q-difference equations

X.,f,.=)cf,., 2= --c--q.

(3.13)

Setting a q’, b qa, c q, d and letting q 1, we obtain

Lf., (7- fl- m)fro-l,

d
L -x(x- 1)-i- ocx + 7- fl-m,

ax

This is the type A factorization of the hypergeometric equation by first order
differential operators [1], [2], [3].
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Example 3. Set k 0, k2 --qd, c O, c2 O, 3 --q, c4 1, c5 c/a,
c6 -a. Then we obtain

(3.14)

+ _qLm + (- qdx + c/a)T + m,
L2, qmT- a,

c
am qm aq- +

a

The functions

(3.15) fro(X) q)l(aq-m’c’dqmx),

satisfy the relations

nt_Lm+lfm a 1(c aq-m)f,+l,

Ln fm (qm a)fro 1,

Xmf --(C -1
t- q) fm"

If we set a q, c qr, d 1, z (q 1)x, and let q 1 it follows that

(3.16)

+L+ ,fro (m + )fm+,,

d+Lm+l Z-dz z + 7-a + m,

Lfm (m

d
L -z-,- + m o,

az

fro(X) F(o m; 7 z).

This is the type B factorization of the confluent hypergeometric equation [1], [2],
[3].

Example4. Setkl wb, k2 1, cl -bw, c2 -1, c3 a -1, c4 -w,
c5 O, c6 qa-1. The factorization reads

+ + -1 -m-1L,,,+ xT + a q x,

(3.17) L, w(bx- 1)qmT bwxq + qa-,
am _a-2q-m+ l.

The functions

(3.18) fm(X) I-I (1 x-’qi)" 2@l(aqm, b X -1", W)
j=O

satisfy

(3.19)
Lm+/ afro -q l(aqm 1)fro+ 1,

Xmf --a-lfm.
L, fm aq- fro_l,
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If we set a q, b qa, x qZ and let q 1 we obtain in the limit

+ L2, f,,, =fro-,Lm+ ,fro (a + m)fm+ 1,

(3.20) Lm+l+ E + a + z + m + 1, L2, -w(fl + z)L + l-w,

1
fro(Z) F(_z)zFI(a + m, fl;--z;w).

This is a type fl" factorization by difference operators [4].
Example 5. Set k =-1, k2 1, c 1, c2---1, c3 qbc -1, c4 1,

c5 O, c6 -qc-1. The factorization becomes

+l=xT +bc- q- -x,

(3.21) L2, =(1 -x)qmr- + xqm- qc-1,

am bq2-m/c2.

The functions

(3.22) fro(X) IPl(X -1", cqm’, qb)

satisfy

(3.23)

+ -bq
Lm+ lYre c(cqm 1)fro+l, L2, fm= qc l(cqm-1 1)fro-1,

Xmf O.

Setting x q, c q, b (q 1)fl we obtain in the limit as q - 1"

+ --fl Lnfm--(d q- m- 1)froLm+ lfm (]: at re)fro+l,
(3.24) Lm+l+ E- 1, L -zL + z + m + 7- 1,

fm(Z) 1F1(-- z 7 + m; fl).

This is a type y" factorization by difference operators [4].
Example 6. Set k 0, k2 1, Cl 0, C2 1, C3 --ac- 1, c4 c, c5 O,

c6 -q. The resulting factorization is

L+m ac q + x, L2, cqmT q,+ xT+
(3.25)

am _ac- lq m+l.

The functions

(3.26) fm l(Pl(a; cq"; x- 1)

satisfy

(3.27)

Lm+ -lq+ fro (ac 1)q- l(cqm

L2, f,, q(cqm-1 1)fro_ 1,

Xmf,, --fm"
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If we seta=q,c=qV, x=z-l(q- 1)-landletql we find

+ o-7-mL,+lf,.
7+m

L,fm ( + m- 1)f.,-1,

d d
(3.28) L,,++

dz
1 L z-Z-az + + m- 1

fm(z) 1F1 (o + m; z)

This is a type C’ factorization by first order differential operators [1], [2], [3].

4. A second class of factorizations. To complete the derivation of q-analogies
for the factorization approach to differential and difference equations we need a
new class of factorizations for q-difference equations. Here, we investigate factor-
izations of the form

(4.1)

L+m r(x)T + + k(x)q + h(x)q + j(x),

L, R(x)T + + K(x)q + J(x),

a,, Aq-2m + Bq" + Cq-" + D.

We require that r(x)R(x) :/: O. Substituting these expressions into (1.1) we see that
(4.1) defines a factorization if and only if the following requirements are satisfied"

(4.2)

(i) r(x)= clR(x),

(iii) k(x) c2x- 1,

(v) h(x)K(x) A,

(vii) k(x)J(x) S.

(ii) T + [c K(x) q- h(x)] c q- 1K(x) h(x),

(iv) j(x)= clJ(x) + c3,

(vi) h(x)d(x) + j(x)K(x) -C,

It is a tedious exercise to write down all solutions of (4.2). Here we list only the
most important factorization types which arise from a study of (4.1).

Example 7. It is easy to verify that the expressions

(4.3)

L+ (1 cx)T + + bqm(x-1 ,) 1) -,.-1
+1 aq- + c(x q + (aq 1),

L, =(1- cx)T + + cx aq-’,

a., -q- l(aq-m+ c)(aq 1)(bq 1)

define a factorization of the form (4.1). Indeed the functions

(4.4) fro(X) 2(t91 (aq- m, X 1., c; bq" + 1)

satisfy the relations

(4.5)
+Lm+ fro q- (aq C)fm+ l,

Xmfm O.

L, f,. (aq-" 1)(bq" 1)f,-l,



180 WILLARD MILLER, JR.

If we set a q, c q, x q and let q 1 we obtain

(4.6)

+ m)fm 1, Lnfm=(--m)(b- 1)fro 1,Lm+lfm 0 7 +

+ m)+zLm+ --(’ -4- z)E- b(z + - + cz- m,

L -(7 + z)E +z+ 7-+m,

fro(Z) .Fl(a, z; 7;b).

This is a type e’ factorization by first order difference operators [4]. When the
factorization is bounded below, the solutions fro(Z) are Meixner and Krawtchouk
polynomials.

Example 8. The expressions

(4.7)

+ -1 + -1Lm+l x T x + bq(1 axq

L2, x-iT + x -1,

a,,, abq(1 q-m)

-"-)+a,

satisfy (4.1), (4.2) and define a factorization. The functions

(4.8) fro(X) I-[ (1 axq m+)
j=o (1 axqJ) "lfPl q-m’aq-mx’),

satisfy the relations

(4.9)
+ 1L’ bqfm+ 1’

Xmf,, O.

L, fm= a(1 q-m)fm_l,

Setting a q, b fi-(q 1)-, x qZ and letting q - we obtain

+Lm+ ,f,, fl- f,,+ , L2, fm= mf,,_ ,,
(4.10) Lm+1+ E + fl-(m + 1 o z), L E 1,

L,(z)
r(m-- z+ 1)

F(1 z)
F(-m; z + m; fl).

This is a type/3’ factorization by first order difference operators [4]. When the
factorization is bounded below, the solutionsfro(z) are proportional to the Charlier
polynomials.

Example 9.

Era+ x l(q_ 1) ’IT + 1] + q

(4.11) L2, x-l(q- 1)-lIT+- 1],

am c(q- 1)-’(q-m- 1).

CX,

The functions associated with this factorization are q-analogies of the parabolic
cylinder functions and have a fairly complicated representation. Denote the basic
hypergeometric function by 2q0(a,b; c; q; x) where now the notation explicitly



LIE THEORY AND q-DIFFERENCE EQUATIONS 181

exhibits the q dependence of the function. Then the functions

(4.12)

fro(X) brn2(491(q- m/2, 0; q/2; q --c(q 1)X2)
nt- bin+ ix2q)l(q(1-m)/2, 0; q3/2; q; --c(q 1)x2),

b,,, cm/2(q 1)- m/2 1-I (1 q- +1)/2 + j),
j=0

where q q2, satisfy the relations

(1 q-m)+ L2, f,,=c fmLm+lfm= fm+l,
q-1

Xmf., O.
(4.13)

If we let q 1 thef,,(x) become parabolic cylinder functions and the factoriza-
tion becomes

d d
L,,++ x + cx L dx’

a --mc.

In this case the eigenfunctions corresponding to a factorization bounded
below (m a nonnegative integer) are just the Hermite polynomials. Expressions
(4.14) define a type D’ factorization by linear differential operators [1], [2], [3].

Example 10. The expressions

(4.15)
+1 x l(q_ 1)’ET+- qm]

am 0

L x-l(q- 1)-’ET+ q-m],

satisfy (4.1), (4.2) and thus define a factorization. We define the functions

fro(X) (1 q)mqm(m-1)/2xm
(4.16)

I-[ (1 q+J), oqg(; q’[’+ 1; ql ;(q 1)2qx2) Iq,,,(x),
j=0

where q q2 and

(4.17) oq)l(; a; x) =- oq91(; a; q; x).

The q-dependence of o991 is exhibited explicitly on the right-hand side of (4.17).
The fro(X) are q-analogies of Bessel functions. They satisfy the relations

L+m Lnfm-- fm 1,/,f f/,,
(4.18)

Xmfm fro"
If we let q - 1 the factorization retains the form (4.18) where now

d m d m
Lm + dx x dx x(4.19) + L, +

and the eigenfunctions f,,(x) become modified Bessel functions I,,(x), [12]. This is
the type C" factorization of Bessel’s equation [1], [2], [3].
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Example 11. The expressions

(4.20)
+ T +Lm+l + w l(q_ 1) l(xq -x lqm),

am=O

L, T+

define a factorization of the form (4.1). If we set x qZ, it is easy to show that the
functions

(4.21) f,,(z) I-z(W)

satisfy the relations

(4.22)
+Lm+ fm fm+

gmfm fm"
Lfm fro-,,

The functions I(w) are defined by (4.16). In the limit as q 1 the factorization
maintains the form (4.22) where

2(z- m)L+I =E +--, L; E,
w

(4.23)
fro(Z) Im_z(W).

The basic functions fro(Z) are now modified Bessel functions and the factorization
is type 7’, [4].

Example 12. Consider the factorization

+ IT + 1],L,,+I x (q- 1) -1 1], L; --X l(q_ 1)-lIT +

(4.24)
am-0o

The eigenfunctions

(4.25) fro(x) 2(p 1(0, 0; 0; (1 q)x), independent of m,

satisfy the relations

(4.26)
L+.,+ fro fro+l,

XmL, fm.
Lfm fm-,

In the limit as q --, 1 the factorization retains the form (4.26) where now
d+ L,=Lm+ dx’

(4.27)
fro(X) exp x.

This is the rather trivial, type D" factorization [1], [3].

5. Factorizations and Lie algebras. To illustrate the connection between our
factorizations and infinite-dimensional Lie algebras we consider only the factor-
izations of 3. The results for the factorizations of 4 are analogous and are left to
the reader.
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Given a factorization defined by expressions (3.2)-(3.4) we define the operators
j+ j- j3 as follows"

(5.1)

J+ (k2x + cs)T+x +--T- + 2X
q

J- t-X[(klx + c4)T+T + clxT+ + c6],

j3 (q_ 1)-1ITs+ 1].

It will be shown that the eigenfunctions of the operators (3.5) are related to a
representation of the Lie algebra generated by the J-operators. The J-operators
act on a space V of functions of the two complex variables x, t. The subscripts on
the T-operators denote the variables on which the operators are acting. It is a
straightforward computation to verify the commutation relations

(5.2)
[j3, j+] j+Tt+, [j3, j-] _q-lJ-T+

[J+,J-] (A(q- 1)2 + q-lB(q_ 1)2T-)j3 +(A(q_ 1)- q-XB(q 1))I,

where the constants A, B are defined by (3.4) and I is the identity operator. It
follows from relations (5.2) that the operators J+, ,/3, I generate an infinite-
dimensional Lie algebra t acting on U. This in itself is not very interesting. How-
ever, since our operators were defined from a factorization it is easy to show
from (5.2) that the operator

(5.3) CA,B J+J- + A(q- 1)J3 B(q- 1)Tt-J3 + (a + B)I

commutes with the elements of t. In fact,

ECA,B, j+_-] ECA,B, j3] 0.

The invariant operator CA,B can be considered as a q-analogy of the Casimir
operator.

Let X,, be the operator (3.5) and set f,,(x, t)= Yx(rn, x)t where X,,Y(m, x)
2 Yx(m, x). Then we find

J +fro(X, t) L++ Yz(m, x)t+ 1,

J-f.(x, t) L, Y(m, x)t"-1,
(5.4)

qm--
J3f,,(x, t) Yz(m, x)tm,

q-1

CA,Bfro(X, t) X Y(m, x)t 2 Y(m, x)t.
It follows from these expressions that the ladders of eigenfunctions obtained from
the factorization method correspond to models of irreducible representations of
the infinite-dimensional Lie algebra t.

Given any pair of complex numbers (a, b) we define a four-dimensional Lie
algebra if(a, b) with basis +, -, j3, ,. by the commutation relations

[a+,-] 2a2a3 bJ, [3,J_+]
(5.5)

L-+,o] ,] 0.
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Here, 0 is the additive identity element of the Lie algebra. The following isomor-
phisms are valid [3]"

fa(a, b) q(1, O) s/(2)O)(o) if a -# O,

(5.6) ((a, b) - ((0,1) if a=0, b-Y:0,

ad(a,b)ad(0,0)-f3(o) ifa=b=0,

where s/(2) is the Lie algebra of the 2 x 2 complex unimodular group and 3 is the
Lie algebra of the complex Euclidean group in the plane.

In references [2]-[4] it is shown that the factorization types A, B, e, are
associated with irreducible representations of ((1, 0), the factorization types
C’, D’, fl’, " are associated with irreducible representations of ((0, 1), and the
factorization types C", D", 7’, 7" are associated with irreducible representations of
ad(0, 0). In the first twelve examples considered in this paper we have shown that
we can obtain these twelve factorization types from q-factorizations in the limit as
q -, 1. We can shed light on these results by the following construction" Form a
one-parameter family (parameter q) of factorizations such that L,, A(q- 1)2,
B(q 1)2, and A(q 1) q- x. B(q 1) approach finite limits as q 1.
Then in the limit as q --. 1 the commutation relations (5.2) become

(5.7)
[j3, j+] _}_j+,

[J+ J-] 2aZJ3 bI

where

2a2= lim {(A + q-’B)(q- 1)2},
q--*l

b lim {(q-’B- A)(q- 1)}.
q--*l

(Note that limq_ j3 t((/t).) Since expressions (5.7) are just the commutation
relations of the Lie algebra ad(a, b) it is not surprising that we obtain the factoriza-
tions associated with this Lie algebra in the limit. Of course, the one-parameter
families chosen in the twelve examples are highly nonunique. We have chosen the
families for simplicity and to agree with certain well-known q-analogies of the
hypergeometric functions.

The infinite-dimensional Lie algebra ad(q), q

_
1, which we have associated

with each factorization is also not unique. For example, instead of the operators
(5.1) we could choose operators J’+, j,3, I’ such that J’+ J+, J’- J-, I’ I,
j,3 t(c/ct). The primed operators generate a Lie algebra ad’(q) which is not
isomorphic to ((q). However, in the limit as q 1 this nonuniqueness disappears
and we obtain again the known representation theory of the Lie algebras ad(a, b).

At this point we briefly indicate the relationship between q-factorizations and
certain six-dimensional Lie algebras. Consider the infinite-dimensional Lie
algebra generated by the operators J+, j3 (given by (5.1)) and p3 ax-1 + b,
a, b . In analogy with the discussion earlier in this section we parametrize the
J- and P-operators (parameter q) and investigate the conditions such that as q 1
the operators generate a finite-dimensional Lie algebra. In the following cases we
obtain a six-dimensional Lie algebra in the limit. (Here, only the limits will be listed.



LIE THEORY AND q-DIFFERENCE EQUATIONS 185

The construction of corresponding one-parameter families, though simple, will be
omitted.)

Example 13. A basis for the Lie algebra (94 generated by J+, j3, p3 is given by

J+ -(y + z)E + (z +7 + ) + t J- t-x zL z + t-
(5.8) j3 t-, p3 z + 7__

2’

P+ t(z + 7)E, p- _t-azL.

Here, (94 is the Lie algebra ofthe complex orthogonal group in four-space. This case
is closely related to Example 1 and leads to recursion relations for the Hahn and
Chebyshev polynomials [4].

Example 14. The operators

(5.9)

S + Xx+t-2 j3 t--Ct’

J- t-1 x(1-x) t+x(+2)-2
P- 2o(1 x- 1)t- , P+ 2ox- lt, p3 (D(2X- 1)

form a basis for 6, the Lie algebra of the complex Euclidean group in three-space.
This case is closely related to Example 2. The operators (5.9) define a type E
factorization studied in [1]-[3], [13]. This factorization yields recursion relations
for the hypergeometric functions.

Example 15. The operators

(5.10)

J-+=t-+xx+t; =t,
P+ +_2t + 1X- p3 2zx-

again form a basis for 6. These operators, closely related to Example 3, define a
type F factorization. This factorization yields recursion relations for confluent
hypergeometric functions and is studied in [1]-[3], [13].

6. Some identities. It is well known that factorizations expressed in terms of
linear differential operators lead, via the Lie theory of local transformation groups,
to addition theorems and generating functions for special functions 3. There are
analogous identities obeyed by special functions corresponding to factorizations
by q-difference and difference operators. However, in the latter cases there is no
local Lie theory and the formulas are much more difficult to derive. Rather than
attempt to sketch a complete theory we shall merely present a few simple examples
of identities whose proofs are motivated by Lie algebraic ideas.

Suppose we have a model of the Lie algebra fg(a, b) in terms of differential
operators J+, j3, E and suppose the functions f, form a basis for an irreducible
representation of fg(a, b) using this model. Then, choosing an element of the Lie
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algebra, say J +, we find that the expressions

(6.1) exp (eJ +)f" =o .(J+)%

lead to identities for the "special functions" f’. In fact, the left-hand side of (6.1)
can be computed using local Lie theory while the right-hand side can be evaluated
from the structure of the irreducible representation. A large number of known
identities for special functions have this basic structure.

Similar ideas lead to identities for basis functions fm corresponding to a model
of an irreducible representation of an infinite-dimensional Lie algebra ad in which
the elements of the Lie algebra are q-difference operators. However, in this case the
left-hand side of (6.1) cannot be obtained from local Lie theory and must be com-
puted directly. Furthermore, rather than make use of the exponential function it is
usually simpler to use a q-analogy such as

expq (a) 2q) 1(0, 0 0; (1 q)a),
i.e., Example 12.

As a simple illustration of an identity obtained in such a fashion we consider
Example 2. There, the operator J + and basis vectors f’(x, t) are given by (d b 1)

j+ )(-(q- 1 -T+ + T-),

f,,(x,t) 2qg(a,q’; c; qx)t’.

We now evaluate both sides of

a(q 1)(J+)
expq (aJ+)f’(x, t) Yo (q 1)(q2 ii : (q 1)

f’(x’ t).

The right-hand side follows from (3.12) and the left-hand side can be computed
directly by operating term by term on the series for f’, with the result

2q91(a, qm; c; q[x, at]re)t"

(6.2)
(q- 1)(q "-1 1)’’" (q -+1 1)(at)

k=O (q- 1)(q2- 1)... (q- 1)

2Pl(a qm+k. C; qx)t"

Here, the symbol on the left side of (6.2) is defined by replacing x" in the power series
expansion of 2 991 by

Xnl (.I) (q- O; q- 1., taq"- 1).
This notation is due to Hahn [6]. Ifwe set a q, c q and let q 1, (6.2) becomes

(6.3)

x. )(1 at)-"e,m;7;
1 at

k=O

m+k-1
k

2Fl(a, m nt-

an identity whose group-theoretic interpretation is well known [3], [7].
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As another illustration, consider the operator J- (xt(q- 1))-I(T+ 1)
of Example 9. Here, the basis vectors fro(X, t)= fm(X)tm, equation (4.12), are
q-analogies of the parabolic cylinder functions. Computing expq (aJ-)fm(X, t) in
two different ways we obtain (c 1)"

(6.4) f,([x + 0])=
(1 q-m)(1 q-m+ 1)... (1 q +k-1)

k=o (q- 1)(q2- 1)... (qk- 1)
"fm-(x)cz"

Here, the left side of (6.4) is defined by replacing x" in the power series expansion of
fro(X) by x"l q91 (q" 0 q- a/qx). If rn is a nonnegative integer and q 1 then (6.4)
becomes

Um(x + o) Yo (-- )kUm-
ttlk

an identity for the Hermite polynomials.
Another method for deriving identities obeyed by functions related to a

model of the Lie algebra f is based on elementary facts about commuting opera-
tors. In this method, essentially due to Weisner [8]-[10], one looks for simultaneous
eigenvectors of the commuting operators Ca, and j3 + flj+ + /j-, equations
(5.2), (5.3). As an especially simple example consider the operators

J+ tEz, J- t-1 -qZTt+Ez
w(q 1)

(qzTt+ 1)

(6.5)
j3__ (T+ 1)/(q- 1),

where Ef(z, t)= f(z + 1, t). The operators (6.5) satisfy exactly the same com-
mutation relations as the operators obtained from Example 11, but they correspond
to a class of factorizations not encountered in 3 and 4. The functions

[ (1 q’++l)l +1Jqm(w)
Lf=-o
"]-[ ii -..(w(q- 1))m=(/91(0, O;q ;--(w(q- 1)/2)2)

3
satisfy the relation

J+f f+
where

J-fro fro-1, Jafm mfm, J+J-fm fro,

fro(X, t) jqm +z(W)tin.

Note that J+, J-, J+J- are pairwise commuting operators. We search for a
simultaneous eigenvector of J+ and J-; in particular, a function f(z, t) such that

J+f J-f f An elementary computation shows f(z, t)= t-Zg(t) where g(t)
satisfies the q-difference equation

g(qt)
(1--wt(q-- 1)/2)
(1 + w-- ])/-qt) g(t)"

It follows easily from Example 12 that

g(t) eXpq
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to within a constant factor. Writing

f(z,t) g,(w)t-+",

we see that the functions g.(w) are solutions of the difference equations

q,+ lg,+ l(w) + w(q 1)
(q" 1)g,(w) + g,_(w) 0.

The only solutions of these equations which are bounded in a neighborhood of
w 0 are g,(w) cjq,( w), n 0, +_ 1, 2, Thus,

E cJqn(-w)tn"

Bycomparing coefficients of t" for n 0 we can easily show that c 1. Hence,

expq -- expq - =n=-ooJq"(w)t""
As q-, 1 this identity reduces to a well-known generating function for Bessel
functions [12]. The above example was treated by Hahn [6], using a different
method. The same technique would work on Examples 10 and 11 but the generating
functions turn out to be more complicated.
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FURTHER RESULTS ON THE BOUNDEDNESS AND THE
STABILITY OF SOLUTIONS OF SOME DIFFERENTIAL

EQUATIONS OF THE FOURTH ORDER*
MARTIN HARROWS"

1. The equation considered here is of the form

(1.1) x(4) + a2 + f(5)+ g() + h(x)= p(t).

It is assumed that the functions f(5), g’(9), h’(x) and p(t) depend only on the argu-
ments displayed, are continuous, and are of such a nature that the existence and
uniqueness of the solutions, as well as their continuous dependence on the initial
values, are assured. Let x(t) be a solution. Then we may write

dx dZx d3x d4x
X(4)

dt
Yc,

dt2
5,

dt3 x, dt,

In what follows, we shall also use the following system, which is equivalent to (1.1)"

(1.2) y, 3)= z, = w, = -aw-f(z)- g(y)- h(x) +p(t).

THEOREM 1. Given are (1.2) with p(t) 0; and
(i) positive constants a, b, c, d such that A abc c2 aZd > 0;

(ii) f(0) g(0) h(O) O, g(y)/y >= c for all y (y : 0),

d 2aAo < h’(x) <= d for all x,

0 < <= h(x___)for all x (x 0),

where fl is a constant and Ao is a positive constant such that"
(iii) {ab g’(y)}c a2d >= Ao for all y;
(iv) 0 =< g’(y) g(y)/y <= for all y (y =A 0), where the constant ot is such that

t < Ad/(2ac2)
(v) 0 =< f(z)/z b <= eoc3/d2 for all z (z 0), where eo is a positive constant

defined as

o < min {d/c, A/(6a2c), Ao/(4a2c)}.
Then every solution of the differential equation (1.1) satisfies
(1.3) x O, Yc O, 5 --. 0, 5i--.0 as .

The following special cases should be noted"
(a) f(z) bz, g(y)= cy, h(x) dx,
(b) f(z) bz, g(y) cy,
(c) f(z)= bz.

* Received by the editors July 22, 1969.

" Department of Mathematics, Sir George Williams University, Montreal, Canada, and McGill
University, Montreal, Canada.
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In case (a), all conditions in hypotheses (i) to (v) are trivially fulfilled and reduce
to the Routh-Hurwitz criteria for the asymptotic stability in the large of the
trivial solution of the equation

xt4)+a’ff +bSd+c2+dx=O.

In the case (b), the theorem reduces to a special case of an earlier stability result
obtained by Harrow 1].

For the case p(t) O, we shall prove the following theorem.
THEOREM 2. If the conditions in hypotheses (i) to (v) of Theorem 1 hold, and

iffurther

__< < oeds A

for all >= O, where A is some positive number, then given any finite numbers Xo, Yo,
Zo, Wo there is a finite constant D =_ D(xo, Yo, Zo, Wo) such that there exists a (unique)
solution x(t) of (1.1) which is determined by the initial conditions

x(O) Xo, (o)= yo, (0)= Zo, "x(o)= Wo,

and which satisfies

(1.4) [x(t)l D, 12(t)l D, ls(t)l D, IN(t)[ D

for all >= O.

2. The function V(x, y, z, w). The proofs of (1.3) and (1.4) depend on the
function V(x, y, z, w) defined by

;o2V(x, y, z, w) b6 22 + 2 g(s) ds + 26 h(s) ds + a- lw2

d-(a --6)z2 -+- 2wz -+- 26wy + 26ayz + 2h(x)y

+ 2a- h(x)z + 2a- g(y)z + 2a- f(s) ds,

where fi d/(c) + s. We shall prove that V is a Lyapunov function for the system
(1.2) with p(t) 0. The proof consists of two lemmas.
LA 1. Under hypotheses (i) to (v) of Theorem 1, it follows that V(O, O, O, O)

0 and there are positive constants D (i 1, 2, 3, 4) depending on a, b, c, d, s, Ao, e, ,
such that for all x, y, z, w,

(2.1) V(x, y,z, w) Dx + Day + Dsz + D4w.
Proof. Define g(y)/y g’(0) for y 0. For x O, 2V(x, y,z, w) can be

written as

2V(x, y,z, w)= V + Vz + Vs + a-(w + az + ay)

Y g(Y) + a- g(Y)z
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where

But we note that

Therefore

d
V1 b6 ab2

> ae
ac2

y2 + 2 g(s) ds yg(y)

-k g y2 q_ 2 g(s) ds yg(y)

dA
y2 fi’> + 2 g(s) ds yg(y).

2ac

yg(y) g(s) ds + sg’(s) ds.

and, by hypotheses (iv),

V__>

Hence

sds,

Also,

fi’ dAssds>= ac2 ds.

day2

4ac2

f(s)ds a-lbz2 + [a-lb 6 a-2lZ
2

and

2a -1 b sds + a-lb 6 a -2

> (Ac Z2 AoZ2

V3=26 h(s) ds Y--Vh(x) :

g(y)k x J
x2

2
s [c g(y)

s ds + 25 h(s) ds.

Z2

By hypotheses (ii) dg(y)/y >= ch’(x) therefore

v3 _-> /x.
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Hence

2V(x, y, z, w) >= ,X2 +
day2 Aoz2
4ac2 + 2a2c + a-X(w + az + a6y)2.

The case x 0 is trivial, and the verification of the lemma is complete.
LEMMA 2. Under hypotheses (i) to (v) of Theorem 1 there exist positive constants

D5 and D6 depending on a, b, c, d, e, eo, Ao, such that if (x, y, z, w) is any solution of
(1.2) with p(t) =_ O, then

where

and

Now

y2y, z, w) < (D5 + D6z2).

Proof A straightforward calculation gives that, for the case z :# 0,

-(/= V, + V5 + [d- h’(x)]a-lyz + V6,

h’(x)Jy >= eg(Y--)y + [d- h’(x)]y

V5 [b fia g’(y)a-1]z2 >_ AoZ2
ac

f(z)
b z + 6y

z - 2 - b] y

V,, + [d h’(x)]a-yz >= eg(Y-----y + [d- h’(x)]
Y

Therefore

[d-h’(x)] (Ao_)1)" < e
g(y)

y2 + Z2
Y 4a2 ea

By hypotheses (ii) and (v),

V7 = Ao
ea-

[d- h’(x)] >_ Ao
ac 4a2 ac

Again, by hypotheses (v),

Therefore

g(y) 1
y 4

> ( eo)C

[d- h’(X)]z2"
4a2

Z2 -Jr- -- -b2aAo Ao
4a2c >

4ac"
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and

(2.2) 12 AOZ2 (/3 0)cY2

4ac

The case z 0 is trivial, and the verification of the lemma is complete.

3. Proof of Theorem 1. To prove (1.3) we proceed by a method originated by
Barbashin [2] and used by Cartwright, Ezeilo and others. It is obvious that

V(x, y, z, w) 0 if and only if x2 + y2 + z2 + W2 0,

(3.1) V(x, y, z, w) > 0 if and only if x2 -F y2 + z2 + W2 > 0,

V(x, y, z, w) --, o if and only if x2 + y2 + z2 _+_ W2 _. ct3.

Let 7 denote a trajectory Ix(t), y(t), z(t), w(t)] of (1.2) with p(t) O, such that at
0, x Xo, y Yo, z Zo, w Wo, where (Xo, Yo, Zo, Wo) is an arbitrary point

in the x, y, z, w-space from which motions may originate. Then by Lemma 2,
for >= 0,

V(x, y, z, w) V[x(t), y(t), z(t), w(t)] V(t) V(0).

Moreover, V(t) is nonnegative and nonincreasing and therefore tends to a non-
negative limit, V(oe) say, as t--. oe. Suppose that V(oe)> 0. Consider the set
S {(x, y, z, w)lV(x, y, z, w) < V(xo, Yo, Zo, Wo)}. By (3.1) we know that S is
bounded, and therefore the set c S is also bounded. Moreover, the nonempty
set of all limit points of , consists of whole trajectories of

(3.2) 2=y, 3=z, :/= w, = -aw-f(z)-g(y)-h(x)

lying on the surface V(x, y, z, w) V(oe). Thus if P is a limit point of 7, then there
exists a half-trajectory, say 7p of (3.2), issuing from P and lying on the surface
V(x, y, z, w) V(oe). Since for every point (x, y, z, w) on 7p we have V(x, y, z, w)
>__ V(oe), this implies that 17 0 on 7p. Also, by (2.2) 12 0 implies that y z 0;
and by (3.2) and hypotheses (ii) this means that x 0. Thus the point (0, 0, 0, 0)
lies on the surface V(x, y, z, w) V(oe) and hence V(oe) 0. This completes the
proof of Theorem 1.

4. Proof of Theorem 2. The proof is based on a method devised by
Antosiewicz [3]. Using the same function V(x, y, z, w) as in the proof of Theorem 1,
we have that, for the system (1.2),

l? < -(Osy2 + D6z2) + (a-lw + z + 6y)p(t).

If O7 max (a- 1, 1, 6), then

f/ <-_ DElwl / Izl / lyl]lp(t)l

and since Iwl 1 + W2 and so on, it follows that

? =< D713 + w2 + z2 + yZ]lp(t)l.

Putting D8 3D7, D9 min (D1,D2,D3,D4) Do D’7/D9 we obtain- DloVIp(t)l D8lp(t)l,
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and

where

V(t) <= (V(O)

But K(t) <_ 1; therefore

and

This proves Theorem 2.

+ Ds Ip(s)lK(s) ds K- l(t),

K(t)--exp -Do ]p(s)l ds

V(t) <= {V(0) + ADs} exp ADo

V(O) V(xo, yo, Zo, Wo).
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MONOTONEITY PROPERTIES OF SOLUTIONS OF
HERMITIAN RICCATI MATRIX DIFFERENTIAL EQUATIONS*

WILLIAM T. REID]"

1. Introduction. The results of this paper center around certain monotoneity
properties possessed by the solutions of matrix differential equations involving an
n-dimensional Hermitian Riccati matrix differential operator

KIWI W’ + WA(t) + A*(t)W + WB(t)W- C(t),

with B(t) and C(t) Hermitian n n matrix functions. In particular, the results
obtained include theorems on the existence and range of extensibility of solutions
which are Hermitian nonnegative, together with results on the behavior ofsolutions
and allied functions when the linear Hamiltonian system associated with KIWI 0
is subjected to a particular type of linear transformation. A special application of
such properties is made to the study of a class of first order matrix differential
equations involving with KIWI an additional function, in general nonlinear, and
which is monotone on the class of nonnegative Hermitian matrices. Also, earlier
work of the author [7], [8], [9], [11] on the e,xistence and nature of distinguished
solutions ofKIWI 0 is elaborated in two important cases involving assumptions
of normality that are of intermediate strength. Finally, the concluding section is
devoted to brief comments on relationships between the results of this paper and
those of recent papers by Bucy [2], [3] and Wonham [14].

Matrix notation is used throughout; in particular, matrices of one column are
termed vectors, and for a vector y (y), a 1,..-, n, the norm lYl is given by
(lyll 2 + + ly,]2)1/2; the linear vector space of ordered n-tuples of complex
numbers, with complex scalars, is denoted by ,. The n n identity matrix is
signified by E,, or by merely E when there is no ambiguity, while 0 is used in-
discriminately for the zero matrix of any dimension; the conjugate transpose of a
matrix M is denoted by M*. IfM is an n x n matrix the symbol viM] is used for the
maximum oflMyl on the unit ball {yl lyl =< 1 } in E,. The notationM => N (M > N)
is used to signify that M and N are Hermitian matrices of the same dimensions and
M- N is a nonnegative (positive) definite Hermitian matrix. If an Hermitian
matrix function M(t), s I, is such that M(s)- M(t) __> 0 (__<0) for (s, t)s I I,
s < t, then M(t) is termed nonincreasing (nondecreasing) Hermitian on I. If the
elements of a matrix M(t) are a.c. (absolutely continuous) on an interval [a, hi,
then M’(t) signifies the matrix of derivatives at values for which these derivatives
exist and the zero matrix elsewhere; correspondingly, if the elements of M(t) are

(Lebesgue) integrable on [a, b] then M(t) dt denotes the matrix of integrals of

respective elements of M(t). If M(t) and N(t) are equal a.e. (almost everywhere) on
their domain of definition we write simply M(t) N(t). A matrix function M(t) is
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196 WILLIAM T. REID

called continuous, integrable, etc., when each element of the matrix possesses the
specified property. Also, M(t) issaid to be locally a.c. on an interval I if it is a.c. on
arbitrary compact subintervals [a,b] of I. If M [Mj], N [Nag],

1, ..., n, j 1,-.., r, are n r matrices, for typographical simplicity the
symbol (M; N) is used to denote the 2n r matrix whosejth column has elements
MI,..., M,, NI,-.., N,.

For a given compact interval [a, b] on the real line the symbols ,r[a, b],
5(’[a, b] are used to denote the classes of n r matrix functions M(t) [M(t)],

1, ..., n, fl 1, ..-, r, which on [a, b] are respectively (Lebesgue) integrable,
(Lebesgue) measurable and essentially bounded. Also, for brevity the symbols
5,[a, b],5[a, b] are written for the respective classes designated by indices n, r 1.

2. Related Riccati equations and linear differential systems. In the following
we shall be concerned with a Riccati matrix differential equation

(2.1) KIWI =_ W’ + WA(t) + A*(t)W + WB(t)W- C(t)= O, t I,

where on a given interval I on the real line the n n coefficient matrix functions
satisfy the following hypothesis:
YO A(t), B(t), C(t) are of class ,,[a, b] on arbitrary compact subintervals [a, b]

of I, while B(t) and C(t) are Hermitian for I.
Intimately related to (2.1) is the linear Hamiltonian vector differential system

L[u, v](t) -= -v’(t) + C(t)u(t) A*(t)v(t) O, I,
(2.2)

L2[u, v](t) u’(t) A(t)u(t) S(t)v(t) O, 6 I,

and the corresponding matrix differential system

LI[U, V](t) V’(t) + C(t)U(t) A*(t)V(t) O, 6 I,
(2.2M)

L2[U, V](t) U’(t) A(t)U(t) S(t)V(t) O, 6 I,

in general n x r dimensional matrix functions U(t), V(t).
If y (y), a 1,..., 2n, with y u, y,+ v, 1,..., n, then (2.2)

may be written as the 2n-dimensional vector differential equation

(2.2’) 5y](t) fy’(t) + (t)y(t) O, I,

where f and ez’(t) are the 2n x 2n matrices

f E, -A(t) -B(t) d"

As ’(t) is Hermitian, and f is skew-Hermitian, the vector differential operator
[y](t) is identical with its formal Lagrange adjoint L.W*[y](t)=-f*y’(t)
+ *(t)y(t). Correspondingly, if Y(t) (Yj(t)), a 1,..., 2n, j 1,..., r, with
Yj(t) Uj(t), Y,+,j(t) Vj(t), then (2.2M) may be written as

(2.2) [Y](t) Y’(t) + (t)Y(t) O, I.

The following interrelations between (2.1) and (2.2M) are well known (see, for
example, Reid [8, 2] and [9, II]).
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LEMMA 2.1. A solution W W(t) of(2.1) exists on a nondegenerate subinterval
Io of I if and only if there is a solution Y(t) (U(t); V(t)) of (2.2t) such that U(t)
is nonsingular on Io and W(t)= V(t)U-1(0.

If y(t)= (us(t); v(t)), a 1, 2, are solutions of (2.2) it follows readily that
the function {u,; vlu2; v2}(t)- v*3(t)u(t)- u$(t)v(t)- y’y is constant on I;
in particular, if the constant value of {u; vllu2 v2} is zero then (ul(t); va(t)) and
(u2(t); v2(t)) are said to be (mutually) conjoined solutions of(2.2). If Y(t) (U(t); V(t))
is a solution of (2.2M) whose column vectors are n linearly independent solutions
of (2.2) which are mutually conjoined, then for brevity we say that (t) is a con-
joined basis for (2.2). If Y(t) (U(t); V(t)) is a solution of (2.2M) with U(t) non-
singular, and W(t) V(t)U-(t), it follows readily that {U; VIU; V}(t)

U*(t)[W*(t) W(t)]U(t), and consequently we have the following result.
LEMMA 2.2. If W W(t) and Y(t)= (U(t); V(t)) are solutions of (2.1) and

(2.2M), respectively, which are related as in Lemma 2.1, then Y(t) is a conjoined
basis for (2.2) ifand only if W(t) is Hermitianfor Io.

Now if W Wo(t) is a solution of (2.1) on a subinterval Io of I, and for s Io
the matrix functions G(t)= G(t, slWo), H(t)= H(t, slWo) are determined as the
solutions of the differential systems

(2.3a)

(2.3b)

and

(2.4)

G’ + (A* + WoB)G O,

H’ + H(A + BWo)= O,

6(s) E,

H(s) E,

(R)(t, s[ Wo) H(r, s[ Wo)B(r)G(r, s[ Wo) dr,

then from Lemma 2.1 of Reid [8] it follows that a matrix function W(t) is a solution
of (2.1) on Io if and only if the constant matrix F W(s)- Wo(s) is such that
E + (R)(t, sl Wo)F is nonsingular on Io, and

(2.5) W(t) Wo(t) + G(t, s[ Wo)F[E + (R)(t, sl Wo)F]- 1H(t, s] Wo).

In particular, if Uo(t) is the solution on Io of the matrix differential system

U’o(t) [A(t) + B(t)Wo(t)]Uo(t), Uo(s) E,

then Yo(t) (Uo(t); Vo(t)), with Vo(t) Wo(t)Uo(t), is the solution of (2.2M) satisfying
the initial condition Yo(s) (E; Wo(s)); moreover, the corresponding solution of
(2.3b) is given by H(t, sl I4/o) Uo(s)U (t). Also, if Wo(t) is an Hermitian solution
of (2.1) so that the above defined Yo(t) (Uo(t); Vo(t)) is a conjoined basis for (2.2),
then G(t, sl Wo) U*(t, s] Wo), and

(2.6) (R)(t, sl Wo) Uo(s)S(t, s; Uo)U*o(s),

where S(t, s; Uo) is the Hermitian matrix function

(2.7) S(t, s; Uo) U l(r)B(r)U*o ’(r) dr.
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It is to be remarked that if B(t) >= 0 for a.e. on a subinterval [s, Sl] of Io then
S(t, s; Uo) >= 0 for e Is, sl]. These relations, together with elementary algebraic
transformations, yield the following result.

LEMMA 2.3. Suppose that W Wo(t) is an Hermitian solution of (2.1) on a
subinterval Io of I, and that Yo(t)= (Uo(t); Vo(t)) is the corresponding conjoined
basis for (2.2) determined by the initial condition Yo(s) (E; Wo(s)), where s Io.
Then W(t) is a solution of (2.1) on Io if and only if the matrix F1 U*o(s)[W(s)

Wo(s)] Uo(s) is such that E + S(t, s; Uo)F1 is nonsingular on Io, and

(2.8) W(t) Wo(t) + U*o ’(t)r lIE + S(t, s; Vo)F 13-1V- t(t), 6 Io.
COROLLARY. Suppose that B(t) >= Ofor a.e. onasubinterval [a, b] ofI, W Wo(t)

is an Hermitian solution of (2.1) on [a, b], and W(t) is a solution of(2.1) such that
W(a) >= Wo(a)(W(a) > Wo(a)). Then the interval of existence of W(t) includes
[a, b] and W(t) >= Wo(t)(W(t) > Wo(t)) for [a, b].

If W(a) > Wo(a), then V1 U*o(a)[W(a) Wo(a)]Uo(a) > 0, and the result is
a ready consequence of (2.8) for s a and Io [a, b], since F-1 + S(t, a; Uo)
>= F]- > 0 for [a, b], and IF]- + S(t, a; Uo)]- FI[E + S(t, a; Uo)rl]- 1.
Now if we have merely W(a) Wo(a) >- O, for e > 0 let W(t;e) be the solution of
(2.1) satisfying the initial condition W(a; e) W(a) + eE. Then by the result just
established the interval of existence of W(t; e) includes [a, b], and W(t; e) > Wo(t)
for e > 0, e [a, b]. Indeed, if 0 < el < e2, then application of this result with
Wo(t) replaced by W(t; el) and W(t;e) replaced by W(t; e2) yields the result that
Wo(t) < W(t e 1) < W(t; 2) for 0 < 1 < e2 and [a, b]. From this boundedness
condition it then follows that for eo > 0 the family of solutions W(t;e), 0 < e <= So,

[a, b], of (2.1) is uniformly bounded and equi-continuous. Consequently, by the
Ascoli theorem there is a monotone decreasing sequence (e,} converging to zero,
and such that { W(t;e,)} converges uniformly on [a, b] to a limit matrix function
#(t), which is such that #(t) => Wo(t) for t [a, b], and by a classical argument
W # (t) is a solution of (2.1) on [a, b]. Since #(a) W(a) it then follows that
W(t) #(t) for [a, hi, so that the interval of existence of W(t) includes [a, b]
and W(t) >= Wo(t) for [a, b].

Now (2.1) may also be written as

W’= (E; W)*zC’(t)(E; W) + (W* W)[A(t) + B(t)W].

In particular, if W(t) is an Hermitian solution of this equation on a subinterval Io,
then W’= (E;W)*(t)(E;W)and

(2.9) W(t) W(s) + (E; W(r))*(r)(E; W(r)) dr for (s, t) Io x Io.

Also, if W(t) is an Hermitian solution on Io and g(0 (U(t); V(t)) is a conjoined
basis for (2.2) such that W(t)= V(t)U-I(t), then U*(t)W’(t)U(t)= Y*(t)s’(t)Y(t)
for e Io. Moreover, with the aid of (2.2’) it is immediate that Y*s’Y’ + Y*’s’Y

Y*s’[.CsY] + [-Y*s’oC]s’Y 0. Therefore, if s/(t) is locally a.c. on Io
then U*(t)W’(t)U(t) is also locally a.c. on this interval and [U*(t)W’(t)U(t)-I’

g*(t)s’(t)Y(t) for a.e. on Io, so that

(2.10) W’(t) U*- l(t)[U*(s)W’(s)U(s) + Y*(r)/’(r)Y(r) dr]U-l(t)
for (s, t) Io Io.
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In particular, (2.9) and (2.10) imply the following results.
THEOREM 2.1. If W(t) is an Hermitian solution of(2.1) on a subinterval Io of I,

and Y(t) (U(t); V(t)) is a conjoined basisfor (2.2) such that W(t) V(t)U- 1(0, then:
(a) /f ’(t) >= 0 ((t) =< 0)for a.e. on Io, then W(t) is a nondecreasing (non-

increasing) Hermitian matrix function on Io
(b) if (t) is locally a.c. on Io with /’(t) >= 0 (/’(t) <= O) for a.e. on Io,

then U*(t)W’(t)U(t) is a nondecreasing (nonincreasing) Hermitian matrix function
on Io ;in particular, if s Io and

w’(s) W(s)A(s) A*(s) W(s) W(s)n(s) W(s) + C(s)

satisfies W’(s) >= 0 (W’(s) <__ 0), then W(t) is a nondecreasing (nonincreasing)
Hermitian matrix function on Io+(S) {tit Io, >= s}.

For the special important case in which A (t) 0 and B(t) is positive definite
the system (2.2) is equivalent to the second order differential equation [R(t)u’(t)]’
-C(t)u(t) 0, where R(t)= B-l(t)> 0. In this instance ’(t)= diag {C(t);
-R-l(t)} and (t) =< 0 if and only if C(t) <= 0; moreover, if B(t) and C(t) are
locally a.c. then "(t) >__ 0 (’(t) __< 0) if and only if C’(t) >__ 0 and R’(t) __> 0
(C’(t) <_ 0 and g’(t) <_ 0).

For a nondegenerate subinterval Io of I, let A(Io) denote the linear space of
n-dimensional vector functions v(t) which are solutions of v’(t) + A*(t)v(t) 0,
and B(t)v(t) 0 for Io clearly v A(Io) if and only if u(t) =- O, v(t) is a solution
of (2.2) on Io. If A(Io) is zero-dimensional then (2.2) is said to be normal on Io,
or to have abnormality oforder zero on Io, whereas if A(Io) has dimension d d(Io)
> 0 the system (2.2) is said to be abnormal, with order of abnormality d on Io.
A system (2.2) is said to be identically normal if it is normal on every nondegenerate
subinterval Io of I. If Io It, s], for brevity we write d[r, s] instead of the more
precise d([r, s]), with similar contractions in case Io is of the form Jr, s), (r, s] or
(r, s). For Io a subinterval of I, clearly, 0 __< d(Io)<-n. Moreover, if s I then
dis, t] is an integral-valued monotone nonincreasing function on {tit I, > s}
with at most n points of discontinuity, at each of which dis, t] is left-hand con-
tinuous. In particular, if Jr, s] c I, LE[r/, ](t) 0 for [r, s] with (t) a[r, s]
and v Air, s], then [v*(t)l(t)]’ 0 on Jr, s], and hence v*(t)l(t) is constant on this
interval.

The preceding discussion clearly gives preferential treatment to one ofthe com-
ponent vector functions u(t), v(t), and this is to be expected in view of the individual
roles assumed by these vector functions in such applications as the canonical
accessory differential equations for a variational problem (see, for example,
Bliss [1, Chaps. III, IV]). From the formal point of view, however, one may inter-
change the roles of u(t) and v(t), leading to the differential system

(2.11) .’(t) + (t).(t) O, I,

in if(t) (fi(t); (t)), where

with

(t)
(t) (t) 3’

(2.12) (t) -A*(t), (t) C(t), (t) B(t).
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For brevity, (2.11) will be referred to as the system obverse to (2.2). Clearly ((t); (t))
is a solution of (2.ll) if and only if (u(t);v(t)) ((t); (t)) is a solution of (2.2).
The Riccati matrix differential equation related to (2.11) in the manner that (2.1)
is related to (2.2) is given by

(2.13) g[-I] I’ + l(t) + *(t)l + I(t)l- ((t).
If W(t) is a nonsingular solution of (2.1) on a subinterval [a, b] of I, then W(t)

W-1(0 is a nonsingular solution of (2.13) on this subinterval; in particular,
ft’(t) is positive definite if W(t) is positive definite.

3. Transformations for (2.2) and (2.1). If T(t) is an n n matrix function
which is nonsingular and locally a.c. on I, then under the transformation

(3.1) u(t) T(t)u(t), v(t) T*-l(t)v(t),

the linear differential system (2.2) is equivalent to the system

L][u, v](t) =- -v’(t) + C(t)u(t) A*(t)v(t) O, t6 I,
(2.2

Lz[u, v-1 (t) u’(t) A(t)u(t) B(t)v(t) O, I,

where the matrix functions A(t), B(t), C(t) are defined as

(3.2) A= T-I[AT T’], B= T-’BT*-’, C= T*CT.

If (us(t); v,(t)), a 1, 2, are solutions of (2.2), and (u,(t); v(t)) are the associated
solutions of (2.2) given by the corresponding equations (3.1), then it follows readily
that {ul vllu2; v2}(t) {u];v][u2; vz} (t); in particular, (Ux ;vl) and (u2; v2) are
conjoined solutions of (2.2) if and only if the corresponding (u] v]) and (u3; v)
are conjoined solutions of (2.2).

Corresponding to (2.2 we have the matrix differential system

L][U, V](t) -V’(t) + C(t)U(t) A*(t)V(t) O, t6 I,
(2.2I)

L2[U, V](t) =_ U’(t) A(t)U(t) B(t)V(t) O, I.

Now Y(t) (U(t) V(t)) is a conjoined basis for (2.2) if and only if the corresponding
Y(t) (U(t); V(t)) (T- l(t)U(t); T*(t)V(t)) is a conjoined basis for (2.2). More-
over, if W(t) is a solution of (2.1) and Y(t) (U(t); V(t)) is an associated solution
of(2.2M) such that W(t) V(t)U- 1(0, then for Y(t) (U(t); V(t)) (T- l(t)U(t),
T*(t) V(t)) the associated solution of (2.2), we have that W(t)= V(t)u-l(t)

T*(t) W(t) T(t) is a solution of the Riccati matrix differential equation

(2.1) K[W] =_ W + WA(t) + A*(t)W + WS(t)W C(t) O.

Also, W(t) is an Hermitian solution of (2.1) if and only if the associated W(t)
T*(t) W(t)T(t) is an Hermitian solution of (2.1).
Corresponding to (2.3), for a solution W W(t) of (2.1) we now have the

system

G + (A* + WoB)G O, G(s) E,
(2"3)

H + H(A + BW)= O, H(s) E,
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in G(t) G(t, s[ W), H(t) H(t, s[ W’), and the associated

(2.4) (R)(t, s[ Wo) H(r, s[ W)B(r)G(r, s[ W) dr.

With Wo(t) the solution of(2.1) such that W(t) T*(t)Wo(t)T(t), it may be verified
readily that

(3.3a)

(3.3b)

(3.3c)

H(t, sl W) T- a(s)H(t, sl Wo)T(t),

G(t, s Wo) T*(t)G(t, s Wo)T*- a(s),

(R)(t, s[ W) T- ’(s)(R)(t, s[ Wo)T*- ’(s).

IfZ(t) isa fundamental matrix solution ofZ’ + A*(t)Z 0, then T(t) Z*- (t)
is a fundamental matrix solution of T’ A(t)T 0, and with this choice of T(t)
the matrices of (3.2) are given by

(3.4) A 0, B Z*BZ, C Z- CZ*- .
For brevity, such a T(t) will be referred to as a reducing transformation for (2.2),
and the resulting system (2.2) as a reduced system.

In particular, in terms of the matrix functions B(t), C(t) defined by (3.4)
one has the following result.

LEMMA 3.1. If B(t) >= 0 for a.e. on I, and [a, b] is a compact subinterval of I,
then (2.2) is normal on [a, b] ifand only if

B(t) dt Z*(t)B(t)Z(t) dt > O.

Correspondingly, if C(t) > O for a.e. on 1, then the obverse system (2.12) is normal
on [a, b] if and only if

(3.6) C(t) dt Z-’(t)C(t)Z*-’(t) dt > O.

If(2.1) has order ofabnormality equal to d on a subinterval I(R) of I, let the funda-
mental matrix solution Z(t) of Z’ + A*(t)Z 0 be chosen such that the last d
column vectors of Z(t) form a basis for A(Io). Then T(t) Z*-l(t) is such that
the resulting matrix function B(t) of (3.4) is of the form B(t) diag {/(t);0},
where/(t) is an (n d) (n d) Hermitian matrix function. For brevity, such a

choice of T(t) will be referred to as a preferred reducing transformation for (2.2).
In particular, if C(t) T*(t)C(t)T(t) is written as

l(t) ( 2(t)(3.7) C(t)= (21(t) 22(t)1

where 12(t)= 125,(t) is (n- d) x (n- d), 2(t)= 125,(t) is (n- d) x d and
22(t) 2(t) is d x d, then in terms of the vector functions t/(t)= (u(t)),
(t) (v(t)), a 1,..., n d, and p(t) (u,_e+(t)), a(t) (vn-d+a(t)), fi 1,
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.., d, the vector differential system (2.2) becomes

q’(t) /(t)((t),

(3.8)
p’(t) O,

tel,
(’(t)-- (11(t)q(t) + 12(t)p(t),

a’(t) 2x(t)q(t)+ 22(t)p(t).

Moreover, tl and t2 are conjugate points with respect to (2.2) if and only if these
points are conjugate with respect to the truncated preferred reduced system

(3.9)
r/’(t) (t)(t), I,

’(t) t(t)/(t), I.

Corresponding to (3.9) one has the truncated preferred reduced matrix
system

H’(t) (t)Z(t), I,
(3.9u)

Z’(t) 11(t)H(t), e I,

and the truncated preferred reduced Riccati matrix differential equation

(3.10) f’ + f/(t)f (, ,(t) 0, t6 I.

Indeed, for A(t) O, B(t) diag {/(t); 0}, and C(t) given by (3.7), upon writing
W(t) as the corresponding partitioned matrix

[W] ,(t) W2(t)W(t)=
W.,(t) W.2(t)3

the Riccati matrix differential equation (2.1 ) may be written as the system

(3.11) W 4- WB(t)W (=(t), e I, , fl 1, 2.

Clearly the interval of existence of W(t) is that determined by the equation in
Wig(t) given by a 1, fl 1 in (3.11), which is the truncated preferred reduced
Riccati matrix differential equation (3.10). With the value of Wig(t) determined
the matrix functions W2(t and W2(t) are solutions of related linear matrix
differential equations, and W2(t is obtained by integration.

Now since d is the order of abnormality of (2.2) on Io, it follows that if is a
nonnull (n d)-dimensional vector then/(t) is not the null vector throughout Io.
Moreover, when B(t) >= 0 for a.e. on I we have that correspondingly B(t) >= 0
for a.e. on Io; in particular, if Io is the compact subinterval [a, b] then

’(t) dt O. In the wherein has the order of> special important (2.2)case same

abnormality on all nondegenerate subintervals of I, the corresponding truncated
preferred reduced system (3.9) is identically normal on I.

4. Cpris theorems. Two distinct points t and t on I are said to be
(mutually) conjugate with respect to (2.2) if there exists a solution y(t) (u( t) v( t))
of this differential system with u(t) 0 on the subinterval with endpoints t and
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t2, while u(tl) 0 u(t2). The system is called disconjugate on a subinterval Io of I
provided no two distinct points of this subinterval are conjugate. Moreover, (2.2)
is said to be disconjugatefor large if there exists a subinterval (c, o) of I on which
this system is disconjugate.

For [a, b] c I, the symbol N[a, b] will denote the linear space of n-dimensional
vector functions r/(t) which are a.c. on [a, b], and for which there exists a corre-
sponding (t) [a, b] such that r/’(t) A(t)rl(t) B(t)(t) on [a, b]. The subspace
of [a, b] on which q(a) 0 r/(b) will be designated by No[a, b]. The fact that q(t)
belongs to N[a, b] or o[a, b] with an associated ((t) will be indicated by the re-
spective symbol r/e N[a, b]: ( or r/e Do[a, b]: (. For [a, b]c I and q e N[a, b]: we
shall denote by J[rl;a, b] the functional

(4.1) J[ri a, b] {(*(t)B(t)((t) + rl*(t)C(t)rl(t)} dt.

It is to be noted that if r/ [a, b]:(1 and / [a, b]:(2 then B(t)((t)= B(t)(2(t)
on [a, hi, and the value of the integral in (4.1) is independent of the choice of the
corresponding ((t).

The basic results concerning disconjugacy on a compact subinterval [a, b]
of I, positive definiteness of the functional (4.1) on Do[a, b], and the existence of
Hermitian solutions of the Riccati matrix differential equation (2.1), are given in
the following theorem.

THEOREM 4.1. For [a, b] I, the functional J[r/; a, b] is positive definite on
Do[a, b] ifand only if B(t) >__ O for a.e. on [a, b], and one of thefollowing conditions
holds:

(a) (2.2) is disconjugate on [a, b];
(b) there exists no point s (a, b] which is conjugate to a;
(c) there exists a conjoined basis Y(t) (U(t); V(t)) for (2.2) with U(t) non-

singular on [a, b];
(d) there exists on [a, b] an Hermitian solution W(t) of (2.1).
Moreover, in view of the comparison results that are immediate consequences

ofthe above theorem, one has the following additional results involving differential
inequalities.

COROLLARY. If [a, b] c I, and B(t) >__ 0 for a.e. on [a, b], then (2.2) is dis-
conjugate on [a, b] if and only if one of the following conditions holds:

(i) there exists on [a, b] a nonsingular n x n matrix function U(t) such that
U 6 N[a, b]: V with an a.c. matrix function V(t), while { U; V[ U; V} (t) =_ 0 and
U*(t)L[U, V](t) >= 0 for a.e. on [a, b];

(ii) there exists an n x n Hermitian matrix function W(t) which is a.c. and
satisfies KIWI (t) <_ 0 for a.e. on [a, b].

If (2.2) is identically normal on I, then the proof of the results of Theorem 4.1
and its corollary are particularly simple, and can be established by methods which
are essentially classical for the second order matrix differential equation to which
(2.2) is equivalent when A(t), B(t), C(t) are continuous on I and B(t) is nonsingular.
For a discussion of this case the reader is referred to Reid [6, 2]; for the relation
of such differential systems to problems of the calculus of variations, see also Bliss
[1, 89-91]. For the proof of the above results when no assumptions of normality
are made, reference is made to Reid [9, Theorem 5.1] and [11, Theorem 5.1].
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For a given subinterval [a, b] of I, let .o[a, b] denote the subspace of [a, b]
on which r/(b) 0. The fundamental relation between the existence ofan Hermitian
solution of(2.1) on [a, b] and the extremum of an associated quadratic functional is
presented in the following theorem (see Reid [11, Theorem 5.5]).

THEOREM 4.2. If [a, b] I and Q is a given n x n Hermitian matrix then the
functional

(4.2)
b

Jo.[rl a, b] ri*(a)Qrl(a + {*(t)B(t)(t) + rl*(t)C(t)rl(t)} dt

is positive definite on @.o[a, b] ifand only fiB(t) >_ Ofor a.e. on [a, b], and one ofthe
following conditions holds:

(a) if Y(t) (U(t); V(t)) is the solution of (2.2M) satisfying the initial condition
Y(a) (E; Q), then U(t) is nonsingular on [a, b];

(b) the Hermitian solution W(t) of (2.1) determined by the initial condition
W(a) Q exists on [a, b];

(c) there exists an n x n Hermitian matrix function W(t) which is a.c. on

[a, b] and satisfies the conditions

(4.3) Q >= W(a), KIWI (t) <= 0 for e [a, b].

COROLLARY. If B(t) >= 0 and C(t) >__ 0 for a.e. on a subinterval [a, b] of I and
Q > 0 (Q >= O) then the Hermitian solution W(t) of (2.1) determined by the initial
condition W(a) Q exists on [a, b], and W(t) > 0 (W(t) >= O)for [a, b].

Let Y(t) (U(t); V(t)) be the solution of (2.2u) satisfying the initial condition
Y(a) (E; Q), and consider first the case of Q > 0. If c is a value on (a, b], and rc
is an n-dimensional vector such that either U(c)rc 0 or V(c)rc 0, let (u(t);
v(t)) (U(t)rc; V(t)z). Then (u(t); v(t)) is a solution of (2.2), with either u(c) 0 or
v(c) O, v(a) Qu(a) 0, and

Je[u; a,c] u*(a)Qu(a) + {v*B(t)v + u*C(t)u} dt

u*(a)Qu(a) + u*(t)v(t)

u*(a)[Qu(a) v(a)] 0.

Since Q > 0 and B(t) >= O, C(t) >= 0 for a.e. on [a, c], it follows that u(a) O,
B(t)v(t) 0 and C(t)u(t) 0 on [a, c]. In particular 0 u(a) re, thus showing that
U(t) and V(t) are both nonsingular for e (a, hi. Consequently, W(t) V(t)U- l(t)
is a nonsingular Hermitian matrix on [a, b] so that for e [a, b] all proper values of
W(t) are different from zero. As W(a) Q > 0, all proper values of W(a) are positive,
and hence by continuity throughout [a, b] all proper values of W(t) are positive, and
W(t) is positive definite.

Ifwe have merely Q >= 0, for e > 0 let Q Q + eE and l/V(t) be the solution of
(2.1) satisfying W(a) Q. By the result just established the solution W(t) exists on
[a, b] and W(t) > 0 for [a, b]. Combining this result with that of the corollary
to Lemma 2.3 we have that if 0 < e < e2 then 0 < W,(t) < W(t) for t [a, hi,
and by argument similar to that suggested for the corollary to Lemma 2.3 it follows
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that if W(t) is the solution of (2.1) satisfying the initial condition W(a) Q then
W(t) exists on [a, b] and W(t) W(t) as e 0, so that also W(t) >= 0 for [a, b].

With the aid of the result of the above corollary, one has a ready proof of the
following comparison theorem.

THEOREM 4.3. Suppose that B(t) >= Ofor a.e. on a subinterval [a, b] ofI, and that
W Wo(t) is an Hermitian solution of (2.1) on this subinterval. If C l(t G .nn[a, b]
with Cl(t) _-> C(t) for a.e. on [a, b], and W W(t) is a solution of the Riccati
matrix differential equation

(4.4) KI[W] =_ W’ + WA(t) + A*(t)W + WB(t)W- C,(t)--0

with Wl(a) > Wo(a) (Wl(a) >-_ Wo(a)) then Wl(t) exists on [a, b] and W(t) > Wo(t)
(W(t) >= Wo(t)) for [a, hi.

If we set W(t)= Wo(t)+ W2(t), then KI[W1]- K[Wo] Kz[W2], where
K2[W2] W’2 + W2A2(t) + A3(t)W2 + W2B2(t)W Ce(t), with A2(t)= A(t)
+ B(t)Wo(t), B2(t)= B(t) >_ 0 and C2(t)= C(t)- Co(t) >= 0 for t [a, b], while
W2(a) W(a) Wo(a) >= O, and the conclusion of the theorem is a ready conse-
quence of the result of the above corollary to Theorem 4.2.

Now if W(t) is a nonsingular solution of (2.1) on a subinterval [a, b] of I, then
(t) W- l(t) is a nonsingular solution on this subinterval of the related Riccati
matrix differential equation (2.13) for the system obverse to (2.2); moreover, W(t)
is positive definite if W(t) is positive definite. Consequently, if the conditions of
hold for (2.1) and C(t) >= 0 for a.e. on Io, one has for (2.13) a comparison theorem
corresponding to that ofTheorem 4.3 for (2.1). In particular, this result interpreted in
terms of the original equation (2.1) yields the following result.

COROLLARY. Suppose that C(t) >= 0 for a.e. on a subinterval [a, b] of I, and
that W Wo(t) is a positive definite Hermitian solution of (2.1) on this subinterval.
If B2(t ,,,,[a, b] with B2(t B(t) for a.e. on [a, b], and W= W2(t) is a solution of
the Riccati matrix differential equation

K2[W2] W’2 + W2A(t) + A*(t)W2 + W2B2(t)W2 C(t)= 0

with 0 < W2(a) < Wo(a) (0 < W2(a) =< Wo(a)), then W2(t) exists on [a,b] and
0 < W2(t) < Wo(t) (0 < W2(t) -< Wo(t)) for [a, hi.

For Io a subinterval of I we shall denote by S52(Io) the following condition:
.2(Io) The matrix functions A(t), B(t), C(t) satisfy ., and B(t) >= O, C(t) >= 0

for a.e. on Io.
The following comparison theorem is a consequence of the corollary to

Theorem 4.2, and the combined results of Theorem 4.3 and its corollary, together
with a limit argument similar to that occurring in the proof of the corollary to
Theorem 4.2, to treat the particular case in which we have Wo(a) >= O, but do not
have Wo(a) > O.

THEOREM 4.4. Suppose that hypothesis .2[a, b] holds for a subinterval [a, b] of I,
and that B3(t)e 5,,,,[a, b], C3(t)e 9,,,[a, b] with B3(t) >__ B(t) and C3(t) >- C(t) for
a.e. on [a, b]. If Wo(t) is a solution of (2.1) on [a, b] with Wo(a) >_ O, and W3(t) isa

solution of

(4.5) K3[W3] =- W’3 q- W3A(t) + A*(t)W3 4- W3B3(t)W3 C3(t)-- 0
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satisfying W3(a)> Wo(a) (W3(a)_>- Wo(a)), then W3(t) exists on [a,b] and W3(t)
> Wo(t)(W3(t) >= Wo(t)) for [a, b].

5. A class of monotone matrix differential equations. For brevity, let
denote the class of n n complex-valued matrices, and 93/,+ the subclass of
consisting of the nonnegative definite Hermitian matrices. In the following we
shall be concerned with a matrix differential equation

(5.1) W’ + WA(t) + A*(t)W + WB(t)W- C(t) F(t, W) O,

where F(t, W) is a function on I 9J/n to 9Jn which possesses the following
properties"
-1 (a) F is continuous in W for fixed I;

(b) F is Lebesgue integrable on compact subintervals [a, b] of I for
fixed W 9J/n

(C) If W 9J/n+ then F(t, W) 9Jln+ for I.
In particular, if W(t) is a continuous Hermitian matrix function with W(t) 93l+n
for each on a compact subinterval [a, b] of I, then F(t, W(t)) &’nn[a, b] and
F(t, W(t)) >= 0 for [a, b]. Moreover, throughout this section it will be supposed
that hypothesis .2(I) holds so that in addition to the conditions of. we have that
B(t) >= 0 and C(t) >_ 0 for a.e. on I.

LEMMA 5.1. Suppose that a I, hypotheses -a, b, c and .2(I) hold, and that
W Wo(t) is a solution of(2.1) with Wo(a) >= O. IfW W(t) is a solution of(5.1) on
an interval [a, c)and W(a) > Wo(a), then W(t) > Wo(t) >= 0 for [a, c).

In view of the corollary to Theorem 4.2 we have that the solution W Wo(t)
of (2.1) exists and satisfies Wo(t) >= OfortI+(a)= {tltI,t >= a}.IfW W(t)is a
solution of (5.1) on an interval [a, c) with W(a) > Wo(a) and W(t) >= Wo(t) for on a
subinterval [a, bl] of [a, c), then C(t) C(t) + F(t, W(t)) >= C(t) for [a, b],
and from Theorem 4.3 it follows that W(t) > Wo(t) for [a, b]. Therefore, W(t)
> Wo(t) for all [a, c).

For further considerations it will be supposed that the function F(t, W)
satisfies some of the following additional conditions". (d) the solution of (5.1) satisfying given intial data is unique; that is, if

(t, W) I 992n there is a unique solution W W(t; , W) of(5.1)
such that W(t) W;

(e) if 0 =< W =< W2, then 0 =< F(t, W) <_ F(t, W2);
(f) there exist nonnegative real-valued functions/(t), #2(0 which are

Lebesgue integrable on arbitrary compact subintervals of I, and

(5.2) v[F(t, W)] =< #,(t) + #2(t)v[W] for (t, W) I 9J/n.

Condition . 1-e is a rather restrictive condition, which is not satisfied by such
a simple function as F(t, W) Wz. On the other hand, all the conditions (a)-(f)
of . are satisfied by such a function as F(t, W) Fo(t) + G*(t)WG(t), where

2Fo(t) >= 0 for a.e. on I and Fo(t) &’nn[a, b], G(t) nn[a, b] for arbitrary compact
subintervals [a, b] of 1. These conditions also hold for a nonlinear functional
such as Fk(W) k[ WI(E + kiWI)- E (E + kiWI)- for k a positive integer
and WI the nonnegative Hermitian square root matrix of W*W. Indeed,
0 <= Fk(W) <= E, and consequently conditions (a)-(f) of -1 also hold for F(t, W)
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=1 ckk(t)Fk(W), where bk(t) are nonnegative Lebesgue measurable functions
on I such that b(t)= =1 bk(t) is Lebesgue integrable on arbitrary compact
subintervals [a, b] of I.

TI-IOREM 5.1. Suppose that a I, hypotheses x-a, b, c, d and .2(I) hold, and
that W Wo(t) is a solution of (2.1) with Wo(a) >= O. If W W(t) is a solution of
(5.1) on an interval [a, c) and W(a) >__ Wo(a), then W(t) >= Wo(t) >= 0 for [a, c).

For e > 0, let W W(t;e) be the solution of (5.1) satisfying the initial con-
dition W(a; e)= W(a)+ eE. If [a, c(e)) is the maximal right-hand interval of
existence of W(t;e), then from Lemma 5.1 we have that W(t;e)> Wo(t) for
te [a, c(e)). Moreover, from well-known continuity properties of solutions of
ordinary differential equations (see, for example, Coddington and Levinson
[4, Chap. 2]), we have that if b [a, c) then [a, b x] c [a, c(e)) for e sufficiently small,
so that W(t;e)---} W(t)on[a, bx]ase 0, and hence W(t) >= Wo(t) >= Oforte[a,c).

THEOREM 5.2. Suppose that a I, hypotheses fO x-a, b, c, d, e and 2(I) hold, and
that W= Wo(t)isasolutionof (2.1)with Wo(a) >= O. IfO <= Qx <= Q2andW= W(t),
o 1, 2, is the solution of (5.1) satisfying the initial condition W(a) Wo(a) + Q,
and with maximal right-hand interval of existence [a, ca), then c2 <= c and

W2(t) > Wx(t) >= Wo(t) >= 0 forte [a, c2).

Moreover, if 0 < Q or Q < Q2, then the respective relation Wx(t) > Wo(t) or

W2(t) > Wl(t) holds for [a, c2).
From the corollary to Theorem 4.2 it follows that the solution W Wo(t) of

(2.1) exists and satisfies the condition Wo(t) >= 0 for tI+(a)= {tltI, > a).
From the results of Lemma 5.1 and Theorem 5.1 it then follows that if W W(t)
is the solution of (5.1) satisfying W(a) Wo(a) + Q, with Q >_ 0, then the relation
W(t) >= Wo(t) >= 0 holds for [a, c), where [a, c) is the right maximal interval of
existence of W(t), and W(t) > Wo(t) for t [a, c) whenever Q > 0. Now suppose
that 0 =< Q1 =< Q2, and W= W(t), 1, 2, is the solution of (5.1) with W(a)

Wo(a) + Q, and denote by [a, c,) the right maximal interval of existence of
W(t). Then ff’(t) W2(t) W(t) is a solution of the matrix differential system

(5.4) if" + ff’2(t) +/*(t)l + l/(t)l- Fz I O, l/ a Q2 Q1,

where fl A + BW, F2(t, ) V(t, Wl(t) + I) F(t, W(t)). Since the matrix
function Fz(t, if’) satisfies conditions .-a, b, c, application of the result of Lemma
5.1 to W l(t) and the solution lo(t) 0 of the corresponding Riccati system

(5.40) , + Io(t)q-*(t)I’o + ]YtroB(t)lY/o 0, o(a) 0,

yields the conclusion that I(t) >= 0 for e [a, c) f’l [a, c2), and indeed (t) > 0
for on this interval if (a)= Q2- Q > 0. That is, the conclusions of the
theorem have been established for [a, c ) f’l [a, c2). Now if [a, c ) were a proper
subinterval of [a, c2) then c would be an interior point of I, the relation 0 =< Wl(t)
-< Wz(t) would hold on [a, Cl), with W2(t) continuous and satisfying 0 __< W2(t)
on [a, c2), so that Wx(t) would remain bounded as -* c-, a condition which
contradicts the assumption that [a, c ) is the right maximal interval of existence of
W(t) (see, for example, Coddington and Levinson [4, Chap. 2]). Consequently,
we have that c1 >= c2, thus completing the proof of the theorem.
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THEOREM 5.3. Suppose that hypotheses l-a, b, c, d, e and 2(I) hold, and
that W Wo(t) is a solution of(2.1) on I +(a) with Wo(a) >= 0; moreover, that Q >__ 0
and the solution W W(t) of(5.1) satisfying the initial condition W(a) Wo(a) + Q
has right maximal interval of existence [a, c). If {Q,} is a sequence of nonnegative
Hermitian .matrices such that

O <- <- Q2 < < with {Qm}--- o as m ,
and W Win(t) is the solution of the differential system

(5.6.m)

form= 1,2,

W’ + WA(t) + A*(t)W + WB(t)W- C(t) F(t, Win-1)= 0,

W(a) Wo(a) + Qm,

.., then

(5.7a) Wo(t) <= W(t) <_... <= Wm_l(t <= Wm(t <="" for t I+(a),

(5.7b) {Win(t)} --* W(t) for a, c).

From Theorem 5.1 it follows that 0 =< Wo(t) =< W(t) for t 6 [a, ). Moreover,
since Wo(t) has right maximal interval of existence I+(a) and Wo(t) >- 0 on this
interval, we have F(t, Wo(t)) >- 0 for t6 1 +(a), and from Theorem 4.3 it follows
that the solution W W(t) of the system (5.6.1) exists on I+(a) and satisfies
0 <_ Wo(t) <- Wl(t). Moreover, since Theorem 5.1 implies that 0 _< Wo(t) =< W(t)
for [a, c) we have that 0 _<_ F(t, Wo(t)) <- F(t, W(t)) for [a, c), and as W(a)

Wo(a) + Q => Wo(a) + Q1 => 0 it follows with the aid of Theorem 4.3 that
Wl(t) =< W(t) for t [a, c). By induction it follows that 0 <_ Win-(t) <-- W,,(t) for
6 1 +(a) and Wm(t) <-- W(t) for 6 [a, c). Consequently, { Win(t)} is a monotone

nondecreasing sequence of Hermitian matrix functions satisfying Win(t)<= W(t)
for t [a, c), and hence (see, for example, [12, p. 263]), there exists an Hermitian
matrix function #(t) such that #(t)=< W(t) and {Win(t)} #(t) for t [a, c).
Now from the differential equation satisfied by W,,(t), and the fact that 0 =< F(t,
W,,_ x(t)) <-_ F(t, W(t)) for [a, c), it follows that if [a, b] is a compact subinterval
of[a, c), then the family ofmatrix functions { Wm(t)}, [a, b],is uniformly bounded
and equi-continuous, and consequently the convergence of {W,,(t)} to IV(t) is
uniform on each such [a, b] [a, c]. Consequently, #(t) is a solution of (5.1) on
[a, c) satisfying the initial condition #(a)= Wo(a)+ Q, and hence conclusion
(5.7b) holds, thus completing the proof of the theorem.

Finally, we shall establish the following continuation theorem.
THEOREM 5.4. Suppose .that hypotheses 79 l-a, b, c, d, e, f and .2(I) hold, and that

W Wo(t) is a solution of(2.1) with Wo(a) >= O. IfQ >_ 0 and W W(t) is the solution
of (5.1) satisfying the initial condition W(a) Wo(a) + Q, then the right maximal
interval ofexistence of W(t) is I + (a).

Since B(t) >= 0 for a.e. on 1 it follows from the differential equation (5.1)
that if the right maximal interval of existence of W(t) is [a, c) then

0 <= W(t) <_ W(a) + f [C(s)- W(s)A(s) A*(s)W(s) + F(s, W(s))] ds
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for t [a, c), and as v[C(s)]E >= C(s), (I(S) + [22(s)v[W(s)])E F(s, W(s)) and
2v[W(s)]v[A(s)]E >__ W(s)A(s)- A*(s)W(s), it follows that

v[W(t)] <= v[W(a)] + (bto(S) + 3(S)v[W(s)]} ds for t [a, c),

where #o(t) --/ 1(0 + v[C(t)],/3(t) /2(t) + 2viA(t)]. By the Gronwall inequality
it then follows that

v[W(t) __< v[W(a) + (s) ds exp a(s) ds for e [a, c).

Consequently, if c were an interior point of I it would follow that W(t) remains
bounded as c-, so that c could not be the endpoint of the right maximal
interval of existence of W(t), and hence the right maximal interval of existence of
W(t) is I +(a).

6. Systems disconjugate for large t. When I is an interval of the fo [a, ),
and (2.2) is disconjugate for large t, then one has the existence of a principal solution
Y(t) (U(t); V,(t)) of (2.2M) at (see Hartman [5], Reid [7]) and the corre-
sponding distinguished solution at of (2.1) given by W,(t) V,(t)U t(t) for
in a neighborhood of (see Sandor [13], Reid [8], [9]). As in the case of the results
of Theorems 4.1 and 4.2, these results are relatively easy to establish when (2.2) is
identically normal, but considerably more complicated to prove when no assump-
tions of normality are imposed.

We shall proceed to discuss here two important cases involving assumptions
of normality of intermediate strength. For brevity, the notations + (I) and -(1)
are introduced for the following conditions"
+(I) I is an open interval, and for s I there exists a b(s) I such that

s < b(s) and (2.2)is normal on Is, b(s)].
-(I) I is an open interval, and for s s I there exists an a(s) I such that

a(s) < s and (2.2)is normal on [a(s), s3.
An equivalent formulation of+ (I) is that d(I + (s)) 0 for arbitrary s I. In terms
of the preferred reducing transformation introduced at the end of 3, if B(t) 0
for a.e. on I the condition +(I) might also be phrased as the condition that for
s I there exists a b(s) I such that s < b(s) and the matrix B(t) of(3.4) belonging to

a preferred reducing transformation is such that B(t)dt > 0 if be I and

b b(s). The corresponding equivalent formulations of -(I) will not be stated
specifically, as they should be obvious to the reader. In particular, the following
theorem generalizes the result of Theorem 5.1 of Reid [8, and is a ready conse-
quence of the argument used to establish Theorem 5.3 of Reid [9].

THEOREM 6.1. Suppose that (2.2) satisfies hypothesis on I (-, ),
B(t) Ofor a.e. on I, and (2.2) is disconjugate on I. For r I let (t) (U(t); (t))
be the conjoined basis for (2.2) satisfying U(r) O, V(r) E. If condition +(I)
holds thenfor s I and r > b(s) the trix U,(t) is nonsingularfor I-(s) {t]t I,

s} and (t) (t)U i(t) tends to a limit W(t) as r for I, and W,(t)
is the distinguished solution of (2.1) at . Correspondingly, if -(I) holds then for
s61 and r < a(s) the matrix U(t) is nonsingular for t I+(s) {tit I, s} and
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W(t) V(t)U x(t) tends to a limit W-o(t) as r -oo for I, and W-oo(t) is the
distinguished solution of (2.1) at

For the further discussion of solutions of Riccati matrix differential equations
(2.1) we shall suppose that the following hypothesis of intermediate strength is
satisfied.
.(-, ) The n x n matrix functions A(t), B(t), C(t) satisfy hypothesis. on I (- , ), B(t) >= 0 for a.e. on I, and there exists a nonnegative

integer d such that d[a, b] d for arbitrary [a, b] (-, ).
In all cases the argument will be presented for the case d > 0, since in the alternate
case of identical normality the results are well known, and arguments simplify
through the nonexistence of certain matrices. For such systems there is an n x d
matrix Vdo(t) which satisfies Vd’o(t) + A*(t)Vdo(t) 0, B(t)Vdo(t) 0for (-- , ),
and such that the column vectors of Vo(t) form a basis for A(Io), where Io is any
nondegenerate subinterval of I.

For s 6 I, let A(s) Vdo(S)[Vo(S)Vdo(S)]-/2, where [Vo(s)Vdo(S)]-/2 denotes
the inverse of the positive definite square root matrix V’o(S) Vdo(S)] /2 of the positive
definite d x d Hermitian matrix Vo(S)Vdo(S) (see, for example, [12, pp. 263-265]).
Then Vd(t)= Vdo(t)[V’o(S)Vdo(S)]-/2 is an n x d matrix function whose column
vectors form a basis for A(Io) on arbitrary nondegenerate subintervals Io of I,
and Vd(S)- A(s) where A*(s)A(s)= Ed. Moreover, let Q(s) be an n x (n d)
matrix such that A*(s)Q(s)= 0 and Q*(s)Q(s)= E,-d, so that for s 6 (a, ) the
n x n matrix [Q A(s)] is unitary ;in particular, the matrix Q(s) may be chosen to be
locally a.c. on [a, ), although this property will not be used in the following
discussion.

Let YEa(t) (U2(t); VEt(t)) be the solution of (2.2u) determined by the initial
conditions U2(s) A(s), VE(S) 0; as V(t)U2(t) is constant on I, the value of
this matrix function is V(S)UE(S) A*(s)A(s) Ed. Now if s and r are distinct
points on I, the hypothesis that (2.2) is disconjugate on this interval implies that
there is a unique solution Y,(t) (U,(t); V,(t)) of (2.2u) which satisfies the initial
conditions

(6.1) Us,(s) Q(s), Usr(r) 0, A*(s)Vr(s) 0.

Moreover, as in the proof ofTheorem 5.3 of Reid [9], ifa <
it follows that U*,(s)V,(s) > U*,3(s)V3(s > U*r2(s)V2(s). Consequently,
U*,(s) V(s) Q*(s) V,(s) is a monotone nondecreasing bounded family ofHermitian
matrices for r (s, oo), and hence there exists an Hermitian matrix H such that
Q*(s)Vr(s) H as r oo. Moreover, as A*(s)V(s) 0 and [Q(s) A(s)] is non-
singular, it follows that Vo lim,_ooV(s) exists, A*(s)Voo 0, Q*(s)voo is
Hermitian, and Q*(s)V,(s) > Q*(s)Voo > Q*Vr(s)for a < rl < s < r <

THEOREM 6.2. Suppose that (2.2) satisfies hypothesis (-oo, oo) and is dis-
conjugate on the interval I (a, oo), and for s I the n x (n d) matrix Vo has
been determined as indicated above. If Yoo(t) (Uoo(t); V’oo(t)) is the solution of
(2.2M) satisfying the initial condition Y’oo(S) (Q(s); Voo), and Yoo(t) (Uoo(t);
Vo(t)) with Uoo(t)= [Uo(t) U2,(t)], V(t)= [V,(t) V2(t)], then:

(i) Yo(t) is a conjoined basis for (2.2) with Usoo(t) nonsingular on I, and
V’(t)U,(t) 0 for I correspondingly, W(t) Voo(t)U-(t) is an Hermitian
solution of (2.1) satisfying A*(s)Woo (s) 0.
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(ii) Yo(t) is a principal solution of (2.2M) at , and W(t) is a distinguished
solution of (2.1) at , in the sense of Reid [9]; that is, if

(6.2)

and

(6.3)

S(t, s; Usoo) U[(r)B(r)U* (r) dr,

O(t, sl I/V) Us (s)S(t, s; Uso)U*o(s),

then the E. H. Moore generalized inverse (R)#(t, s[ Wo) of (R)(t, slW) tends to 0 as

As V(t)U(t)= 0 and B(t)(t)= 0 for t I, there exists an n x (n- d)
matrix O(t)such that

[ O(t)] forte/"(6.4) U(t)
V(t)d

consequently U-[(r)B(r)U* (r) diag {O*(r)B(r)Os(r);O}, and

(6.5) S(t,s; Voo) diag {(t, s; Voo); 0},
where S(t, s[ Uoo) is the (n d) x (n d) matrix function

(6.6) (t, s; Uo) O*(r)B(r)Os(r) dr.

Moreover, if Y;(t) (U;(t); V;(t)) is the solution of (2.2M) determined by
the initial condition Y3(s (0; Q(s)), and Y3s(t) (U3(t) Van(t)) is the solution of
(2.2M) with U3(t) [U;(t) Uzs(t)], V3s(t) [V;s(t) V2(t)], then by argument as
in Reid [7, 3] it follows that

U3s(t) U(t)[diag {0; En} S(t,s; Uoo){U3; V3IU;

By direct computation we have {V; Vas[Vsoo; Voo} diag {-Q’Q;0} and
hence

U;(t) U(t)S(t, s; U)Q*Q.

As (2.2) is disconjugate on I it then follows that U(t) is of rank n d for # s, and
consequently the (n- d) x (n- d) matrix function S(t, s; U) is nonsingular
for # s.

Now, in general, if K is an n x n Hermitian matrix of rank n d, and is an
n x (n- d) matrix whose column vectors form an orthonormal basis for the
linear subspace of E, spanned by the column vectors of K, then there exists a non-
singular (n d) x (n d) matrix such that K *. In terms of these com-
ponent matrices , it follows readily that K -*. Also, if N is a non-
singular n x n matrix and K NKN*, then K ,where 1 NO2-1/2,
x 2/22/2 with 2 O*N*NO, satisfy the conditions specified above for , ,
and hence K 11@ N@- 1- 1- I@,N," In particular, if (t) for
e I and is independent of t, then Ke(t) - x(t)O* 0 as if and only if- (t) 0 as moreover, if N is also independent of then K(t) 0 as

if and only ifK e(t) 0 as .
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From these remarks and the discussion at the end of 3 we have the following
additional results.

COROLLARY 1. Cd(t, S; Uso) is nonsingular for v s, and -l(t, s; Us) 0 as
t---.

COROLLARY 2. If system (2.2) is related to system (2.2) by the transformation
(3.1) and ’o(t) (O(t); f’(t)) (T-(t)U(t); T*(t)Vo(t)), ls(t)

f(t)O(t) T*(t)W(t)T(t), then (R)(t,s]l) T-(s)(R)(t,s]W)T*-l(s)
and (R) # t, s]) 0 as .

In particular, if T(t) Z*-(t), where Z(t) is a fundamental matrix solution
of Z’ + A*(t)Z 0 such that the last d column vectors of Z(t) form a basis for
A(-, ), then the resulting truncated preferred reduced system (3.9) is dis-
conjugate and identically normal on (-v, ), so that the results of Reid [8, 63
may be applied directly to this system. These results, together with the method of
Reid [7, 8], yield for this truncated preferred reduced system the following
conclusions.

THEOREM 6.3. Suppose that (2.2) satisfies hypothesis (-,) and is dis-
conjugate on (-, ), and that for r (-, ) the solution of a corresponding
truncated preferred reduced matrix system (3.9M) satisfying the initial conditions
H(r) O, Z(r)= E,,-a is denoted by Hr(t), Zr(t). Then Hr(t) is nonsingular for
t- r, Or(t)= Zr(t)H-l(t) is such that o(t)= limr-r(t) and _(t)
limr--o r(t) exist, are the distinguished solutions of (3.10) at and -, re-

spectively, and possess thefollowing properties"
(i) If ff2(t) is an Hermitian solution of (3.10) which exists on (-or, ) then

ff2(t) (t) >= 0 and f_(t) (t) >= 0 throughout (-, ), while if ff2(t) is an
Hermitian solution of (3.10)for which at some value s the matrix (s)- (s)
(_(s) ff2(s)) fails to be nonnegative definite then 2(t) does not exist throughout
the interval s, )((-, s]).

(ii) If also tl l(t) >_- 0 for a.e. on (-, ), then (t) <= 0 and _(t) >__ 0
for t6(-, ).

7. Comments. Among the many occurrences of Riccati matrix differential
equations are extensive applications in the theory of filtering and control. The
concluding remarks of this section will be limited to comments on relationships
that exist between the results of the preceding sections and recent work of Bucy [2]
(this paper has been reproduced in essentially verbatim form in Bucy and Joseph

3 Chap. V]) and Wonham [14.].
In each of these applications the Riccati matrix differential equation is of

the form (2.1) with real-valued coefficient matrix functions, and with the real
symmetric matrices B(t), C(t) in factored forms. In essentially the notation of
Bucy [2],

(7.1) B(t) H*(t)R- l(t)H(t), C(t) G(t)Q(t)G*(t),

where R(t) is a positive definite s s matrix, Q(t) is a nonnegative definite r r
matrix, while H(t) and G(t) are of respective dimensions s n and n r. In partic-
ular, for such equations the matrix functions B(t) and C(t) are both nonnegative
definite, for arbitrary compact subintervals the functional (4.1) is positive definite
on go[a, b], and hence by Theorem 4.1 the corresponding linear Hamiltonian
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system (2.2) is disconjugate on the interval of consideration. In particular, the
monotoneity properties presented in the corollary to Theorem 4.2, and in Theorem
4.4, hold for these equations.

In view of the result presented in Lemma 3.1, the concept of R-complete ob-
servability of Bucy [2] is the condition 9-(I) for the corresponding system (2.2),
and the concept of Q-complete controllability is the condition 9l+(I) for the
associated obverse system (2.11). In particular, the result of Theorem 1 of Bucy [2]
follows from his comment on Q-complete controllability and the corollary to
Theorem 4.2. The result of Bucy’s Theorem 2 and its corollaries are consequences
of conclusion (b) of Theorem 2.1 for autonomous linear Hamiltonian systems,
together with certain of the general results presented in 2. The result of his
Theorem 3 follows from conclusion (b) of Theorem 2.1, and Theorem 6.1, to-
gether with the fact that the limit matrix defined in his Theorem 3 must define a
constant solution of the Riccati matrix differential equation, and hence must be a
solution of the corresponding algebraic quadratic matrix equation. In this con-
nection, the reader is also referred to Reid ([8, 7] and [10]).

For the matrix differential system (2.2a, b) of Wonham [14], the results of the
above 5 imply, in particular, conclusions (i), (ii) of his Theorem 2.1. Various
portions of the results proved by him in the course of establishing conclusion (iv)
of his Theorem 2.1 also appear as special instances of the monotoneity properties
presented in 2, 4 and 5 of the present paper.
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WELL-POSED PROBLEMS FOR A PARTIAL DIFFERENTIAL
EQUATION OF ORDER 2m + 1"

R. E. SHOWALTER"

We are concerned here with well-posed problems for the partial differential
equation

ut(x, t) + yMut(x, t) + Lu(x, t) f(x, t)

containing the elliptic differential operator M of order 2m and the differential
operator L of order <__ 2m. Hilbert space methods are used to formulate and solve
an abstract form of the problem and to discuss existence, uniqueness, asymptotic
behavior and boundary conditions of a solution.

The formulation of a generalized problem is the objective of 1, and we shall
have reason to consider two types of solutions, called weak and strong. Sufficient
conditions on the operator M are given for the existence and uniqueness of a weak
solution to the generalized problem. These conditions constitute elliptic hypotheses
on M and are discussed briefly in 3. Similar assumptions on L lead to results on
the asymptotic behavior of a weak solution. The case in which M and L are equal
and self-adjoint is discussed in 2, and it is here that the role of the coefficient 7 of
the equation appears first. Special as it is, this is a situation that often arises in
applications, and there has been considerable interest in this coefficient 7 [4], [25].
The weak and strong solutions are distinguished not only by regularity conditions
but also by their associated boundary conditions. It first appears in 5 that it is
possible to prescribe too many (independent) boundary conditions on a strong
solution, but in the applications it is seen that the interdependence of these condi-
tions is built into the assumptions on the domains ofthe operators. Two examples of
applications appear in 6 with a discussion of the types of boundary conditions
that are appropriate.

1. The generalized problem. Let G be a nonempty open set in the n-dimensional
real Euclidean space, R", whose boundary G is an (n 1)-dimensional manifold
with G lying on one side of it. C(G) is the space of infinitely differentiable functions
on G, and C(G) is the linear subspace of C(G) consisting of functions with
compact support in G. The Sobolev space Hm(G)= H is the Hilbert space of
(equivalence classes of) functions in L2(G), all of whose distributional derivatives
through order m belong to L2(G). The inner product and norm are given,
respectively, by

and Ilfll,, X//(f,f)m, where e (e, ..., e,) denotes an n-tuple of nonnegative
integers, and c31l

D

is a derivative of order [[ 1 -- -- n"* Received by the editors September 18, 1969.

" Department of Mathematics, The University of Texas, Austin, Texas 78712.
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Ho(G) H’ is the closure of C(G) in Hm; it is known that if cG is m times
continuously differentiable and b is in C 1(cl (G)) then b is in/-o(G) if and only
if it is in Hm(G) and vanishes on cG together with all derivatives of order <_ m 1.
Hence, 4) H’ is a weak Dirichlet boundary condition. In order to determine
other boundary conditions, we let V be a closed subspace of H that contains
C(G) and define the norm on Vby qSlv 114llm for b V.

We shall consider the equation

(1.1) u’(t) + 7/[u’(t) + u(t)= f(t)

containing the indicated vector-valued functions and the partial differential
operators of order 2m in the divergence forms

(1.2) ///= {(- 1)llDm’(x)D’Ipl, lal =< m},
(1.3) &a {(_ 1)l,lDop,(x)D, "lPl, Irl _-< m}.
Since we are concerned with weak solutions, it suffices to require only that the
coefficients in (1.2) and (1.3) be bounded and measurable on G. This implies that the
sesquilinear forms

(1.4) m(b, O)= {(m’D’dp,DO)o "IPl, Irl m},
(1.5) l(b, )= {(l*D*dp, DO)o "IPl, I1 m}
are bounded on V; in particular, for all q5 and O in Vwe have

(1.6) Im(qS, 0)1 Km bllvl 0 ,

where K sup {llmP*lloo} and g sup {ll/P*lloo}. These sesquilinear forms can
be used to specify solutions of (1.1) in V, since for any u in V the conjugate linear
maps q5 --, m(u, 4)) and 4 l(u, ok) are continuous from (G) into C, where @(G)
is the linear space C(G) with the topology of L. Schwartz [11], [19]. These maps
determine elements of ’(G), the space of distributions, and they satisfy

(1.8) m(u, 4)) (#u, dp),

(1.9) l(u, c) (’u, dp)

for all q5 in (G). The operators and 5e map Vinto ’(G).
Let H be the Hilbert space LZ(G). Define linear subsets of H by D(M)

{ue V’/(u)e H and (1.8)holds for all qSe V} and D(L) {ue V’(u) H and
(1.9) holds for all b in V}, and let M and L denote the restrictions of///and 5 to
D(M) and D(L), respectively. Then M and L are unbounded operators on H whose
domains are contained in V [3], [10]. Furthermore, for any u in D(M),

(1.10) m(u, v) (Mu, v),

for all v in V and

(1.11)

for all u in D(L) and v in V.

l(u, v) (Lu, v)n
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The generalized problem is the following" Let V and H be Hilbert spaces for
which the injections 5(G)c__, V c__., H are continuous and (G) is dense in H. Let m
and be sesquilinear forms on V which satisfy (1.6) and (1.7). Let Uo belong to V,
and let f be a continuous map of R into H. Find a continuously differentiable
function u of R into V such that u(0) Uo and

(1.12) (u’(t), v)n + 7m(u’(t), v) + l(u(t), v) (f(t), v)n

for all v in V and in .
A solution of the generalized problem is a weak solution of (1.1), since for all

q5 in C(G) it follows from (1.8) and (1.9) that

(u’(t), d?) + 7(//u’(t), b) + (u(t), d?) (f(t),

hence (1.1) holds in ’(G). Furthermore, if u(t) belongs to D(L) and u’(t) to D(M)
for all in , then

u’(t) + 7Mu’(t) + Lu(t) f(t)

in H, and u(t) is called a strong solution of (1.12).
We shall hereafter assume, with no loss of generality, that

for in V.

2. A special case with L M L*. We first use the method of eigenfunction
expansions to obtain a rather precise description of solutions of the generalized
problem with m =- l, Assume that

(2.1) l(u, v) l(v, u) for all u, v in V,

(2.2) l(u, u) >= klllUll2v for all u in V, k > O,

and the injection

(2.3) VH is completely continuous.

The condition (2.1) implies that L is symmetric, while (2.2) implies that L is
a bijection of D(L) onto H [11], [12], [15], [16]. In fact, (2.2) and (1.11) imply that
for any 05 in H,

k z-ld? <= (b,L-lqg)H =< qSlllL-lq5 ,
so L-a is continuous from H into V and satisfies

IIL-4llv <_- k-lllb I,
for all b in H. The condition (2.3) will be satisfied if G is bounded and either
V =/o(G) or cG is sufficiently smooth [1], [5, [16.

From (1.7), (2.1) and (2.2) it follows that the sesquilinear form [u, v] l(u, v)
is an inner product on Vfor which the associated norm Ilu It u, u] /2 is equivalent
to the norm Ilullv, Letting K be the restriction of L- to V, we see that

(2.4) [Ku, v] (u, v)n

for all u and v in V, and from (2.1) it follows that K is symmetric on Vwith respect to
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[’,’ ]. Also, K is the composition of the continuous operator L- "H - V and the
completely continuous injection, so K is a completely continuous operator on V.

The spectral resolution of completely continuous and symmetric operators is
well known [18] there is a complete orthonormal sequence {q.} of eigenvectors of
K in Vand associated eigenvalues {p} such that

(2.5a) Kb. p,b, for all n => 1,

(2.5b) [qb,., b.] bin,, for all m, n >__ 1,

(25c) Pl => P2 > P3 >’’" P.--0 asn o

and every v in V can be written as

(2.5d) v Iv, qb,]b,.
n>_l

Let 2.---(p,)-l; the sequence {2,} is nondecreasing and unbounded by (2.5c),
and Lb, 2,q, for n _>_ 1. Since (bm, b,)n [Kbm, b,] p,,6,.,, for m, n >__ 1,
the sequence {,n/zqn} is orthonormal in H. It is also complete, for iff is in H there is
a u in V with Lu f The sequence u. ,=1 [u, 4k]4k Z,=I (f, 4k)nb, con-
verges in V to u, hence u, u in H. The sequence Lu. " ( "k]l/Ztk’klHZk]]l/2bk

{2 b,}, so L beingconverges in H, since it is the Fourier expansion of f by 1/2

closed implies Lu f k (f 2/2b)n2/zb.
Let u(t) be a solution of the generalized problem. For each in R there is a

unique sequence {u,(t)} of complex numbers for which

(2.6) u(t) u,(t)dp,.
n>l

These Fourier coefficients are given by u,(t) [u(t), b,], so each is a continuously
differentiable function which satisfies the initial condition

(2.7) u,(0) [Uo,

If s.(t) denotes the nth partial sum of the series (2.6), then s,(t) converges to u(t) in V.
The continuity of u(t) implies that this convergence is uniform on compact subsets
of R. To verify this, let g,(t)= ]]u(t)- s,(t)]]2. Then each g, is continuous, the
sequence g,(t) converges to zero for each t, and from

g.(t)= ]uk(t)[ 2
k=n+l

it follows that the sequence is monotone, so the convergence is uniform on each
compact subset of R by a well-known theorem of Dini [12].

Furthermore, the sequence of formal derivatives {s’,(t)} converges to u’(t) in V.
This follows by obtaining the Fourier expansion of u’(t), which converges uniformly
on compact subsets of R as above, and integrating this series termwise to obtain
u(t). Since s,(t) u(t) and s’,(t)--, u’(t) in V, we have for any v in V, l(s,(t), v)

l(u(t), v) and yl(s’,(t), v) + (s’,(t), v)n --. yl(u’(t), v) + (u’(t), v)n. The sequence
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{/nl/2n} is orthonormal and complete in H, so

/2,L ]1(f(t), v)n (f(t), 2, WnlHznl2)n, I))H
n>l

(f(t),dp.)n[dp.,v].
n>_l

Thus, for each in R and v in V we have, by (2.4) and (2.5a),

{(p, + 7)u’,(t) + u,(t)- (f(t), qS,)H} [qS,, v] 0,
n>l

and this yields the necessary condition

(2.8) (p, + 7)u,(t) + u,(t)= (f(t), 49,), n >= 1,

for u(t) to be a solution of (1.12).
Let M be the (finite) set of integers m for which 7 + Pm= 0, and N the set of

integers n >= 1 for which 7 + P, - 0. It follows from (2.7) and (2.8) that for all n in N,

u,(t) [u0, qb,] exp (-(7 + P,) -it)

+ (7 + P,)- exp ((7 + P,)- 1(r t))(f(r), ck,)i dr,

and for m in M we must have u,,(t) (f(t), 49m)" In particular, the initial function
must satisfy the compatibility condition [Uo, m] (f(0), 4m)n for all m in m.
That is, 2mUO f(O) is orthogonal in H to 4,, whenever 7 + Pm= 0. These remarks
verify the uniqueness and representation statements of the following result.

THEOREM 1. With the assumptions (2.1), (2.2) and (2.3), the generalized problem
of 1 with m =- has at most one solution. A solution exists if and only if for each
integer in M {m: 7 +Pm 0}, the compatibility condition

l(uo, Cm) (f(O), Cm)H

holds and the function (f(t), era) is continuously differentiable. This solution is

given by the expansion

(2.9)

u(t) [Uo, b.] exp (-(7 + P.)-

+ (7 + p.)-i exp ((7 + P.)-
N

+ 2 (f(t),
mM

where N is the set of integers n >= 1 with 7 + P, O.
We need only to verify that the function defined by (2.9) is a solution of the

problem. Since the sequence {p,} converges, the sequence {(7 + P,)- 1} is uniformly
bounded for n in N. If K is a compact subset ofR and m >__ n > sup (M), then from
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the estimate

k=n k=n

N sup {exp (-(7 + p)- t).: n e N, e K}

Euo, 21 =

for all in K and from the convergence of the expansion of Uo by {4}, it follows
that the first series in (2.9) converges uniformly on each compact K in R. A similar
estimate shows that all derivatives of this series converge uniformly on compact
subsets of R, so these can be integrated term-by-term to show that the sum of this
series is infinitely differentiable with respect to in the V-norm (equivalently, the
/-norm) and its derivatives are obtained by differentiating the series term-by-term.

In order to discuss the second term in (2.9), let T > 0 and 0 N r N T. The
continuity of f: R H and of L-’H V imply that the function L-f:R V is
continuous;hence, the series

(2.10) EL-’f(), ,], (f(v), ,)n,
n=l n=l

converges to L- af(z) for each z in , and the convergence is uniform on [0, T] by
an argument as above which depends on the theorem of Dini. Letting q denote the
supremum of the numbers

1(7 + P,)-’ exp ( + p.)-’(’ t)l

over all n in N and in [0, T], we obtain the estimate

(2.11)

( + p)-’ exp (( + p)-’(z t))(f(z), qS)ndp
k=n

I( + p)-’ exp (( + p)-’(r, t))(f(r), qS)nl 2

rt2 ,l(f(), qS,)[ 2

k-n

(f(:), b)nb
k--t

for r in [0, T] and m >__ n > sup (M). But we have shown that the series (2.10) is
uniformly convergent on [0, T], hence uniformly Cauchy, so this shows that the
series appearing in the first term of (2.11) is uniformly Cauchy on [0, T]. We may
then integrate this series termwise with respect to r over the interval [0, t], and
this integrated series converges uniformly for all in [0, T]. Thus, the second series
in (2.9)converges uniformly on compact subsets of ] to a continuous function
from ]R into V. Application of a similar argument to the termwise derivative of this
series shows that the sum of this series is continuously differentiable in V, and its
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derivative is the limit in V of the termwise derivative of the series. The convergence
is uniform on compact subsets of.

That the continuously differentiable V-valued function defined by (2.9) is the
solution of the generalized problem follows easily by a routine computation
similar to that which led to (2.8) above.

3. Existence of a solution. The objective in this section is to develop sufficient
conditions to guarantee the existence of a solution to the generalized problem of 1.
This development depends on the Lax-Milgram theorem, which gives sufficient
conditions on a sesquilinear form in the situation of 1 for the associated un-
bounded operator to be onto [11], [15], [16], and the calculus of functions taking
values in a Banach space [3], [9]. The major result is Theorem 2, and the two
following corollaries give sufficient conditions on the parameter 7 in order that
the hypothesis of Theorem 2 be fulfilled for the case in which the operator //{ is
elliptic.

Let the Hilbert spaces H and V and sesquilinear forms m and be as specified
in the generalized problem, and assume further that there is a constant k > 0 for
which

for all in V. This implies that the operator M + I is a bijection of D(M) onto H
and that D(M) is dense in V. It follows then from (1.10), (1.11) and (1.7) that for any
4 in D(L)

kl (TM + I)- LI I(L, (TM + I)- L)nl

II(, (TM +

and hence the estimate

for all 4 in D(L). If D(L) is dense in V, it follows from (3.2) that (TM + -L has a
unique bounded extension from V into V which we shall hereafter denote by B.

Since B belongs to the Banach algebra (V) of continuous linear operators
on V, we may define by a power series a one-parameter group ofbounded operators
on V by

exp (- Bt) ((- )"/n
nO

for in R [9]. The operator-valued function exp (-Bt) is differentiable in the
uniform operator topology of (V) and satisfies

.d
d exp (- Bt) B.exp (- Bt).

We now define a V-valued function as follows. Since (7M + - is a bounded
map of H into V as a consequence of (3.1), and since f:R H is continuous, it
follows that (7M + -fis continuous from R into V, and so also is the function

r exp (B(r 0)(M + - f(r)



PROBLEMS FOR A PARTIAL DIFFERENTIAL EQUATION 221

for each in R. Hence we can define for each in R an element of Vby the formula

(3.3) u(t) exp (- Bt).uo + exp (B(r t)). (TM + /)- 1. f(r) dz,

where u0 is the initial condition specified in V. Then u’R---, V is continuously
differentiable and satisfies the equations

(3.4) u’(t) + Bu(t)= (TM + /)-if(t), U(0) Uo

in V. From (3.4) we can show that u is a solution of the generalized problem. Let
R and let {4,} be a sequence in D(L) for which 4, ---’ u(t) in V. The continuity

of B implies by (3.4) that {Bb,} converges in V to -u’(t) + (7M + /)-if(t). Since
B is an extension of (7M + /)- 1L and each 4, is in D(L), it follows that each
is in D(M) and

(?M + /)(-BqS,) + LqS, 0.

Thus for each n _>_ 1 and each in 1/we obtain, by (1.10) and (1.11),

3’m(--Bq,, v) + (-Bb,, v)n + l(b,, v) 0,

and taking the limit in this equation as n -. oo we obtain (1.12).
The requirement that D(L) be dense in V (which was used twice in the above

arguments) is not essential for existence or uniqueness. In particular, u(t) is,a

solution if and only if w(t) e-Xtu(t) is a solution of the problem with initial data
Uo, nonhomogeneous term F(t) e-Zf(t), and the equations (1.12) with replaced
by

,((u, v). + m(u, v)) + l(u, v).

By taking 2 sufficiently large, say, 2 (Kz + kz)/k, it follows from (1.7) and (3.1)
that we may assume without loss of generality that

(3.5) II(q, )l > k114llv2

for all q5 in V. From the Lax-Milgram theorem and (3.5) it follows that D(L) is
dense in V, and we obtain the following theorem.

THEOREM 2. If the sesquilinearform m of the generalized problem satisfies (3.1),
then there exists a solution of this problem, and it is given by the formula (3.3).

Coercive inequalities like (3.1) and (3.5) are known to hold for the sesquilinear
forms associated with strongly elliptic partial differential operators. Garding has
verified the following result [8]"

Let /be the operator specified by (1.2); if all the coefficients are bounded
and measurable, the principal coefficients {m’lpl lal m} are uniformly
continuous on cl (G), and if

Re{,pl=lal=mZ Pmmr(X)r} Co[l 2m Co>0,

for all real vectors in R", then there exist real numbers c > 0 and c such that

Re {m(qS, b)} + c2141t02 => Clll I2

for all b in H’(G), where G is bounded and open in R".
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Similar results will be established for some particular examples in 6 for spaces
V other than H"d(G). For some other coerciveness results see [13], [16], [17]. We
shall make the following assumption: there is a number such that for every e > 0
there is a fl(a, e) > 0 for which

(3.6) Re m(4, 4)/ ( / )1 11 _->/31 llv2

for all 4 in V.
Consider first the generalized problem with 7 > 0. From (3.6) it follows that

(3.7)

for all q5 in V if /(e + e) _<_ 1 for some e > 0 in the case e >= 0 and for any 7 if
< 0. Since

Re 7m(b, qS) + I1112 __< lym(4, 4) + I I1,
we obtain from Theorem 2 the following corollary.

COROLLARY 1. Assume that the sesquilinear form m satisfies (3.6). Then the
generalized problem has a solution if > 0 and 0 < y < -1 or if <= 0 and 0 < y.

For the case of < 0 the above method is applicable only if (3.6) holds for
some e < 0, for if

-), Re m(qb, 4’) [lbllr] >
for all in V, then

Re m(, ) (-)-allll
so (3.6) holds with 7- < 0. Conversely, if (3.6) holds for some < 0, then

2(3.8) (-7)flllllv

for all in Vif, for some e > 0, ( + e) ) + 1 0, and this is true if > (- )- .
COROLLARY 2. Assume that the sesquilinear form m satisfies (3.6) with < O.

Then the generalized problem has a solution < -.
4. Uniqueness and boundedness. The solution of the generalized problem

constructed in 3 is the only solution. In particular, we shall show that (3.1) yields
estimates on the growth of a solution and dependence on the initial data and non-
homogeneous term of (1.12). Estimates of the type (3.6) for m and and symmetry
of m imply that the solution of the homogeneous equation is asymptotically stable,
since all such solutions decay exponentially to zero.

Consider the sesquilinear forms m and introduced above on V x V. For
each 4 in V, the conjugate linear functional m(qS, ) on V is bounded by (1.6),
so the Riesz-Fr6chet theorem [11] implies the existence of a unique mo(4) in V
for which

(4.1) m(qS,

for all O in V. This determines a bounded operator too: V --, Vwhose norm in (V)
satisfies Ilmo[I <_- Km by (1.6). Similarly, there is a unique operator lo in &(V) for
which

(4.2) l(b, O) (lo(b), )v
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for all and ff in V with (V)-norm II/o[I Kl by (1.7). The continuity of the
injection Vc-, H suggests the construction of an operator J :H- V as follows.
For each 4 in H, the conjugate linear form ff- (, ff)n is continuous on V, so
there is a unique J() in V for which

(4.3) (b, 0)n (JqS, 0)v

for all ff in V. This operator J maps H into V, and it follows from (1.13) that the
5(H, V)-norm of J satisfies

IIJII _-< 1.

Let v(t) be any solution of the generalized problem. It follows from (1.12),
(4.1), (4.2) and (4.3) that

(4.4) (J + ymo)v’(t) + lov(t)= Jf(t)

in V. That is, v(t) satisfies (4.4) in V with bounded operator coefficients. From the
estimate (3.1) and the Lax-Milgram theorem it follows that the bounded operator
Vmo + J on V associated with the V-coercive sesquilinear form Vm(b, ) + (b, )n
is a topological isomorphism of V onto V for which the (V)-norm of the inverse
satisfies [[(ymo + J)-1 =< k-1. Hence the function v(t) satisfies the equation

(4.5) v’(t) + (J + ymo)-1/o v(t) (J -k- ymo)-1Jf(t).

Since v’R --. V is continuously differentiable, the real-valued function

a(t) Iv(t)l v2

is continuously differentiable and by (4.5) satisfies

a’(t) 2 Re (v’(t), v(t))v

2Re {-((J + 7mo)-llov(t),v(t))v + ((J + mo)-lJ.f(t),v(t))v}
and this in turn implies

[a’(t)[ <_ 2k-lKl[[V(t)[l, + 2k-l[If(t)lln[[v(t)l[v
(4.6) _< k- 1(2K/+ 1)a(t) + k- If(t)

for all in R. From (4.6) we obtain the estimates

(4.7)

and

(4.8)

for all in

a(t) <_ a(O) exp (k- l(2Kt + 1)ltl)

+ k -1 exp (k- l(2Kl + 1)It :1). f(:)ll2n d:

o’(t) if(0) exp (-k- l(2K/-q- 1)lt])

The linearity of the problem and the preceding remarks yield the following
result.

THEOREM 3. Let the sesquilinear form m of the generalized problem satisfy (3.1)
for all ck in V. If us(t), 1, 2, are solutions of the generalized problem with initial
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data u(O) and u(O) and nonhomogeneous terms f(t) and fa(t), respectively, then
r(t) Ilu(t) u2(t)ll satisfies the growth and decay estimates (4.7) and (4.8) with

f f -f. In particular, the generalized problem has at most one solution.
Stronger estimates on the solution can be obtained when the sesquilinear

form m is symmetric and satisfies estimates of the form obtained for the corollaries
of 3. Let us assume then that

(4.9) m(b, k) m(O, qS) for all b, O in V,

and that

(4.10)

for all b in V. The condition (4.9) implies that m(qS, qS) m(qS, b) is real for each
q5 in V, and (4.10) is equivalent to (3.7) when 7 > 0 and to (3.8) when 7 < 0. Thus
(4.10) follows from the coercive estimate (3.6) for certain values of 7.

Let u(t) be a solution of the generalized problem. Then the real-valued function

Z(t) lylm(u(t), u(t)) / sgn (7)lu(t)ll
is continuously differentiable, and from (4.9) we obtain

E’(t) 2 Re {ITlm(u’(t), u(t)) / sgn (T)(u’(t), u(t))}
2 sgn (7) Re {Tm(u’(t), u(t)) + (u’(t), u(t))n}.

If (1.12)is homogeneous, then

E’(t) 2 sgn (7) Re {-l(u(t), u(t))},
and if satisfies the coercive estimate

(4.11) sgn () Re l(dp, dp) >= k1141
for some k > 0 and all q5 in V, then we have from this and (1.6) the estimate

,’(t) < -2k u(t)l _-< -2kl(lylgm + 1)-22(t).
But this implies that for all >= 0,

(t) =< exp (- 2kl(lTlg + 1) -lt)(0).
We summarize these results in the following theorem.

THEOREM 4. Assume that the sesquilinear forms of the generalized problem
satisfy (4.9), (4.10) and (4.11). Then there exists a unique solution to the generalized
problem, and iff =_ 0 in (1.12), then this solution satisfies the estimate

(4.12) Ilu(t)llv (fl-lKm nt- ]T]-I) lUo vexp(-kl(lTlKm + 1) -t)

for all >= O.
This last inequality follows from the estimate on Z(t) together with (1.6) and

(4.10). Also, (4.10) implies (3.1). By the usual linearity arguments, one may obtain
estimates for the solution of the nonhomogeneous equation (1.12) by adding (4.8)
with or(0) Iluollv2 0 and (4.12). The same argument shows that if(4.11) is replaced
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by the estimate

(4.13) -sgn (,) Re l(b, b) >= kl]]bl]v2,

then one obtains an estimate like (4.12) with the inequality reversed, so the solution
grows at least exponentially in norm. Finally, we remark that with all the hypotheses
above except f 0, the difference of two solutions with different initial data
satisfies (4.12), so the effect of initial data is "transient".

5. Weak and strong solutions. The objective of this section is to show that ifM
and L satisfy elliptic hypotheses and if M is "stronger" than L, then the weak
solution of the problem is a strong solution if and only if the initial function u0 is
in the domain of L.

THEOREM 5. Assume that the sesquilinear forms m and of the generalized
problem satisfy the estimates (3.1) and (3.5), and that D(M)

_
D(L). If Uo belongs

to D(L), then the weak solution (3.3) of the generalized problem is a strong solution
( 1).

Proof. From the estimate (3.5) it follows that L- is a continuous injection of
H into V. Hence we can define by

a norm on D(L) for which the injection D(L) V is continuous. The completeness
of H shows that D(L) is complete in the norm (5.1). The bounded extension B of
(TM + /)-1L maps D(L) into D(M), and the assumption above that D(M)

_
D(L)

implies that B maps D(L) into D(L). Thus B is a continuous linear operator from
V into V, and the space D(L) is invariant under B. This implies by the closed graph
theorem that B is continuous from D(L) into itself with the norm (5.1). To see this,
let {qS,} be a sequence in D(L) for which 114.- XollL --* 0 and lIB.. YOIIL --* 0
as n , where Yo and Xo are in D(L). Then

Ilyo- Bxo Iv <- [Yo Bqb,,llv + [IB(c,,-

< Ilyo BqbnlIv + [BlleCv)llqb,- Xollv,

and the continuity of the injection D(L) V implies that each of these terms con-
verges to zero, so Yo Bxo. Thus B is a closed and everywhere-defined linear
operator and is hence continuous on D(L) [9], [18].

The significance of the continuity of B on D(L) is that the restrictions of the
operators

{exp (-Bt)’t in R}
are bounded on D(L), and hence the function t--* exp (-Bt)uo is in CI(D(L)).
Finally, each (TM + /)-if(t) belongs to D(M), hence also D(L), and an argument
like that above shows that (TM + /)- is continuous from H into D(L), sof" R H
being continuous implies that the function

t- exp (B(z t))(TM + /)- lf(z) dr

is in C(D(L)). Hence the (weak) solution of the generalized problem given by (3.3)
is in C(D(L)), and differentiating this function shows that u’(t) belongs to D(M)
for each in , so u(t) is a strong solution of the problem.
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Theorem 5 is really a regularity result, for the domain of an elliptic operator
consists of functions which are "smooth". In particular, the global regularity
results for elliptic operators can be used to show that B leaves invariant the sub-
spaces V HP(G), and an argument like that above shows that u(t) belongs to
V fq HP(G), where the integer p depends on the coefficients in M and L and the
boundary of G. The details for the case V H(G) for Dirichlet boundary con-
ditions on an equation of order 3 appear in [22].

The interesting distinction between weak and strong solutions is the type of
boundary conditions they carry. If u(t) is a strong solution of the generalized
problem, then u(t) and u’(t) belong to D(L) and D(M), respectively, and from (1.8)
and (1.9) it follows that

(5.2) m(u’(t), v) (Mu’(t), v)n

and

(5.3) l(u(t), v) (Lu(t),

for all v in V. These constitute independent boundary conditions on u’(t) and u(t),
respectively, if V properly contains/-o(G). Also, the conditions that u(t) and u’(t)
belong to V constitute boundary conditions if V is properly contained in Hm(G).
The conditions (5.2) and (5.3) will be called strong boundary conditions.

Suppose u(t) is a weak solution of the generalized problem. Then the identities
(1.8), (1.9) and (1.12)imply that

(5.4) u’(t) + 7//u’(t) + ’u(t)= f(t)

in ’(G). From (1.12) and (5.4), we obtain the identity

(5.5) (y#u’(t) + L’u(t), v)n ym(u’(t), v) + l(u(t), v)

for all v in V. This will be called a weak boundary condition, since it is certainly
implied by the strong boundary conditions.

6. Applications. We shall discuss the implications of our_ above results in two
examples. The first originates in the flow of second order fluids as discussed in
[4] and [25], and our results contain most of those in these references. The second
example includes the above as well as problems in consolidation of clay [24] and
homogeneous fluid flow in fissured rocks [2]. Our results are adequate to discuss
all of the boundary value problems associated with these theories as well as many
for which no physical applications are known to this writer.

For the first example, let G be the interval (0, T), T > 0, and define

l(u, v) Uxdx

for u and v in Hi(G). For functions in Ha(G) we have, for x, y in G,

(6.1) lu(x)- u(y)l- u’(s) ds <= Ix yl /2 ull,

so Hi(G) contains only continuous functions. Suppose V is a closed subspace of
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Hi(G) which contains only functions which vanish at x T. Then for such q5 in V,

(6.2) sup {Irk(x)[ "0 < x =< T} =< (T)l/2]lqSII1

From (6.1) and (6.2) it follows that any sequence {qS,} of elements of V for which
b,[I =< 1 for all n is a sequence ofequicontinuous and uniformly bounded functions.
By the Ascoli-Arzelt theorem [11], [18], such a sequence has a uniformly con-
vergent subsequence which then converges in the mean-square norm. That is, the
injection of V into H L2(G) is completely continuous.

For any q5 in V, we have

14(x)12 + XI(x)I2 dx xl4(x)12 0

since qS(T) 0, so

From the inequality 2fl =< 202 + 2/2, we obtain

I(x)l 2 dx -- I(x)l 2 dx + 2T2 I’(x)l 2 dx,
-2

and hence the inequality

(6.3) I11o 2T IG o

for in V. From (6.3) we have for all u in V,

l(u, u) lu x

> lull 2 dx + lul 2 dx > k [u I=2

where k min [1/2, 1/(8T2)] > 0. Thus the conditions (2.1), (2.2) and (2.3) are
satisfied. By Theorem 1 there is a unique solution of the generalized problem of

1 for certain values of 7 which is then a solution of the equation u’(t) + 7u’(t)
+ u(t) f(t), where is the distributional derivative -d2/dx2. Furthermore,
the inequality (6.2) shows that for each x (0, T), the "evaluation" functional
e’u u(x) from V into C is continuous, so u’(t)(x) O[u(t)(x)]/Ot in the equation.
If y is not equal to any of the eigenvalues {p,}, then the initial data and nonhomo-
geneous term are prescribed arbitrarily. For the exceptional values, a compatibility
condition is necessary and sufficient for the existence of the solution which is given
by (2.9). We shall discuss two choices for V and the associated problem.

If V { in Ha(G)’(T) 0} then the sequence of eigenvalues is given by
p, (2T/((2n 1)))2, n 1, and the eigenfunctions are cos (p /2 x).

For u and v in V, we obtain by integrating by parts

(6.4) l(u v)= (u V)o u. vl r0
so u is in D(L) if and only ifu. vl 0 for all v in V. That is, u(0) 0. The condition
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that u belongs to V implies u(T) 0. Thus the solution u(t) of the generalized
problem satisfies the weak boundary conditions

(Tu’(t) / u(t))l=o 0,

u(t)l=T 0

from (5.5) and u(t)e V, respectively. The condition u’(t)lx=r--0 follows from
u’(t) V, but is redundant since it can be obtained from the second condition above
by differentiation. If 7 is chosen such that (3.1) holds and if Uo is in D(L) (see above),
then the solution satisfies the strong boundary condition

ux(t)l=o 0, u(t)l= T 0

from (5.3) and u(t) V. (Note that (5.2) leads to a redundant condition u(t)l= o 0.)
If V H(G)= {b e HI(G)’b(0)= qS(T)= 0}, then the sequence of eigen-

values and functions is given by p, (T/(nTr))2 and sin (p a/Zs), n > 1. For u, v
in V, all boundary terms are zero in (6.4), so the identities (5.2), (5.3) and (5.5) do
not determine boundary conditions. However u(t) V implies the boundary condi-
tions

u(t)lx=O u(t)lx= 0.

Similar applications hold in spaces of higher dimension. Estimates like (6.3)
hold for smooth domains and functions which vanish on a sufficiently large portion
of the boundary, and the injection of V into H LZ(G) is completely continuous
if G is bounded and either V H"(G) or the boundary is m times continuously
differentiable [5], [17]. Nonhomogeneous boundary data may be introduced by
superposition [22. The relation between u’(t)(x) and c[u(t)(x)]/c3t is not always so
clear as above; see [9, pp. 68-71] for results in this direction.

For a second example, which exhibits more of the "flavor" of these problems,
we define the forms

v)= (u,i, Vx,)o + f (s)u(s)(s)m(bl ds,
i=1 ,)0G

l(u (s)u(s)(s) ds,
i=1 dOG

where G is a bounded open set in R" with smooth boundary t3G, and ds denotes
Lebesgue measure on t3G. The functions , fl are in L(cG) and (s) >= 0. By elemen-
tary results on "traces" [17], m and are bounded on Hi(G). Since (s) > 0, it
follows that for each e > 0

m(qS, b) +
so (3.6) is satisfied with V <_ Ha(G), H L2(G) and z 0. Hence the generalized
problem has a unique solution for each 7 > 0.

If the elements of V satisfy the estimate

(6.5)
i=1

then (3.6) holds for small but negative, so the generalized problem has a unique
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solution for all 7 < (a)-1. Furthermore, if (6.5) holds and fl(s) >= 0, then the form
l(u, v) satisfies an estimate of the form (4.11) with y > 0, so the solution is asymp-
totically stable if f 0 in (1.12). Similarly, if y < (a)-1 < 0 then (6.5) implies
(4.13), and the solution grows exponentially as by the remarks at the end
of4.

In any case, there exists a unique solution of the generalized problem for 7
satisfying either of the two corollaries, and the V-valued function u(t) satisfies in
’(G) the equation

u’(t)- 7A,u’(t)- A,u(t)= f(t),

where 5 -A, is the Laplace operator in n variables, and the initial
condition u(0) Uo. If u and v are sufficiently regular and if cG is sufficiently
smooth for the divergence theorem to apply [13], then we have (formally)

(6.6) m(u, v) (-A,u, V)o + -n + u ds
G

and

(6.7) l(u, v) (-A.u, V)o +

for all u and v in V, where c/cn denotes the normal derivative. Thus, the weak
boundary condition is

for all v in V, while the strong boundary conditions are

io/ u, fo( u(6.9)
6 cn + au’ f)ds O, -n + flu fds O

for all v in V. The condition

(6.10) u(t) V

also holds true.
Let the boundary G be equal to the disjoint union of F1 and F2. Let V be

the closure in H(G) of the space of restrictions to G of those functions in C(R")
whose support is disjoint from F1. The condition (6.10) means that each u(t)
vanishes on F1 while the condition (6.8) implies that

cu’(t) cu(t)
(6.11) 7 On + au’(t) + ---- + flu 0

on F2

If that portion F1 of G on which the Dirichlet condition is prescribed is
sufficiently large, then the estimate (6.5) holds for some K and all b in V, and if

_>_ 0, then one can obtain the estimate (3.5) for 1. Finally, the identities (6.6) and
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(6.7) show that D(M)
_

D(L) if ft. From Theorem 5 it follows that if u0 belongs
to D(L), that is, if

3Uo + Uo 0

on I2, then the solution of the generalized problem, u(t), satisfies the strong
boundary condition

(6.12)
u(t) + u(t)- 0
#n

on 12 for all in R. Note that in order to obtain the condition D(M)
_

D(L), we
had to choose fl, and this makes the two conditions in (6.9) dependent, for
the first can be obtained from the second by differentiation. Although the boundary
conditions obtained by combining (6.10) with (6.11) or (6.12) for various choices
of F1, and fl include all cases of physical interest, many other types can be
introduced by adding more boundary integrals to the sesquilinear forms.
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SOME EXTENSIONS OF LARDNER’S RELATIONS BETWEEN
oF3 AND BESSEL FUNCTIONS*

B. C. CARLSON?

Abstract. The even and odd parts of a hypergeometric pFq-series are expressed as 2pF2q+ x-series,
and inversely, a restricted 2pF2q+ x-series is expressed in terms of a pair of pFq-series. Generalizations
are obtained by decomposing Meijer’s G-function into two G-functions which are not, however, always
even or odd. More fundamentally, it is shown that any solution of a generalized hypergeometric
differential equation with restricted parameters can be expressed in terms of solutions of an equation
with order half as large. The results are illustrated by applications to Bessel functions, Kelvin functions,
generalized Fresnel integrals, and restricted 4Fa-series with unit argument. A number of restricted
G-functions are expressed in terms ofmore familiar functions. A reducibility criterion is used to identify
cases in which fourth order differential equations governing vibrations of beams and deformations of
shells can be solved in terms of Bessel functions or 1Fl-functions.

1. Introduction. In a recent note T. J. Lardner [4] gave some connections
between Bessel functions and hypergeometric oF3-series, in particular,

(1)

and

oF3(1/2, 1/2, 1; z) 1/2Jo(4Z 1/4) + 1/2Io(4Z /4)

ber (x) oF3(1/2, 1/2, 1; -x4/256),
(2)

x2

bei (x) -oF3(-, , 1 x4/256).

In the present note it is observed that (1) and (2) can be obtained by decomposing
a 0F-series into even and odd parts and that this procedure leads to similar
relations for the functions Jr, Iv, berv, beiv. Additional results could be deduced
by differentiation by following Lardner [4]. The separation into even and odd parts
is then applied to a pFq-series and illustrated by several examples. The relations
for pFq-series are in turn shown to be special cases of a decomposition of Meijer’s
G-function, which is then used to enlarge substantially the list of restricted G-
functions known to be expressible in terms of simpler functions. A theorem about
differential equations of hypergeometric type provides a final generalization as
well as a better insight into the origin of the decompositions.

The results bear on some problems in elasticity, e.g., vibration of beams and
deformation of certain types of shells, which are governed by fourth order differen-
tial equations of hypergeometric type. A number of such problems are listed, and
for three of them it is determined what special values of the parameters allow them
to be solved in terms of Bessel functions or other confluent hypergeometric
functions.

2. Even and odd parts of 0F. We keep to the notations used in 2]. For any
complex c except 0 or a negative integer and for any finite complex z, the series
oF(c; z) converges absolutely and can therefore be separated into two series

Received by the editors May 8, 1969, and in revised form November 26, 1969.

"f Physics and Mathematics Departments, Iowa State University, Ames, Iowa 50010. This research
was performed at the Ames Laboratory of the United States Atomic Energy Commission.

232



EXTENSIONS OF LARDNER’S RELATIONS 233

consisting of even and odd terms"

zm
oF(c; z)

m=O (C)mm*.

z2n
=2

--o (c)(1)

(z2/16),
n=OZ (1/2C)n(1/2C "Jl- )n(_)nn,1

Z z2n
+-2

Cn= ( -F 1)2n(2)Zn

z (z2/16),+-Yo 1),(),n"(1/2c + 9.(c +
Hence

Z(3)
oF,(c;z) oF3(1/2,1/2c,1/2c + 1/2; z2/16) +-oF3(,1/2c + 1/2,1/2c + 1; z2/16),

c

where c 4: 0,- 1,-2, .... Adding or subtracting the same equation with z
replaced by -z and making suitable changes of notation, we find

oF3(1/2, c, c + 1/2;z) 1/2oF1(2c; 4Z1/2) + 1/2oFa(2c; --4z1/2),
(4)

2c- 1
oF3(-, c, c + 1/2; z) 8z/2 [oF(2c 1 4z/z) oF1(2c 1 -4zl/2)],

3where c : 0, -1/2, -1, -:, .... The right-hand side of the second equation has
singularities at z 0 and at c 1/2 which are removed by requiring continuity
at these values.

For the Bessel functions

J(z)
(5)

I(z)

(z/2)

(z/2)
r(v + )

we obtain from (3) the representations

Jv(z)

(6)
I(z)

oFx(v + 1 z2/4),

oFa(v + 1 z2/4),

(z/2)
r(v + 1)
oF3(1/2, 1/2v + 1/2,1/2v + 1; z’/256)

(z/2) + 2

F(v + 2)
oF3(-, 1/2v + 1,1/2v + ; z’/256),

(z/2)"
F(v + 1)
oF3(1/2, 1/2v + 1/2, 1/2v + 1; z4/256)

(Z/2)v+2

F(v + 2)
oF3(-, 1/2v + 1,1/2v + -}; z4/256).

Adding and subtracting these equations, we find the inverse relations

F(2c)
(7)

1
F(2c)

oF3(1/2, c, c + 1/2; z) 1/2(2z’/4)’-2c[I2c 1(4zTM) nt- J2-(4z/4)],

oF3(’}, c, c + 1/2 z) 1/2(2zX/’) 2[I2_ 2(4Z TM) J2- 2(4z’/’)].
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Although exceptional values of the parameter v or c were excluded in the proof,
(6) and (7) hold without restriction because both sides of each equation are entire
functions of the parameter. The first equation of (7) reduces to (1) if c 1/2.

The Kelvin functions of general order are defined by

(8) berv (z) + beiv (z) J(z e+i3"/4).

Solving these two equations for ber and beiv and using the first equation of (6),
we find

3vr (z/2)
ber (z) cos-- oF3(1/2, 1/2v + 1/2, 1/2v + 1 z4/256)

4 F(v+ 1)

sin
3w (Z/2)v+2 oF(, 1/2v + 1,1/2v + -}; z4/256),
4 F(v + 2)

(9)

bei (z) sin
3w (z/2)oF(, kv + k, kv + 1; z/256)
4 F(v+ 1)

3w (z/2)+ 2

+ cosoF6, + 1, + ; z/256).
4 F(v + 2)

This representation is valid for all complex v and z except the possibly singular
points z 0 and z . One of the two terms in each equation vanishes if 3v/2
is an integer, and (2) is the case v 0.

3. Even nd odd prts of q. The separation into even and odd parts which
led to (3) can easily be effected for any F-series (p N q + 1) within its circle of
convergence. Using (a) to denote the array of parameters a, ..., ap and (c) to
denote c, ..., cq, we find

(ka), (a + );
4"-"- z.F.[(a)" (c)" z] .F,+

k, (c), (c + );
(0)

a-.. a [ (a + ),(a + 1);
4--z2+z2F2+ j,c c, k, (c + ), (zc + );

where cj 0,-1,-2, ,j 1,2, ,q. Adding or subtracting the same
equation with z replaced by -z and modifying the notation slightly, we have

[-(a), (a + 1/2);
2pf2q + 1

L1/2, (c), (c + 1/2);

(11)
[- (a + 1/2),(a + 1);

2,F2q+ 11k, (c + 1/2), (c + 1);

zJ 1/2pFq[(2a); (2c); 21 +- ’z1/2]

+1/2,F[(2a);(2c); -21 +-c...cz-z
al a, 4 {,F[(2a);(2c);2l+q-pz 1/2]

-,Fq[(2a) (2c); -21 +-’zl/2]},
After the revision of this paper was completed, it was learned that (10) was stated in 1954 by

MacRobert [13, (8)] in terms of his E-function. Since the formula was incidental to evaluation of a
definite integral, he did not proceed to (11).
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where cj 4: -1/2, -1, -z, ,j 1, 2,..., q. We assume also that cj 4:0 in the
first equation, but the singularities of the right-hand side of the second equation at
cj 0 and ai 0, 1,2,...,p, and z 0 can all be removed by requiring
continuity at these points.

If p q 0, (11) is the decomposition of the cosine and sine functions into a
sum and difference ofexponentials. Ifp 1, q 0, it is a pair ofelementary cases of
the Gauss hypergeometric function [1, (15.1.9) and (15.1.10)]. The case p 0, q 1
is (4). If p q 1 one can put c 2a to get two special cases of a known relation
between 2F3 and a product of Bessel functions [2, Eq. 7.2(49)]. A more interesting
result follows from applying Kummer’s transformation [2, Eq. 6.3(7)] to the 1F1-
series and then substituting (10) with p q 1 to obtain

zF3[_1/2, c,c+1/2; z =cosh(2zl/Z)zF
1/2, c,c+1/2;

’z

a- c
2z/

c- a +1/2, c- a + 1
(12) -- sinh(2z/)Fa z

c ,c+,c+l;

a+,a+ 1; csinh(2z/) c-a,c-a+;
,c+,c+ 1; a 2z/ ,c,c+;

ac
cosh (2z/2)2F3

c a + , c a + 1

a k,c+,c+;
3 We assume also that c -: 0 in the first equation, butwhere c - -1/2, 1, -7,

the singularities in the second equation at a 0 and c 0 are removable by
continuity.

Specialization of (11), e.g., by putting c a + 1/2, gives decompositions for
series with an odd number of numerator parameters and an even number of
denominator parameters. Likewise, putting c a + 1/2 in (12) gives similar formulas
for the generalized Fresnel integrals

z2a
cos dt -a F2(a;1/2, a + 1 -z2/4)

Z2a COS Z

2a
F2(1 a + 1/2, a + 1 z2/4)

(13)

z2a + sin z- 2a(2a + l)

z2a +2a- sin dt
o 2a+ 1

xF2(1 a + 1, a + -; z2/4),

Fz(a + 1/2;z, a + -;-z2/4)

Z2a sin z

2a
lFz(1;a+1/2,a+ 1;-z2/4)

z2a + COS 2

2a(2a + 1)
1F2(1 a + 1, a + z; z2/4),
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where Re a > 0 in the first integral and Re a > -1/2 in the second. The expressions
in which a appears in both denominator parameters of the 1F-series are suitable
for numerical computation of the integrals if [al > Izl.

If p 2, q 1, application of Euler’s transformation [2, Eq. 2.1(23) or
2.1(22)] to the 2Fl-series on the right-hand side of (11), followed by substitution of
(10), leads to relations analogous to (12) between three 4F3-series. Another type of
result is obtained by putting z 1 in (11); one 2Fl-series on the right-hand side can
be summed by Gauss’ theorem and the other series by Kummer’s theorem [2, Eq.
2.8(47)] provided c a b + 1/2. Thus we obtain the sums of two well-poised
4F3-series with unit argument,

4F3[aa,a + 1/2, b,b + 1/2;
[_-,a b + 1,a-b+1/2;

(14) a+ 1,a+1/2, b + 1,b+1/2;
4FL ,a-b+ 1,a-b+;

11 =2_2,_1F(1 +2a-22))F _F(1/2-2b)
F(1 +a- [F(1/2+a-2b)

r(1/2 + a)
2-2a-3F(2 -k- 2a- 2b)[ F(1/2- 2b)

abF(1 + a 2b) LF(1/2 + a- 2b)

r(k))]r(k+ 
3where Reb<1/4 and a-b4= -1/2,-1,-,.... In the second equation the

singularities at a 0 and b 0 are removable by continuity.

4. Decomposition of Meijer’s G-function. The pFq-series is equivalent to a
1,p In the general case the G-functionspecial case of Meijer’s G-function, viz., Gp,q+ 1.

may have a branch point at z 0 and so may not have well-defined even and odd
parts. However, it can always be decomposed into two G-functions which coincide
with its even and odd parts when these are well-defined. We consider first

2,n
p,q+ 2 z

O,

(15)
where L is a suitable contour [2, p. 207]. The poles of F(- s)F(1/2 s) can be separ-
ated into integers and half-odd-integers according to the identity

(16) F( s)F(1/2 s) e -+ is I F( s) ----lF(1/2s)
r(1/2 + s) iF(1 +

which is easily verified by using Euler’s functional relation [2, Eq. 1.2(6)]. It follows
that

m+2’2n Z’+ 0 , (c) ’’v,a+ " e-
o,(c),

(17) _
:--t’m + 1,2n
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We shall use the following abbreviations"

p, q, m, n are nonnegative integers with n =< p and rn =< q,

(a,a + 1/2) is the ordered array al,al + 1/2, a,,, a,, + 1/2,... ap, ap + 1/2,

(c,c + 1/2) is the ordered array cl, c + 1/2, Cm, Cm + 1/2, Cq, Cq + 1/2,
(18)

p=1/2(p+q+ 1)-m-n, 6=q+ l-p, e,=q-p- 1 =6-2,

q p

a= cj- aj+p-m-n,
j= j=

q p

z=2 cj-2 aj+p-m-n+ 1.
j= j=l

By [2, Eq. 5.3(8)] there is no loss of generality in taking one parameter in the G-
function to be zero. By [2, Eq. 5.3(10)], in which x should be replaced by x2 on the
right-hand side, we have

(a) (72m+ 2,2n Z2 (1/2a, 1/2a + 1/2)
(19) c:m+ 1,1n Z 2rp-"-’P’q+ 0,()] ’2p,2q+2 - 0,,1 zll,C,cl + 1/2)

Using (17) and [2, Eq. 5.3(8)], we find a generalization of (10), viz.,

(20)
l,ln(zP,q+

+ inz2(a)
2,npG2m+ 1,2.|

O, (C)]
2p,2q+ 2 4

+ k)
0, + 1/2

2 6,wp,.rt’.2m + 1,2n
’-’2p,2q+ 2

e + inz2

4

(1/2a,1/2a-1/2)
o, 1/2), 1/2]

We now choose the lower (or upper) signs and replace z by ei’z (or e-i’z) to get a
similar equation in which the arguments on the right side have the upper (or lower)
signs. Adding or subtracting two equations with the same signs and modifying the
notation suitably with the help of [2, Eq. 5.3(8)], we have

+ 1,2n
2p,2q + 2

(a, a + 1/2)
2-rn-om + 1,n

O, (C, C -JI- 1/2), 1/2l "-’p,q+l i26zl/2
(2a)

0, (2c)I

(21)

+ 2-ri-om+ 1,n
p,q + _i26zl/2

(2a)
O, (2c)1

Gzp.e +z z
1/2, (c, c + 1/2), 0 P’ +

(2a)
0, (2c)!

i2--r.rC--O(-;m+,,..,p,q+l,ln i26z/2

where stands for eir/2 and -i stands for e -ir/2.

(2a)
0, (2c)1
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These last equations permit several restricted G-functions not listed in [3, pp.
434-439] nor in [5, vol. 1, pp. 230-234] to be expressed in terms of more familiar
functions. For present purposes Tricomi’s q is more convenient than Whittaker’s
W, to which it is equivalent [2, Eq. 6.9(4)]. Omitting cases of the form Gpi+ with
p =< q + 1, for which the pFq notation seems preferable, we have

(22)

(23)

Gg:4(zlO, c, c + 1/2,1/2)= 4zC/2Icos---ker2c(4zl/4
3czr

1/4)1sin -keic(4z

Gg o Is 3crc
1/414(z[, C, c + , 0) --4zc/2 in ker2c(4Z

3c /4+ coskel(4z )J,

(24)

30G2’,4
a, a + 1/2 1/2) 22a_ 2c- 1- X/2[exp (_ i2z/2)W(2a 2c, 1 2c;i2z /2)

O,c,c+1/2,

+ exp(i2z/2)W(2a 2c, 1 2c; i2z/2)],

(25)

a, a + 1/2
i22a 2c- 1- 1/2[exp(_ i2z/2)W(2a 2c, 1 2c;i2z/2)

1/2, c,c+1/2,0

exp(i2z/Z)q(2a 2c, 1 2c; i2z/2)],

(26)

32G2:4
a,

1/2/ 22a-2c/1;1/21-’(1 2a)F(1 + 2c- 2a)
O,c,c+k,

[q(1 2a, 1 2c;2iz 1/2) + qJ(1 2a, 1 2c;--2iz1/2)],

(27)

G3,2,4
a, a + 1/2

i22a-2CcX/2I-’(1 2a)F(1 + 2c- 2a)Z1/2, c,c+1/2,0
[q(1 2a, 1 2c; 2iz/2) qJ(1 2a, 1 2c: -2izl/2)].

/-,.2m,2n +Relations similar to (20) and (21) but involving functions of the type --2p/ 2,2q

can be deduced either by use of [2, Eq. 5.3(9)] or by a separate proofentirely similar
to the one above. Again taking one parameter to be zero without loss of generality,
we find

(28)

+
p+l,q

e + inz2
m,2n + 1[,(a)

2+xzrpGp+2,2 4(c)

-2’+ 1-eTr,PzGm’2n+p+ 2,2/1( e +in224 0, (1/2a, 1/2a 1/2), -1/2/
1/2) ]’
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where e, p, a are defined in (18). Inversely we have

(O,(a,a+1/2),1/2) +1 i2zl/2
0,(2a)/".2m,2n+ Z 2 la:-Gl,q"’2p+ 2,2q

(C, C + 1/2) (2C)

+l(_i2ezl/2 0, (2a)]+2 ln-G;gl,,
(2c) l’

(29)

(1/2,(a,a+1/2) 0) -pm.n+ i2ez/2
0g72m,2n+ Z i2-- la: "-’p+ 1,2p + 2,2q

(C, C -Jr- 1/2)
(2a)

(2c)!

i2z/2
O, (2a)/"
(2c)!

+1i2

To (22)--(27) we can now add

(] 0,1/2 F(1 +2c)a:-X/2z622:1 z

(30)
c, c +

[e=F(1 + 2c; 1 + 2c- 2d;-i2zx/2) + e-=F(1 + 2c; 1 + 2c- 2d; i2z1/2)],

k, 0 iv(1 + 2c)- /zG,
c,c + ,d,d +(31)

[eC=,Fx(1 + 2c; 1 + 2c- 2d;-i2z/2) e-=,F(1 + 2c; 1 + 2c 2d; i2zl/2)],

G2:4 2-2a/2F(2c + 1)F(2d + 1)z
c,c+),d,d+

(32)
[eC(1 + 2c, 1 + 2c- 2d; i2z/2) + e-C(1 + 2c, 1 + 2c- 2d;-i2z/2)],

G22 z i2-2a/2F(2c + 1)F(2d + 1)z
c,c+,a,d+

(33)
[eC(1 + 2c, 1 + 2c- 2d; i2z /2) -e-C(1 + 2c, 1 + 2c- 2d;-i2z/2)].

In the last four equations G’ 4,, or G2’,4 provides an interpretation for the
1,nsymbol ,F1, as does q for 2F0. More generally,G 1.p and Gp,q+ are equivalent to

pFq if p __< q + 1 (see [5, vol. 1, p. 147]) and provide an interpretation of the symbol
pFq if p > q + 1. With this interpretation (10) and (11) are valid also for p > q + 1.

By means of reduction formulas such as [5, Eqs. 5.4(1) and 5.4(2)], specializa-
tion of the preceding expressions for 3 o 3 2 2 4G214, G2’,4, G214 and G214 yields some further
relations in which y(a,x) and F(a, x) denote incomplete gamma functions [2,
Chap. 9]:

(34) G2:3( z
(35) :2 0(G’,3 z

(36) 2 0G 1;3 z

o
a:- 1/2zc sin (2Z/2 Ca:),

c,c+1/2,0
0

re-/2zC[z/2 cos (2z 1/2 ca:) + c sin (2z 1/2 ca:)],
c,c+1/2,1

1) i2- 2ca:- /212,(2c i2zl/2) (2c, i2z/2)],
c,c+1/2,0
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(37) 2 0G113 z

(38) G2:3(z
(39)

(40)

(41)

(42) G3: z

1/21 g- 1/2(C COS 2Z/2 + Z 1/2 sin 2Z/2),
0, c+ 1,

r- /2(c sin 2z/2 z/2 cos 2z/2),
1/2, c+ 1,0

: z
O,c,k

z ( C + ;) i2zrc- X/Zz[eiC’F(-2c, i2z/Z) -e-iC’F(-2c, -i2z/2)]Gl:3 Z
1/2, C,

0 1/2/! X/2F(1 + 2c)f[exp (i2z/2 + icrc)F( 2c i2z /2)Z --T[

O,c,c +
+ exp (- i2z x/2 icrc)F(- 2c, i2zX/2)],

0 1/2) i2-2rc/ZF(1 + 2c)[q(2 2- 2c; i2z 1/2)
1,c,c +

q(2, 2 2c; i2zX/2)].

5. Reducibility criterion applied to problems in elasticity. In the past ten years
hypergeometric functions of types oF3 and 2F3 have been applied to a number of
problems in elasticity such as vibration of beams and deformation of shells.
The differential equations of these problems are linear fourth order equations,
and under suitable assumptions about geometrical and mechanical properties
they can be transformed into the type of equation satisfied by pFq, viz.,

6 ( + cj- 1)- z (,5 + ai) y= 0 Z--dzj=l i=1

where an empty product is understood to be unity. The 2F3-equation describes
the elastic deformations ofa thin shallow conical shell [7], as well as an approximate
model of a deep conical shell, and more generally the deformations of a class of
shallow shells of revolution in which the radius varies as a power of the axial
coordinate [9]. The 0F3-equation is encountered in the bending vibrations of a
tapered beam ofwhich the height and width vary either as powers [8] or as exponen-
tial functions [12] of the longitudinal coordinate. Symmetric deformation of a
circular cylindrical shell also is governed by the oF3-equation if the wall thickness
varies either as an exponential function [10] or a power [11] of the axial coordinate.
Other problems of essentially the same nature are the vibration of a circular disk
with variable thickness, the bending of a beam with variable properties on an
elastic foundation, and the bending and twisting of a thin strip with variable
thickness.

Since special cases of some of these problems, e.g., the vibrating wedge-shaped
beam, had previously been solved in terms ofBessel functions, a connection between
oF and 0F3 was indicated [8]. When established explicitly, the connection was
used to pick out other special cases for which the solutions could be reduced to
tabulated Bessel functions. In the deformation problem of a cylindrical shell with
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wall thickness proportional to x", where x is the axial distance, Lardner [11]
thus showed that the solution can be expressed in terms of Bessel functions if
1/(2 n) is a nonzero integer, i.e., if n 1, 3, z, -, , The results of the present
paper suggest that there are additional cases of similar kind.

To determine what cases are reducible, it is convenient to include among the
denominator parameters of a 2pF2q+ 1-series an additional parameter with value
unity, since n! (1), is always part of the denominator of the nth term. By (11)
the series can be reduced to two pFq-series if its denominator parameters, and
similarly its numerator parameters, occur in pairs whose members differ by 1/2.
Since differentiation can be used to change a parameter by unity, it is sufficient
that the members of each pair differ by half an odd integer.

If this criterion is applied to the problem of the cylindrical shell mentioned
above, it is found from [11, (12) and (13)] that reducibility occurs if 1/(2 n) is
either a nonzero integer or a half-odd-integer. In the latter case, corresponding
to n 0,4, 4 ,z_,...7, :], the solution can be expressed in terms of spherical
Bessel functions. Only the case n 0 appears to have been noted previously.

We consider next the transverse vibrations of a nonuniform beam, which also
are governed by a 0F3-equation. Following the notation used in [8], we assume
that the flexural rigidity varies as x and the mass per unit length as x", where
x is the axial coordinate. The criterion for reducibility is satisfied if either
1/(4- m + n) or (2- m)/(4- m + n) is half an odd integer, and the solution
can be expressed in terms of Bessel functions in these cases. Only the uniform
beam (m n 0) and the case m n 2 seem to have been noted previously.

The reducible cases include some degenerate cases (e.g., m 3, n 1) in
which the general solution contains logarithmic terms [8]. When this occurs,
it may be useful to know that even the logarithmic solutions of the oF3-equation
can be found by solving a 0Fa-equation, as is shown by the following theorem.

THEOREM. Let y f(z) be a solution of

(43) ( +c- 1)-z ( + ai) y=O zj= i=

If u f( 2 +-Pzt/2), then w u + and w u_ are solutions of

(44) 3 + 1 3 1 -z 6+ 6+ w=0
j= 2 i= 2

Proof. By taking 2 +-z/2 as the independent variable, we readily verify
that L + u + L_ u_ 0, where

(45) L e 1 z/ +
j=l 2 i=a

If we define

(46) M+ 6 + 1 T-z 6 +
j-1 -- i=1

then the operator M_L+ M+L_ annihilates both u+ and u_ and has the form
given in brackets in (44).
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It follows from the theorem that the general solution of (44) can be obtained
at once from the general solution of (43) except in the very unusual case that (43)
has a solution that is even or odd in z. The theorem provides a rationale for the
existence of the explicit decompositions given in earlier sections and goes beyond
them to imply the existence of decompositions for solutions in degenerate cases.

We consider finally a deformation problem governed by a 2F3-equation and
ask for those special cases in which the solutions can be reduced to solutions of
the confluent hypergeometric equation. Let the shape of a shallow shell of revolu-
tion be described in cylindrical coordinates by

(47) z=fl 1 s4: -1,

where fl, a and s are constants, and assume that the deformation varies with
azimuth as cos nO, where n is a nonnegative integer. The parameters of the 2F3-
equation are given as functions of n and s by [9, (10) and (11)]. The criterion for
reducibility to solutions of a 1Fl-equation is found by detailed examination to be
satisfied only in the following cases" n 0 and s + 1 _4, _, +, +., or
n 4 and s 3 or 1/2. It is noteworthy that Lardner [9] has expressed the exact
solution of the general case in terms of G-functions for convenience in discussing
the asymptotic behavior at large values of r. Hence (21) and (29) of the present
paper may be used when n and s have any of the listed values.
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SOME REDUCTION FORMULAS FOR GENERALIZED
HYPERGEOMETRIC FUNCTIONS*

L. CARLITZ

1. Lardner [1] has exhibited a relationship between Bessel functions and the
generalized hypergeometric function

X
oF3(o q- 1, fl + 1/2 y / )" x)=

n(+ 1).(fl+).(y +
where is a nonnegative integer and , 7 are arbitrary integers. This depends on
the identity

oF3(1, k, k; x) [Jo(z) + Io(z)], z 4x/,

and certain differentiation formulas. For example it is shown that

oF(m + 1,m p + ,m p q + ;x)
(1.1)

Cxp+q-m+ 1/2 xm-1/2 oF3(1 k k" x)X

where m, p, q are nonnegative integers and C is an explicit constant. A special case
of interest is

Xp+__1/2 d d )P(1.2) oF3(1,-p + ,-p + ;-x) )(.x x-X/ZoF3(1,,;-x).

As an example of a relation like (1.1) with p or q negative, Lardner cites

(1.3) oF3(1, N + , N + ;x) (k)(k)u x oF3(1, , ; x).

It is evident from these results that, in order to obtain explicit formulas, it is
necessary to expand the differential operator

(ox)"

We show that this can be done quite simply.
2. It is easily verified that

DxD D + xD2,

(DxD)2 2D2 + 4xD + x2D4,

(DxD)= 6D + 18xD4 + 9xZD5 + xD6.

Generally we may put

(2.1) (oxo)" A(n, s)xO"+.
s=O

Received by the editors September 8, 1969.
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Then

xD(DxD)" A(n, s)(sxD"+ + x+ XD"++ ),
s-’O

(DxD)(DxD)"= A(n,s)[s2xS--1D"+ + (2s + 1)xD"++1 + xs+lDn+s+2],
s=0

so that

(DxD),,+ [A(n,s- 1)+(2s+ 1)A(n,s)+(s+ 1)2A(n,s+ 1)]xD"++1
s----0

Comparison with (2.1) yields the recurrence

(2.2) A(n + 1, s) A(n, s 1)+(2s+ 1)A(n,s)+(s+ 1)2A(n, s + 1).

By means of (2.2) we can easily compute Table 1 for A(n, s).

TABLE

2 4
6 18 9

24 96 72 16

It may be of interest to note that (2.2) can be written in the form

A(n + 1,s)= [E -1 + 2s + 1 + (s + 1)2E]A(n,s)

[E -2 + (2s + 1)E -1 + (s + 1)2]A(n,s + 1),

where Ef(n, s) f(n, s + 1). This implies

(2.3) A(n + 1,s)= (E-1 + s + 1)2A(n,s + 1),

and more generally

(2.4) A(n + k, s)= (E-1 + s + 1)2(E -1 + s + 2)2... (E-1 + s + k)ZA(n,s + k).

Note that the operators E-1
__

S - a, E-1 + s + b commute.
The following formula is easily verified by mathematical induction"

(2.5) A(n,s) (n s)!.

3. In order to use (1.1) or (1.2) we require the expansion of the operator

(3.1) (xDx)"x"
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with a arbitrary. By (2.1) and (2.5),

(n s) !xD +x

2 n+s

j=0

n + Sla(a
J

1)... (a- j + 1)xa+s-JDn+s-j

(_l)J(_a)J(s
n!n!(n + s + j)!

/ j__<, + j)!(s + j)!(n s j)!j !(n + s)!
x + SDn +

/,

l"l !’l
X +*D" +* ._,s (_ a)(- n + s)(n + s + 1)j

o s !s !(n s) =o j (s + 1)j(s + 1)j
Therefore

(3.2) (xDx)nx (n s)3F2
,=o s + 1,s + 1

It does not seem possible to sum the 3F2.
4. We remark that the operator (DxD)" can be conveniently applied to more

general hypergeometric functions. Thus for example it is easily verified that

1 p
(DxD)".V,+ , 1,’", &,"

x

(4.)

(B (& ,B + n,...,& + n;

where as usual

.F,+I
el."’, e.,

We remark also that the formula

(4.2) (DxD)" (n s) x*D"+

has as its inverse

(4.3) xnD2n (- 1) (n s)!(DxD)*D"-.
s=0

This is an instance of the equivalence of

y,, (n s)!x,
s=0

x, (- 1) (n s)! y,,
s--0

n =0,1,2,...

n =0,1,2,...
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LIE THEORY AND SPECIAL FUNCTIONS SATISFYING
SECOND ORDER NONHOMOGENEOUS

DIFFERENTIAL EQUATIONS*

WILLARD MILLER, JR."

Abstract. A Lie algebraic technique is given for the systematic study of families of special functions
which satisfy second order nonhomogeneous differential equations such that the solutions of the
homogeneous equations are of hypergeometric type. Among the functions obtained by this technique
are the functions of Struve, Lommel and various nonhomogeneous hypergeometric, confluent hyper-
geometric and parabolic cylinder functions.

Introduction. Among the classes of functions which are useful enough to be
considered "special" there are families which satisfy second order nonhomo-
geneous differential equations whose homogeneous parts are equations of hyper-
geometric type. Such families typically also satisfy third order homogeneous
equations, two linearly independent solutions of which are functions of hyper-
geometric type, i.e., hypergeometric, confluent hypergeometric, parabolic cylinder
or Bessel functions. Furthermore, the families obey simple recurrence formulas.
The best known families are the functions of Struve and Lommel, related to Bessel
functions, but there are many more which have been studied [1]-[4]. Recently
there has appeared a book on this subject by A. W. Babister [5]. However, it is not
clear from Babister’s book why certain families are studied and others are not.

Here we shed some light on this problem by adopting a thorough Lie algebraic
approach. In [6], the irreducible representations of the Lie algebras (1, 0), fq(0, 1)
and (0, 0) were determined, and models of these representations were constructed
in terms of first order differential operators (the operator types A, B, C’, C", D’)
acting on spaces of functions of two complex variables z, t. The basis vectors
fro(Z, t) gm(Z)t of such irreducible representations turned out to be such that the
gm(Z) were functions of hypergeometric type. This connection between Lie algebras
and special functions led to recurrence relations, differential equations, generating
functions and addition theorems for the functions of hypergeometric type.

In this paper we use the type A,..., D’ operators as building blocks to
construct more complicated models of irreducible representations of the Lie
algebras N(a, b). Some of the Lie algebra elements in our models will now be
second order differential operators. Furthermore, the models will be constructed
in such a way that the basis vectors are functions of the kind mentioned in the title
of this paper. In the usual way, this connection between Lie algebras and special
functions will lead to recurrence formulas, differential equations and generating
functions.

The concept of using models of Lie algebras as building blocks to construct
more complicated models is a familiar one in theoretical physics where, for
example, the annihilation and creation operators for bosons and fermions are used
to construct representations of the semisimple Lie algebras [7]. In this paper we
have constructed eight classes of models which are as simple as possible. In

* Received by the editors September 15, 1969.
f School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.
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particular, to obtain our new models we modify only one of the operators in a
generating basis for the old model. However, even these very simple models
suffice to construct most of the well-known nonhomogeneous functions as well
as a number of interesting functions which the author has not seen before in
the literature. We could obtain many more such functions by constructing more
complicated models, by considering reducible Lie algebra representations or by
examining new Lie algebras. At any rate, the analysis would be systematic and
purely algebraic.

1. We begin with differential operators d /, ‘]-, ,]3 and the identity operator E
acting on a space of analytic functions of the two complex variables z, and
satisfying the commutation relations

[J+, J-] 2a2j3 bE,

(1.1) [j3 j+] q_j+

[E, J+] [E, j32 0,

where 0 is the zero operator and a, b are fixed complex numbers. Here, [A, B]
AB BA for linear operators A and B on . We assume that the J-operators

take the form

(C3k+/-C31+-)(1.2) d +/- +/-1 j+/-(z)-z + (z)t- + (z)

(1.3) j3
3---"

(This is no loss of generality. See [6, Chap. 8] .) Clearly, d-+, d3, E form a basis for a
four-dimensional Lie algebra fq(a, b). In fact, it is easily shown that all ofthe algebras
#(a, b) are isomorphic to one of f#(0, 0), f#(0, 1) or f#(1, 0) (see [6]). For each of the
algebras fq(a, b) it is straightforward to verify that the invariant operator

(1.4) Ca, J+ J- + a2j3j3 a2j3 bj3

commutes with all elements of the Lie algebra. It can be shown, for a large class of
irreducible representations of fq(a, b), that if the J-operators act irreducibly on
some proper subspace of then C,,b is a multiple of the identity operator on that
subspace.

In [6] the possible J-operators on U satisfying (1.1) are derived and used to
construct irreducible representations of (0, 0), (0, 1) and f#(1, 0) on subspaces //U
of . In each case a basis fro(Z, t)} for is constructed in the form

(1.5) fro(Z, t) gm(Z)t

such that ,]3fro mfm, Ca,bf,,, )of,,,, i.e., the basis vectors are simultaneous eigen-
vectors ofthe commuting operators d3, C,,. The constant 2 is fixed by the represen-
tation, while m runs over the eigenvalues of,]3 acting on . The J-operators which
lead to nontrivial special functions g,,(z) are listed in Table 1. In each case when the
trivial t-dependence is removed from the equation Ca,f,,(Z, t)= 2fro(Z, t) there
remains a second order homogeneous ordinary differential equation for the
special function g,,(z).
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J-operators

type A
type B
type C’
type C"
type D’

TABLE

Lie algebra

(1, O)
(1, O)
(0,
(0, O)
(0, 1)

gin(z)

hypergeometric functions
confluent hypergeometric functions
confluent hypergeometric functions
Bessel functions
parabolic cylinder functions

In this paper we modify our procedure for constructing special functions from
Lie algebra representations so that the equation Ca,bfro(Z, t) 2fro(Z, t), when the
t-dependence is factored out, becomes a third order homogeneous ordinary
differential equation for g,,(z). In addition we require that two of the three linearly
independent solutions of this third order equation be functions of hypergeometric
type listed in Table 1. The remaining solution should be a new function not in the
table. We shall proceed by using the J-operators of (1.1) as building blocks to
construct K-operators, K +, K-, K3 which still satisfy the commutation relations
(1.1) of C(a, b) but for which the invariant operator

(1.6) C’,,,b K + K- + a2K3K3 a2K 3 bK3

is now a third order partial differential operator in z and t. The K-operators can
then be used to construct the irreducible representation of N(a, b) listed in [6],
hence, to construct new classes of special functions.

We make use of the following algebraic methods for the formation of K-
operators from J-operators.

Method 1A. Suppose the first order J-operators satisfy the commutation
relations (1.1) of N(a, b) and denote a given differential operator (1.2), (1.3) in the
form J-+ zj + t+-ll+-(z). Now set

K + J+ + toffz)(Ca,b 2E),
(1.7)

K- =J-, K3 __j3,

where Ca,b is given by (1.4), and fix the function (z) by the requirement that
K+, K3, E satisfy the commutation relations of q(a, b). The only commutation
relation which is not identically satisfied is

(1.8) [K+, K-] 2a2K3 bE,

and an easy computation shows that (1.8) holds if and only if e(z) satisfies the
equation

(1.9) rj-(ta(z)) O.

Forming the invariant operator C’,,b we find that

C’,b Ca,b + tcz(z)J-(C,,b- 2E).

Now consider a model of an irreducible representation of N(a, b) formed by the
K-operators such that C’,.b 2E. Then for every basis vector fro(Z, t) in K the
relation C’,bfm 2fro becomes, due to (1.10),
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(1.11) (E + t(z)d-)hm(z, t) 0,

(1.12) hm(z, t) (Ca, /E)fm(Z t).

If the basis functions fro(Z, t) satisfy Ca,bfro 2fro, then hm 0 and the K-operators
become identical with the J-operators on this basis. However, we can solve the
first order partial differential equation (1.11) to find nonzero solutions hm(z, t). Then,
the basis functions fro(Z, t) will satisfy the nonhomogeneous second order differential
equation (1.12). We shall always be able to factor out the t-dependence from (1.11),
(1.12) and reduce the problem to a solution of ordinary differential equations.

Method lB. This method is a variant of Method 1A where we alter J- rather
than d/. Set

K- J- / t-1j(z)(Ca,b-
(1.13)

K + J+, K3 j3.

It is straightforward to show that the K-operators form a basis for (a, b) if and
only if

(1.14) :j+(t-1/(z)) 0.

In this case

(1.15) C’a,b Ca,b + t- 1j(z)J + (Ca,b

Now consider a model of an irreducible representation of (a, b) formed by the
K-operators such that C’,,b 2E. Then the relation C’,,f 2f satisfied by the
basis vectors becomes

(1.16) (E + fl(z)J +)hm(z t) O,

(1.17) h(z, t) (Ca,b /E)fm(z t).

If hm -= 0 then the J- and K-operators agree and we get nothing new, while if hm is a
nonzero solution of (1.16) then the basis vectors f,, satisfy the nonhomogeneous
second order equation (1.17).

Method 2A. Suppose the J-operators form a basis for (0, 0), i.e., they satisfy
(1.1) with a b 0. We shall use the J-operators to construct K-operators which
form a basis for (0, 1). In particular we set

K + J +J3 + fo(z)(Co, E) + ]2J+,
(1.18)

K- J-, K3 j3.

It is easy to check that the K-operators form a basis for if(0, 1) if and only if

(1.19) zj-(t(z)) 1.

In this case

(1.20) C, --(j3 qt_ t(z)J-)(Co,o E) + (la 1)Co,o.

Consider an irreducible representation of f#(0, 1) by the K-operators such that
C3, (/- 1)E. Then the relation C’o,fm (t- 1)f, satisfied by the basis
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vectors can be transformed to

(1.21)

(1.22)

(j3 nt t(z)J- + (t 1)E)hm(z t)--0,

h,,(z, t) (Co,o E)f,,(z, t).

If the h,, are a nonzero solution of (1.21), then the basis vectors fm satisfy the non-
homogeneous differential equation (1.22).

Method 2B. In this variant of Method 2A we modify J- rather than J +. Thus
we assume that the J-operators form a basis for f#(0, 0) and construct a basis for
N(0, 1) from the K-operators:

K- j-j3 _+_ t-lfl(z)(Co,0 E) + pJ-,
(1.23)

where

(1.24)

Then

(1.25)

K + j+, K3 j3,

zs+(t- fl(z)) 1.

C), (j3 -I- t-fl(z)J + + E)(Co,o E) + #Co,o.

If we consider an irreducible representation of if(0, 1) by K-operators such that
C, pE, then the relation C’o,fm Izf,, becomes

(1.26) (j3 + t- lfl(z)J + + (p + 1)E)hm(z, t) O,

(1.27) hm(z, t) (Co,o E)fm(Z, t).

Method 3A. Suppose the J-operators satisfy (1.1) for a 0, b 1 (as in
,#(0, 1)). We shall construct K-operators which form a basis for (1, 0). In particular
we set

K + _j+j3 to(z)(Co, 2E) + 2J +,
(1.28)

/(3 j3 K- d-

These operators satisfy the commutation relations for (1, 0) if and only if

(1.29) zj-(t(z)) 1.

In this case

C],o {_j3 t(z)J- + (2 + 1)E}(Co, 2E) + 2(2 + 1)E.

Now consider an irreducible representation of (1, 0) by K-operators such that
C],0 2(2 + 1)E. Then the relation C’,of,, 2(2 + 1)f,, becomes

(1.30) j3 t(z)J- + (}c -1- 1)E)hm(z, t) O,

(1.31) h,,(z, t) (C0,1 /],E)fm(Z t).

Method 3B. This is identical with Method 3A except that the J--operator is
altered rather than J /. Thus,

K- _j-j3 q_ t-fl(z)(Co, /].E) -t- ( + 1)J-,
(1.32)

K + J+ K3 j3
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These operators form a basis for (1, 0) if and only if

(1.33) rs+(t-1j(Z)) 1.

Then

(1.34) C],o (_j3 + t-fl(z)j+ + 2E)(Co, 2E);

and if C’,Ofm 0, then

(1.35)
(_j3 + t-(z)J + + 2E)hm(z, t) O,

hm(z, t) (Co, 2E)f,,(z, t).

Method 4A. We proceed by analogy with Methods 2 and 3. Suppose the
J-operators form a basis for (1, 0). We set

K + j+j3 + oj+ + ta(z)(Cx,o 2E),
(1.36)

K- J-, K3 j3,

and determine a(z) so that [K /, K- is independent of the operators d / and d-. It
is easy to show that this will be the case provided that

(1.37) rj-(t(z)) 1.

In this case [K +, K-] 3j3j3 + (209 1)J3 2E and the operators K +-, K 3

generate an infinite-dimensional Lie algebra c5"z. Even though this Lie algebra is
not finite-dimensional it is still useful since it has a simple invariant operator

(1.38) C’= (j3 _+_ ta(z)J- + (09 1)E)(C1,0 ,E) -+- ,(09 1)E.

Given an irreducible representation of ,o, such that C’fm 2(09 1)fro we obtain
the equations

(1.39) (j3 + ta(z)J- + (09 1)E)hm(z, t) O,

(1.40) hm(z, t) (C1,0 E)L,(z t).

From the point of view ofthe factorization method we have constructed a factoriza-
tion which does not have a realization as a representation of a finite-dimensional
Lie algebra [6], [8].

Method 4B. We assume that the J-operators form a basis for (1, 0) and set

(1.41)
K- j-j3 + 09j- + t-l(z)(Cl,o 2E),

K + j+, K3 j3.

If :+(t- fl(z)) 1 then [K +, K-] 3j3j3 + (209 1)J 3 2E and the K-opera-
tors generate an infinite-dimensional Lie algebra c,,z with the invariant operator

(1.42) C’= (j3 + t-lfl(z)j+ + (09 + 1)E)(C,,0 2E) + 209E.

If Cf,, 209f,,, then

(1.43) (j3 + t- ’fl(z)J + + (09 + 1)E)hm(z, t) O,

(1.44) h,,(z, t) (Cl,o 2E)fm(Z, t).
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2. Special functions related to Bessel’s equation. The type C" operators

(2.1) j+=t+-}-8 tt j3_t
8z z 8t

satisfy the commutation relations of f#(0, 0), and these operators can be used to
construct the Bessel functions and their basic properties [6], [9]. Here the type C"
operators will be used as building blocks to construct more complicated models of
Lie algebra representations.

As a first example we apply Method 2A. It follows from (1.19) that

/ (t(z)) 1

or (z) z/2 + c l/z, where c is an arbitrary constant. Substituting this result into
(1.21) we find

dhm [ m + 2(m + # l)z1dz z z2 + -- hm’

where h,,(z, t) h,(z)tm. Thus
(2.2) hm(z) c2z-m(z2 + cl)+"- 1,

where the constants c2 may depend on m but not on z.
We can now use the K-operators to construct models of the irreducible

representations of (0, 1) listed in [6] and [9]. The general theory guarantees that
we can always construct such models. As an example, consider the representation
R(o9, too, 1) defined for 09, mo e such that 0 =< Re mo< 1 and o9 + mo is not an
integer. The representation space has a basis {fm}, m e S {too + n’n O,
_+ 1, _+ 2, ...} such that the action of (0, 1) on is given by

(2.3) K3fm mf,,, K +fro -(m + o9 + 1)fro+l, K-fro --fro- 1,

(2.4) C’o,lfm (K + K- K3)fm ogfm, mS.

The construction of suitable sets of basis vectors {fro} satisfying (2.3), (2.4) is
straightforward once it is assumed that the K-operators are given by (1.18).
Clearly, we must have 09 # 1. Since the equation C’0,1fm ogfm is of third
order we can expect to find three linearly independent sets of basis vectors for each
choice of the constant c l. One set of basis vectors is easily seen to be fro(Z, t)

1)mJm(Z)t" and another set is fro(Z, t) 1)" Ym(Z)t", where Jm(Z), Ym(z).are the
Bessel and Neumann functions, respectively. These solutions correspond to setting
c2 0 in (2.2) and (1.22). To get a third solution we note that (2.4) is equivalent to
the nonhomogeneous equation

(2.5)
m

g;;(z) g;.(z) + g,,(z) CZZ-m(z2 + 2Cl)m+’,

where fro(Z, t) gm(Z)V". We can use the method ofFrobenius to find series solutions
of(2.5) and choose the constants in the expansions such that the recurrence relations
(2.3) are satisfied.
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In case Cl 0, (9 --1/2 a solution is given by the Struve functions

(2.6)
(g/2)m+ 3 3 Z2

gm(Z)-- H.,(z)=
F(3/2)F(3/2 + m)" 1F2 1;-},- + m;--

In fact, the recurrence formulas (2.3) reduce to

nm(Z) -I-
m
nm(z nm- l(Z)

(2.7)
H’m(Z)

m
Hm(z)

(Z/2)m +1
H+ I(Z).

z zF(3/2)F(m + 3/2)

Here, c2(m) 2 -m+ a[F(1/2)F(1/2 + re)I- 1. If c 0, co arbitrary, a solution is
given by the Lommel functions

Sm+2co+l,m(Z)
(2.8) gin(Z)

2mF(m + (9 + 1)

where

or
Sm + 2o + l,m(Z)

2mI-’(m + (9 + 1)’

su (z)-- (#_ v 1)(/ + v + 1) 1F2
p v + 3 p + v + 3

2 2

(2.9) S.(z)= +{2U-IF[’P- v + IlF[Ia + v +
2

{sin[(/a-2v’rc]J(z, cos[(/z- v,-] Y(z,}
(see [1]). In this case (2.5) becomes

(2.10) gg,(z) + + gin(Z) Z
Z -It is easy to derive more recurrence relations for the Lommel functions by applying

Method 2B to the type C’ operators, but this is left to the reader.
We can apply the Lie theory of local transformation groups to derive addition

theorems for the basis functionsfro(z, t) (see [6], [9]). (Recall that, in our model, K-
is a first order partial differential operator.) Thus

(2.11) exp (aK-)f Z (-na)"fm--
n=0

where

exp(-aK-)f(z,t)=fm s 1- 1- - < 1.

Applying this result to the Lommel functions and simplifying, we obtain

[ )1/21 )1/2s., z 1 + 1 + a
( +v- 1)/2 a

s._.,_.(z),
n=O Z
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As another example of the utility of the Lie algebraic approach we apply
Weisner’s method [6], [10], [11] to the Lommel functions. The function

fro(z, t) sm+ 20) + 1,re(Z)tm

is a simultaneous eigenvector of the commuting operators K3 and Cb,l"

K3fm mfm, C’o,fm COfm.
Similarly, it can be shown that exp (aK-)fm hm satisfies

(2.13) (aK- q- K3)hm mhm, C’o,lhm (_ohm,

If a 1 we can write

hm Z
2 ..11_2_) -m/2-0)-1

(2.14)

Sm+ 20) + 1,m Z2 + (2 + tZ) 7,
2 @

From (2.9) we see that z-U-lsu,v(z) is an entire function of z. Thus, if
co 0, 1, 2,... then the function (2.14) has a Laurent expansion in which con-
verges in the ring 0 < Itl < 12/zl

hm(z, t) jn(Z)tn.

Furthermore, C’o,l[j,(z)t"] coj,(z)t" and K3[j,(z)t"] nj,(z)tn. From this it is not
difficult to show that j,(z) C,Jn(Z) for n __< --co 1 and j,(z) c,s,+ 20)+ 1,n(z) for
n > -co 1, c, e . The constants c, can be computed from the first equation
(2.13) or by direct inspection of (2.14). The result is

Z2 "[- Sm + 20) + ,m

(2.15)

(2 tz)

(-1)0)+12" +20) F(co + 1)F(m+co+ 1)
F(m- n+ 1)

-1 (n+co+ 1) F(co+2)
nt- Z 2m

n-o)-1 (m + co + 1)(-n)!F(co + n + 2) Sn + 20) + 1,n(Z)tn

+ 2 2m-n(n + co q- 1) r(m q- 1)
,:o (m + co + 1) n!F(m + n + 1) Sn+

20)+ 1,n(Z)tn,

0<ltl <
2

co 0,1,2,...

We can also use our K-operators to construct models of the representations
$0),-1 defined by (2.3), (2.4) except that the spectrum is now S {-co 1 n’n

0, 1, 2, ...}. In the case cl 0 the reader can easily verify that the functions (2.8)
form a basis for the representation where now m -co 1 n, n 0, 1, 2, ....

The construction of models of R(co, mo, 1) and $0),_ when C 5/= 0 in (2.5) is
straightforward but more complicated and the work will not be carried out here.
Our general Lie algebraic approach guarantees the existence of addition theorems



LIE THEORY AND SPECIAL FUNCTIONS 255

and recurrence formulas for the basis functions. Method 2B leads to the Lommel
functions again, but this time the recurrence relation

s.,(z) s,,(z) ( v )s,_ ,+ (z)

appears.
We now apply Method 1B to the type C" operators. (Method 1A leads to

similar results.) Equation (1.14) has the solution /(z)= Cl/Z. Substituting this
result into (1.16) and solving for hm(z, t) h,,(z)t" we obtain

(2.16) h,,(z) czzme -z2/(zcl),

where c e and c2 is a function of m but not of z. We shall use the K-operators to
construct models of the irreducible representations of N(0, 0) listed in [6] and [9]. In
particular we consider the irreducible representations Q(- 1, too), 0 < Re m0 < 1.
The representation space has a basis {fro}, rues {m0 + n’n O, 1,

2,...}, such that the action of (0, 1) on is given by

(2.17) K3fm mf, Kefm -fe, Co,of J+J-fm L, m6S,

For the construction of our model we assume that the K-operators are given by
(1.13) and (2.1) with fl(z) c/z. Then (1.17) with 2 1 reads

(2.18) gg,(z) 1_ g(z) + 1
z

gin(Z)-’- kzme-(z2/2c)

where fm(Z, t)= g,,(z)tm. Two independent sets of basis vectors are given by
g,,(z) Jm(Z) and g,,(z) Ym(z). This corresponds to the case when k 0 and the J-
and K-operators coincide. We can find another basis (f,,} by expanding the
exponential on the right-hand side of (2.18) in a power series and comparing with
(2.10)

(2.19) gin(Z) Me(m; z)= -m n=0 F(m + n + 1)n!"

It follows from (2.9) that if 12/cl < 1 the series (2.19) converges and defines a func-
tion analytic for all z 4: 0. (We assume this condition on c in the following.)
Relations (2.17) become

(2.20) (d-) )m-1+ Mc(m;z) 2 e-/2) Mc(m 1;z),

M;’(m; z + M’(m z + M(m z e-
Z

In analogy with expression (2.11) we can use the first of the recurrence relations
(2.10) and local Lie theory to derive a generating function for the Mc(m; z). The
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result is

a

,-o-..Mc(m + n;z),
2a

3. Special functions related to the confluent hypergeometric equation. The
type C’ operators

J+ z- 1 J- -x -z zz- t--+ q),
(3.1)

c
j3 t-, q(,

satisfy the commutation relations of f#(0, 1). They were used in [6] to establish
recurrence relations and addition theorems for the confluent hypergeometric
functions.

We begin by applying Method 3A to the type C’ operators. Then (1.29) be-
comes z’(z) + (z)= 1 or

1
(3.2) (z) 1 + --, cx (.

Furthermore, (1.30) becomes

(2 + 1 m)hm(z)-

where hm(z, t) hm(z)t", or

1 + -){-zh’(z)+ (q- m)h(z)} O,

(3.3) hm(2 cz(m)zq-m(z + c

The K-operators just constructed satisfy the commutation relations of #(1, 0).
Thus we can use them to construct models of the irreducible representations of
9(1, 0) listed in [6]. In particular, consider the representation D(u, too) defined for
u, mo e ( such that mo 4- u are not integers and 0 _< Re mo < 1. The representation
space has a basis {fro}, n S {m0 + n’n 0,

___
1, +_2,...} such that the

action of c(1, 0) on Y is given by

(3.4) K3f mf, K+f (- u +_ m)f+l,

(3.5) Cl,ofm (K +K- + K3K3 K3)fm u(u + 1)fm, m S.

The representations D(u, too) and D(- u 1, too) are isomorphic.
We assume that the K-operators are given by (1.28) and (3.1)-(3.3). Clearly,

u(u + 1)= 2(2 + 1) and we chose u -2- 1. The equation C],of, 2(2 + 1)fro
is of third order so we can expect to find three linearly independent sets of basis
vectors for each choice of the constant cl. One set of basis vectors is easily shown to
be

f(z t) (m- F(m 2)
xFl(- q 2" m q + 1" Z)tLq+xq)(z)t"

F(m- q + 1)F(q + 2 + 1)
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where the L)(z) are Laguerre functions and the 1F1 are confluent hypergeometric
functions [12]. Another set of basis vectors is given by

L(z, t)
(- 1)mF(m 2)

F(1 +q-m)F(m+2+ 1)
iFl(-m- 2;1 + q- m; z)tm.

Both ofthese solutions correspond to the case where 2 0. To construct solutions
for which c2 4:0 we assume for simplicity that c 0. Then (3.5) is equivalent to the
equation

(3.6) --zg,(z) + (q m + z 1)g(z)- (q + ,)gm(2) 2(m)zq--I

where fro(Z, t)= g,,(z)t". We can find a series solution of this equation by the
method of Frobenius and adjust the constants in the expansion so that the recurr-
ence relations (3.5) hold. It is not difficult to verify that a solution is given by the
functions

(3.7) gin(Z) 0,

wherea=q-2, a= -q-2and

(3.8) O,,(a, c; z)
(r + c- 1)

a,m + 1 +
2

,z

2F2(1, o" + a;a + 1, a + c;z)

is the nonhomogeneous confluent hypergeometric function [5]. This function is
analytic in z for all z 0. The Lie algebra relations (3.4), (3.5) become

zO’(a, c; z) + (c 1)O(a, c; z) (a + c 2)0(a,c 1;z),

(3.9) (a +c- 1)[0’(a,c;z)- O,(a, c; z)] z (a c)O,(a, c + 1; z),

(3.10) zO’ + (c z)O’ aO z 1.

Another solution is given by the functions

g(z)= (R)la, m + l +

where

2

F(o’)F(o + c 1)F(1 a a)
(R)(a, c z) O(a, c z)

sin

{ Fl(a,c’z), z-C F(a-c+l
sin [rc(a + c)] IZ(cFi a)

+ sin rca
F(2 c)F(c a)

We can apply local Lie theory to the first order operator K- and derive
generating functions for the 0. Thus,

1-c-a+n)O(a,c;z(1-b))(1-b)-1 b"O(a,c-n;z), ]b] < 1.
n=O

Our results can be extended in various ways. We could use the K-operators
to construct models of other irreducible representations of N(1, 0) and get more
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information about the 0 and (R) functions. Alternatively, we could treat the case
where cx :/: 0 in (3.3). The case where c : 0 is straightforward but complicated
and we omit the computations.

Next we apply Method 1B to the type C’ operators. Equation (1.14) has the
solution fl(z) Cl, Cl (. If we substitute this result into (1.16) and solve for
hm(z t) hm(z)tm, we obtain

(3.11) h,,(z) c2(m) exp [c1 c1:/:0.

Our K-operators now satisfy the commutation relations of f#(0, 1), and we can
use them to construct models of the irreducible representations R(co, mo, 1),
(2.3), (2.4). Here, 2 co and it turns out that we can set 2 0 without loss of
generality. As usual, if c2 0 then the equation C’o,lfm 0 reduces to a homo-
geneous second order equation for fm and the basis can be expressed in terms of
confluent hypergeometric functions [6]. If c2 0 then (2.4) becomes

(3.12) -zg’d,(z) + (q m 1 + z)g’m(Z) qg,,(Z) c2(m)e1- 1/c),

where fm(Z, t) gm(Z)tm. For simplicity we assume that c 2. Then it can be
shown that there is a basis for the representation R(0, mo, 1) in the form

(3.13) g,,(z)

where

f(-q,m + q;z)
r(m + q)

F(a, c; z) 1Fl(a; c; z)

22 CF(c) eZ/2 -zu/2(1
F(a)F(c a)

e + u) 1(1 u)"-1 du, Re a > 0,

is a generalized modified Struve function [5]. Here f(a, c; z)/F(c) is an entire
function of a, c and z. Relations (2.3) and (2.4) become

(3.14)

f’(a, c z) f(a, c z)

zff(a, c; z) + (c 1)n(a, c; z) +

c-a
fa(a, c + 1;z),

c

22 -CF(c)
F(a)F(c- a)

eZ/2

(c 1)(a, c 1;z),

zfY(a, c z) + (c z)f’(a, c z) aft(a, c z)

21 -F(c)
F(a)F(c- a)

ez/2"

An application of local Lie theory to the first order operator K + yields the identity

eb o(C-a-l+n)b.fl(a’c+n;z)f(a, c; z b)
n F-(- + n)
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Applying Method 1A to the type C’ operators we find that (1.9) has the
solution (z) cl/z, cl f. Substituting this result into (1.11) we can solve for
h,,(z, t) hm(z)t

(3.16) hm(z) c2(m)zq- meZ/Cl c 4= O.

Again the K-operators satisfy the commutation relations of f#(0, 1) so we can use
them to construct models of the irreducible representations R(co, too, 1), (2.3), (2.4).
Again 2 co, and if c2 0 then the equation C’o,fm 2fro reduces to a homo-
geneous second order equation for fro. In this case the basis can be expressed in
terms of confluent hypergeometric equations. If c2 0 then (2.4) becomes

(3.17) -zg,(z) + (q m 1 + z)g,(z)- (2 + q)g,,(z) c2(m)zq-’nez/cl, c :/: O,

where f,,(z, t)= gm(Z)tm. Comparing this expression with (3.9) and (3.10) we see
that the representation space has a basis of the form

(3.18) gin(Z) p-’dPo(a, m q + z),

wherep ci-, a -2 qand

/9
p(a, c;z) ,=o .O2-c+,(a, c;z).

This series converges absolutely to an analytic function of z for all z - 0 and p.
The p is a special case of the functions Ao,,(a, c; z) in [5]. In fact, (I)o(a, c; z)

Ap,2 -c(a, c; z). The Lie algebra relations (2.3), (2.4) expressed in terms of the (I)o
become

zp(a, c; z) + (c 1)(I)o(a, c; z) po(a, c 1;z),
(3.19)

po(a, c; z) p(o(a, c z) + ePZz (c a)o(a, c + ;z),

(3.20) zo(a, c z) + (c z)’o(a, c z) a’o(a, c z) ePZz 1-c.

Application of local Lie theory to the first order operator K- yields the identity

(bp),d# "a(1 + b)C-lrp(a,c;z(1 + b))= pt ,c- n;z), Ibl < 1.
n=O

Finally, Method 3B applied to the type C’ operators leads to the expressions

(z) -z + c, hm(z) c(m)e(z c)-m+x.
We can use the K-operators so obtained to construct irreducible representations
of N(1, 0). However, we omit this since the techniques and results are very similar
to those given above.

4. Special functions related to the parabolic cylinder equation. The type D’
operators

) ,]3

satisfy the commutation relations of #(0, 1). In [6] they were used to establish
recurrence relations and addition theorems for the parabolic cylinder functions.
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Applying Method 3A to these operators, we find that the expression (1.29)
becomes e’(z) 1 or (z) z + Cl. The solution of (1.30) is

(4.2) hm(z) c2(m)(z + cl)m-X-Xe -z2/4.

For simplicity we consider only the case c 0. The K-operators satisfy the
commutation relations of 9(1, 0) so we can use them to construct models of
the irreducible representations D(u, mo), (3.4), (3.5). Note that we can choose
u -2 1. As usual we can find three linearly independent sets of basis vectors
{fro} corresponding to the equation C’,of 2(2 + 1)fm. One set is

and another is

fro(z, t)
F(m 2)

+ (z)tmF(m + 2 + 1)Dm

fro(Z, t) (- )
F(m- 2)

F(m +/l + 1)
Dm+A(--z)tm,

where Dm(z) is a parabolic cylinder function [12]. The solutions correspond to the
case c2 -= 0. We now look for solutions such that c2 0. Then (3.5) is equivalent
to the equation

(4.3) -g(z) + I 2+m+)lg,n(z)=czzm--le-Z2/4
where fro(Z, t) gm(Z)tm. Using the method of Frobenius we find the following basis"

gm(Z) A(/; m 2; z),(4.4)

where

A(a, c z)
e z2/4zC +

c(c + 1) 2F2 1,a + ;- + 1; + -;
Here, A(a, c;z) is analytic in z for all z 4: 0. The representation formulas (3.4)
and (3.5) become

Z
A’(a, c z) + A(a, c; z) (c 1)A(a, c 1 z),

(4.5)
Z

-cA’(a, c; z) + -cA(a, c; z) + zce -zz/4 (2a + c + 1)A(a, c + 1;z),

1
(4.6) A"(a,c;z)+ 2a+c+

Finally, applying local Lie theory to the first order operator K- we obtain
the identity

exp + A(a,c;z + b) b" A(a,c n;z), < 1.
/’/ Z
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Next we apply Method 1A to the type D’ operators. Equation (1.9) reads
’(z) 0 and has the solution (z) c . Substituting this result into (1.11)
we find

(4.7) hm(z) c2(rrl)ez/c’-z2/4, cl O.

The K-operators now satisfy the commutation relations of c(0, 1) and we can use
them to construct models of the irreducible representations R(o, too, 1), (2.3), (2.4).
Clearly, we must have o 2. It is easy to construct two linearly independent sets
of basis vectors {f,,} from the parabolic cylinder functions [6]. These solutions
correspond to the case c2 0 in (4.7). To find a basis {fro} for which c2 0 we
note that the equation C’o,fm OOfm becomes

(4.8) --g(z) + [--- (2 + tn + )lgm(Z)-- c2eZ/Cl-ZZ/4

where fro(Z, t) g,,(z)tm. Comparing this expression with (4.3)-(4.6) we find that
we can construct a basis in the form

(4.9)

where p c- and

gin(Z) p-’Do(2 + m; z),

p" {c-n-1DR(C; z) ,,o A
2

,n + 1;z).
This series converges absolutely to an analytic function of z for all z 4:0 and p.
In terms of the functions Dp(c; z) the defining relations of the Lie algebra represen-
tation (2.3), (2.4) read

(4.10)

z
O’p(C; Z) + -Op(c; z) pDp(c 1; z),

pz -z2/4 cDp(c + 1 z),pD’p(C z) + --Dp(c z) + epz

(4.11) D;(c; z) + c + - Dp(c; z) ep-2/4.

From the first order operator K- we obtain the identity

exp + DR(C z + b) -. ot n z),
n=O

b

(5.1)

5. Special functions related to the hypergeometric equation. The type A
operators

J+ Zz + t- u t-,

J- t-’ z(l z)--- c
t + z(q + u) u q, ue(,
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satisfy the commutation relations of 5(1, 0). These operators can be used to obtain
the basic properties of the hypergeometric functions [6].

Here, we apply Method 4B to the type A operators to obtain K-operators
which generate the infinite-dimensional Lie algebra N,o,z. The equation for fl(z)
is zfl’ fl 1 with solution fl(z) -1 + cz. Substituting this result into (1.43)
we find

(5.2) hm(z C2zu++ (1 ClZ)-m--l.

Wenow use the K-operators to construct models ofirreducible representations
of ’z. Here we consider only a very special class of irreducible representations
which have already appeared in the literature on special function theory. Namely,
we write 2 u(u + 1), where 2u is not an integer, and consider the representations
3--’’"(mo), where mo , 0 __< Re mo < 1 and u _+ mo, co + mo are not integers.
The representation space //K has a basis {f,,}, rueS {too- n;n-= O, +_ 1,

2,...}. The action of N"a on / is given by

(5.3)
K3f,, mfm, K +f,, (m + co + 1)f,,+ 1,

K-fro -(m + u)(m- u- 1)f,,_ 1,

(5.4)
C’f., {K+K + (K3)3 -(1 + u)(K3)2 u2K3}f.,

cou(u + 1)f,,, rn 6 S.

Note. To classify all irreducible representations of N which are of interest
for special function theory it is easiest to proceed by considering that the operators
J+ define a factorization and using the factorization method to compute the
possible ladders of solutions [8], [13]. Here, we are discussing only one class of
such representations which proves to be especially useful.

As usual we can find three linearly independent sets of basis vectors
corresponding to the eigenvector equation C)c,, cou(u + 1)f,,. One set of
solutions is

f(z, t)

and another set is

r(m- u)
F(m + co + 1)

2Fl(m u, -u q; -2u; z)t

f(z, t) (- )
F(m- u)F(m + u + 1)

F(u-m+ 1)F(m +co + 1)
z2U+

2Fl(m + u + 1, u-q + 1,2 + 2u; z).

These solutions correspond to the case C2 --= 0 in (5.2). We now look for models of
-""(rno) for which c2 0. In this case the equation C,, cou(u + 1)f,, becomes

z(1 z)g(z) + [-2u z(m q 2u + 1)]g,(z) (u m)(q + u)g,,(z)

CzZU+(1 ClZ) -m-o-l,

where f.(z, t) g,(z)t".
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If c 0 we can solve (5.5) by the method of Frobenius in such a way that
the recurrence relations (5.3) hold. It can be shown that a solution is provided by
the functions

(5.6) gin(Z) f,+",+ x(m u, -u q; -2u; z)

if 09 + u and 09 # are not negative integers, where

Z
f,(a,b;c;z)

a(a + c 1)
3F2(1’ r + a,a + b;a + 1,a + c;z)

(see [5, p. 201]). This series converges for Izl < 1, but the function f,(a, b; c; z)
can be analytically continued to the z-plane with a cut from 0 to along the
positive real axis. In terms of the f the Lie algebra relations (5.3), (5.4) read

zf’(a, b; c; z) + aft(a, b; c; z) (a + a)f,(a + 1, b; c; z),

(a + a 1){(1 z)zf’,,(a, b; c; z) + (c a bz)f(a, b; c; z)} z

(5.7) (c a)(a 1)f(a 1,b;c;z),

z(1 z)f(a,b;c;z) + {c -(a + b + 1)z}f’(a,b;c;z) abf,(a,b;c;z) z-.
(5.8)

Applying local Lie theory to the first order operator K + we obtain the identity

z)(5.9) (1- t)-f a,b;c;i b"
n--O a+a+n n- 1)f(a+n’b;c;z)’

Itl < 1.

Furthermore we can apply Weisner’s method, a simple analogy of the computation
in [6, p. 210], to obtain the identity

f(a + c + n, b;c;z)r", I1 < 1.r-(1 + r) a’b;C’l + "c ,=o n(5.0)
We now construct a basis for -",’"(mo) with arbitrary c p. For [pz[ < 1

we can expand (1 pz)-"-",-1 in a power series on the right-hand side of (5.5).
Making use of relations (5.7), (5.8) we obtain the basis

(5.11) g,,,(z) So.,+.,+ (m u,-u q;-2u; z),

where

o (a+o-+n-1So,,,(a, b; c; z) f,, +,(a, b; c; z)p" Izl < 1 Ipzl < 1
Y/

Our basis consists of a slightly restricted class of the nonhomogeneous hyper-
geometric functions C*?,(a, b c; z) (see [5]). In fact,

So,,(a,b’c’z), ---o,,c-"-)(a,b’c’z)’,
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Relations (5.3), (5.4) become

zS’o,(a, b; c; z) + aSo,,(a, b; c; z)

( + a)So,,(a + 1, b; c; z),

(5.12) (a + a 1){(1 z)zS’o,,(a,b;c;z + (c a bz)So,(a,b;c;z)}
z(1 pz)-"- (c a)(a 1). Sp,(a 1, b c; z),

z(1 z)So,(a,b; c; z) + [c- (a + b + 1)z]So,,(a, b; c; z)
(5.13) abSp,(a,b;c;z) z’-X(1 pz) -a-’.

An application of local Lie theory leads to identities similar to (5.9) and (5.10)
which we shall not bother to list. Finally, in the case o) -u, p 1/2 another basis
for the representation space is provided by the inhomogeneous hypergeometric
functions B(a, b; c; z)

gin(Z) (U m)B(m u, u q; 2u; z)

(see [5, p. 167]).
At this point we cease the detailed examination of each of our methods and

simply list the values of e(z), fl(z) and hm(z) for the type A operators
Method 4A. e(z) (1 + CaZ)/(1 z),

hm(z c2zU-+ 1(1 z)q-m(1 4- ClZ)co+m- 1.
Method 1A. (z) caz/(1 z), hm(z c22m+u(1 z)q-me1/ctz.
Method lB. fl(z) clz, hm(z) czzU-me I/c’z.

Each of these cases can be treated in ways analogous to Method 4B.
The type B operators

(5.14)

J+ ---t Z-z+ t-t z + u +

63 ), j3J- - Zz- t+u + 1 t, u

also satisfy the commutation relations of q3(1, 0). A study of these operators leads
to recurrence formulas and identities for the confluent hypergeometric functions
which are of a different nature from those derived from the type C’ operators [6].
We could apply Methods 1A, 1B, 4A, 4B to these operators and derive new classes
of nonhomogeneous confluent hypergeometric functions. However, the results
so obtained would all turn out to be limiting forms of functions obtained from
the type A operators, so we omit the computations and merely list a(z), fl(z)
and hm(z)"

Method 1A. (z) cxz, hm(z) c2z e/c’z.
Method lB. fl(z) clz, hm(z) c2z-m-"-e/c’ze.
Method 4A. a(z)= 1 + cz, hm(z)--CzZ-U-(1 4-ClZ)m++x.
Method 4B. fl(z) cz 1, h(z) CzZ-u(1 ClZ) leZ.
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Corresponding to many special cases in Methods 4A and 4B the basis functions
turn out to be identical with special functions derived in 3. However, the recurrence
relations raise and lower different parameters from what was the case in 3.
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EVALUATION OF THE GAMMA FUNCTION BY MEANS OF
PADI APPROXIMATIONS*

YUDELL L. LUKE,"

1. Summary and introduction. In my recent work on the special functions
[1, vol. 2, Chap. XIV], it is shown that each of two forms of the incomplete gamma
function can be evaluated by sequences of Pad6 approximations as a function of
the variable z for a given value of the parameter v. Effective asymptotic error
representations are developed. In the present study, we show how to combine
these Pad6 approximations to evaluate F(v + l) for complex v.

2. Rational approximations for incomplete gamma functions and the gamma
function. It is well known 1, vol. 1, Chap. II] that

(1) r(v) e-ttv- dt, R(v) > O,

or

(2) F(v) e-tt dt + e-tt dr, R(v) > O,

with z suitably restricted For example, for the purposes at hand, it is sufficient
to have z 4: O, R(z) > 0. From results in [1, vol. 2, pp. 189-191], we can write

f/ C.(v, z)
(3) v e-tt dt

D.(v, z)
+ L.(v, z),

C.(v, :)

(4)
E IF(n+v+ I-a)(-1)" _n(n + v) e_Zz,+

F(v 4- 1) z

"" (a- n)k(n + v + 1)k
k=O’ (V / 1)k(1 4- a)k 3F1

-n+a+k,n+v+ +k,1

l+a+k l/z)
O.(v, z)

F(2n+v + l-a)
F(v + 1)

1Fl(-n;-2n + a- v;-z)

F(n + v + a)(-1)"z"
F(v 4- 1)

2Fo(-n,n 4- v 4- 1 -a; l/z),

(6)

L,(v, z) 1)"z2" +v + n !F(n 4- v 4- a)
r(v 4- 1) F(2n+v+ 1-a)F(2n+v+2-a)

z(z-4v +4a) "[exp
4(2n + v + a)J’[1 + O(n-3)],

* Received by the editors July 24, 1969, and in revised form November 28, 1969.

" Midwest Research Institute, Kansas City, Missouri 64110. This research was supported by the
United States Atomic Energy Commission under Contract AT(11-1)1619.
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where a 0 or 1. The error representation (6) is valid for all fixed z and v, R(v) > O.
Now

(7)

eZz-vC.(v,z)=
(v + 1)(v +2) +z

(v + 1)(v + 2)(v + 3)(v + 4)

-(v + 2)(v + 3)(v- 2)z + 2z2

0

eZz -vC,,(v, z) v +
(v + 2)[(v + 1)(v + 3)- (v- 1)z]

D.(v, z) (v

(8)

D.(v, z)

+ 1)(v+2-z)

+ 1)(v + 2)[(v + 3)(v + 4)- 2z(v + 3)+ z2]

forn-0, a-- 1,

forn 1, a=l,

forn=2, a= 1;

for n 0, a=0,

forn 1, a=0,

forn=2, a=0;

and both C,,(v, z) and D,(v, z) satisfy the same recurrence formula,

o,+,(v,z)

(9) {(2n+v-a)(2n+v+l-a)(2n+v+2-a)-z(v-a)(2n+v+l-a)}
D.(v,z) n(n + v a)(2n + v + 2- a)z2

+
(2n+v-a) (2n+v-a)

o,_(v,z).

Notice that ez-C,,(v, z) and D,(v, z) are polynomials in z of degree n a
and n, respectively, so that the approximations eZz C,(v, z)/D,(v, z) as a function
of z are rational and occupy the positions (n a, n) of the Pad6 table [1, vol. 2,
pp. 75, 188]. Further, from (4) and (5), we deduce that both ez C,,(v, z) and D.(v, z)
are polynomials in v of degree 2n- a. Thus the approximations eZz-C,(v, z)/
D.(v, z) are also rational in v.

It can be ,shown that use of (9) in the forward direction to generate C,(v, z)
and D,,(v, z) is stable, that is, the relative error due to arbitrary errors introduced
at any stage of the computation process remains bounded as n . This is a
consequence of the fact that both E,(v, z)/C,(v, z) and E,,(v, z)/O,,(v, z) go to zero
rapidly as n where E,,(v,z)= D,,(v,z)/L,(v,z). This result has been com-
municated to me by my colleague J. Wimp, and his analysis of this problem for
a general difference equation will appear shortly.

Again using data in [1, vol. 2, pp. 198-201,204] we have

G(v, z)
(10) v e-’t dt

Hm(v 7) + Um(v’

for n 0, a=0,

forn= 1, a=0,

forn=2, a=0;

1/v forn 0, a=l,

v+l-z forn 1, a--l,

(v+ 1)[(v+2)(v+3)-2z(v+2)+z2] forn=2, a=l;
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(11)

mz )Gin(v, z)= v(2- a- V)m e-
=o (2- v)(1 + a)

-m+a+k, 1
"2F2

2-v+k,l +a+k -z),
(12) H,,,(v,z) z(2- a- v),, F(-m; 2- a- v;-z),

U,,(v, z)
2(- 1) -"(sin vrc) exp 2k(2, + sinh 2) + + )],

F(v + 1)
1 z

k=m+ 1 -(a+ v), 4k=sinh2
(v + a)(v + a 2)coth(13)

8 96

where again a 0 or 1. The error representation (13) is valid for v fixed, m
and larg z] =< r 6, 6 > 0, uniformly in z. If z and v are fixed and m - , then

(14)
U,,(v, z)

2(- 1)1-"(sin vTr) exp {-4(kz)/2}[1 + O(k- 1/2)], ]arg zJ <F(v + 1)

Notice that the rational approximation in (10) is exact if v is a positive integer or
zero provided m __> v + a- 1. Further,

1 form=0, a-0,

v- ez-G,.(v, z) + z form= 1, a=0,

2 + (5- v)z + Z2 for m 2, a- 0;
(15)

0 form=O, a=l,

v-ez- G,,(v,z)= z form= 1, a= 1,

(3-v)z+z2 form=2, a= 1;

z form=0,

(16) H,,(v,z)= z(2-v-a+z) form= 1,

z[(2-v-a)(3-v-a)+2z(3-v-a)+z2] form=2;

and both G,,(v, z) and H,,,(v, z) satisfy the same three-term recurrence formula,

(17) H,,+ (v, z)= (z + 2m + 2 v a)H,,(z) m(m + 1 v a)H,,_ (z).

The approximations ez-G,,(v, z)/H,,(v, z) are rational in z and as a function
of z occupy the positions (m- a, m) of the Pad6 table [1, vol. 2, pp. 75, 189].
Also from (11)and (12)or from (15)-(17), ez G,,(v, z)and H,,,(v, z)are polynomials
in v ofdegree m a (provided m __> 1) and m, respectively. Thus the approximations
ez VG,,,(v, z)/H,,(v, z) are also rational in v.

Use of (17) in the forward direction to generate G,,(v, z) and H,,(v, z) is also
stable. The discussion is akin to that for the similar use of (9).
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Combining our results, we have

C.(v, z)
(8) r(v + )= +D.(v, z)

c,.(v, z)
/-/(v, z) + L.(v, z) + U.,(v, z),

and for v and z fixed, R(v) O, R(z) > O,

(19) lim L,(v, z) lim Urn(v, z) O.

The restrictions on z are sufficient and can be considerably relaxed in view of the
comments following (6) and (13).

In connection with the application of(18), the following formulas (see 1, vol. 1,
Chap. II]) for the analytic continuation of the gamma function are useful.

(20) F(v + 1)= vF(v),

(21) F(v)F(1 v) r csc vr,

(22) F(2v)
22- F(v)F(v + 1/2)

In some applications, it is desirable to have In F(v + 1). Given F(v + t),
care must be exercised in the evaluation of its natural logarithm to ensure proper
specification of its phase as dictated by the known asymptotic expansion of
In F(v + 1) (see [1, vol. 1, p. 31]). We now illustrate how this can be done. Let

(23)
F(v + 1)= K + iL (K2

nt- L2)l/Zei(q’+Zrs),

v+ 1 =fiei, /3>0, 0=< <rt/2, /3 cos> 1,

where s is a positive integer or zero to be determined. Also let

a arc tan IL/KI, 0 =< a =< r/2.

Then

(24) go

a ifK >_ 0, L>0,

z-a ifK <0, L=>0,

+a ifK <0, L <0,

2z-a ilK_>_0, L<0.

Now for larg (v + 1)1 < x,

(25) In F(v + 1)=

and with

1
In(v+ 1)-(v+ 1)+ln2rc+ 12(v + 1)

+R;

(26) v+ =t+ico, /z> 1, co=>0,
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we have

1

3601v + 113
(27) IRI <

1
ifo9 > p.1

720o91v + 1[

Thus for p and 09 as defined by (26), [RI < 1/360. Now compare the imaginary part
of F(v + 1) as defined by (23) with that obtained from (25), and recognize that the
magnitude of the imaginary part of R is less than RI. Then we can write

1 fl sin (ln fl 1) + (fl cos 1/2) (sin )/(12fl) q.
Is A[ < 720rc’

A
2z

(28)

and since s is a positive integer or zero, the value of s immediately follows from the
calculation of A.

3. Analysis of the error terms. As will be seen, the numerical values of the
asymptotic estimates for the error terms L,,(v, z)/F(v + 1) and Urn(V, z)/F(v + 1)
are remarkably realistic. Notice from (18) that the sum of these two quantities
gives the relative error. It is useful therefore to examine them further so that a priori
assessment of the error is readily accomplished.

As previously remarked, the approximation in (3) occupies the positions
(n a, n) of the Pad6 table. It follows from [1, vol. 2, Chap. XIV, pp. 75, 188]
that for v and n fixed L,(v, z) O(z2n+ I-a), which increases as z increases. Again,
the approximations in (10) occupy the positions (m- a, m) of the Pad6 table;
and from [1, vol. 2, Chap. XIV, pp. 75, 189] for v and m fixed, Urn(v, z) O(z"- 2m),
which decreases as z increases. Further, for z and v fixed, L,,(v, z) decreases rather
rapidly as n increases since

L,+ l(v, z) z2(rt + 1)(n + v + 1 a)
L,,(v,z) (2n+v + 1- a)(2n+v+2-a)Z(2n+v+3-a)

(29)
[- z(z 4v + 4a)exp 2(2n+v + 1- a)(2n+v+ 3-a)J [1 + O(n- 3)],

while under the same conditions Urn(V, Z) decreases quite slowly since

(30) Urn+ l(v’ z)
exp [- 2(z/k) 1/2] [1 + O(k- 1/2)].

U,.(v, z)

Let n* and m* be the values of n and m, respectively, required in the evaluation
ofthe approximations for F(v + 1)to achieve a specified accuracy. Then, in practice,
the free parameter z should be chosen rather large so that the number of machine
operations which is a monotonically increasing function of the sum n* + m* is
reasonably small. Derivation of an optimal choice of z seems formidable. We have
found z 8 a convenient value.

The inequalities for IRI are readily deduced from a discussion given by Salzer [2].
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The formulas (31)-(33) which follow are useful to estimate changes in the error
for changes in v. Thus from (6),

Ln(v + h, z)F(v + 1)
L,,(v, z)F(v + h + 1)

zhF(n + v+ 1 + h-a)F(2n + v + 1-a)F(2n+ v+2-a)

(31)

F(n+ v+ 1-a)F(2n + v+ 1 +h-a)F(2n+ v+2+h-a)

[ zh(8n+4+z) ]exp -4(2n+v+ 1 +h-a)(2n+v+ l-a)
[1 +O(n-3)]

(2n+v+ 1-a)(2n+v+2-a

I zh(8n+4+z) ] [l+O(n-’)]"exp -4(2n+v+ 1 +h-a)(2n+v+ l-a)

and from (13) and (14), respectively, we find2

Um(v + h, z)F(v + 1)
Urn(V, z)r(v + h 4- 1)

sin(v + 1)re
sin vrc

exp [A + B],

h2 h3(2 cosh2 -k- 1)
A 2h +- tanh + 48k2 cosh2 0

tanh e + O(k-3) + O(h4k-3),

h2
B (2v + 2a 2 + h)coth + P,(e) + k--(2v + 2a 2 + h)coth e

(32)

(33)

h
64k2 cosh2

0

{(2v + 2a + 2h- 1)(2v + 2a + 2h- 3)coth

q- O(k-3) q- O(h2k-3),

Um(V + h, z)F(v + 1) sin (v + h)rc
exp [h(z/k) ’/2] [1 + O(k- ,/2)].

U,,(v, z)F(v + h + 1) sin

From (6) and (13), v and a always appear together in the form (v a) and (v + a),
respectively. Thus it is sufficient to know L,,(v, z)/F(v + 1) and Urn(V, z)/F(v + 1)
for a 0 only in view of (31)-(33). Further, from (6),

Ln(v + 2, z)F(v + 1)
L,,+ ,(v,z)F(v + 3) (n + 1)

(34)

(n + v + 2 a)exp
2n + v + 3 a [1 + O(n-3)].

Also if v is replaced by v + 2 and m is replaced by m + 1, the value of k remains
the same. Thus, from (13) and (14), respectively,

Equation (32) is a generalization of (22) and (23) given in [1, vol. 2, p. 206]. There, in (23), the sign
of (v tanh o)/(4k) should be positive. Also in the last line on this page, for 0.672 read 0.677.
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(35)
Um(v z)F(v -.]- 3)

U + l(V -- 2, z)F(v + 1)
(v + a)cothe.l[1 + O(k_3)exp

k

1
k=m+ 1-z(a+v),

Z

U,,,(v, z)F(v + 3)
1 + 0(k-(36) Urn+ I(V + 2, z)F(v + 1)

In view of the above analysis, we find it sufficient to prepare tables for the error
terms when the real part of v is 1/2, and ,}. See later discussion.

For proof and further developments relating to the material presented herein,
see the cited references. There coefficients for the polynomials in (4) and (5) and
in 11 and (12) are presented for the more common transcendents ofthe incomplete
gamma function family. Further, tables of v-llL,,(v, z)l for v 1/2 and v-11U,(v, z)l
for v 0, 1/2 are presented for extensive values of n and a wide range of complex z
values where also in each instance a 0.

4. Numerical examples. Let

(37) v+ =t+ ion, t> 1, o9>=0.
We therefore consider the complex v-plane such that R(v)> 0 and I(v)>= O.
Extension to the balance of the complex v-plane follows by use of the conjugacy
principle, (20) and (21). For Ivl very large, largvl < z, the known asymptotic
expansion might suffice. In our approximation scheme, we can allow v to be
rather large. Nonetheless, in practice, the formulas (20)-(22) should be used as
appropriate.

Equations (38)-(45) given below relate notation to computer output. Let

C.(v, z) c(u) Ore(V, z) 6(M)
(38)

D,,(v, z) D(N)’ H.,(v, z) H(M)’

C(N) C(N- 1) G(M)
(39) X(N)

D(N) D(N 1)’ Z(M)
H(M)

G(M- 1)
H(M- 1)’

(40) R(N)
C(L1) C(N)
D(L1) D(N)

S(N)
R(N)

(41) W(M)
G(L2) G(M)
H(L2) H(M)

Y(M)
W(i)

Ir(v + 1)1’

where L1 and L2 are defined by the requirements that

(42) IX(L1)I -< e, IZ(L2)I =< e.

Then the approximation for F(v + 1) (we use the same notation) is

C(L1) G(L2)
(43) F(v + 1)=

D(L1) H(L2)’

and the latter is used to evaluate S(N) and Y(M).
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Thus for a given v and z, the machine calculates C(N), D(N) for N 0 and 1
from (7) and (8), and generates these quantities for higher N by use of (9). The
ratio C(N)/D(N) is evaluated for each N as is also X(N) and the iteration process
ceases for N L1 as defined by (42). The scheme for G(M)/H(M) is similar. See
(15)-(17). To within the obtainable limits of accuracy,

(44) ]Lv(v,z)] R(N),

(45) lUst(v, z)l W(M),

L(v, z)
F(v + 1)

U,(v, z)
F(v + 1)

S(N),

Y(M).

Inm + 2(mz)1/2}
More precise data are available in the cited references.

Machine computations for F(v + 1) done on an IBM 360 are illustrated in
Table 1. The parameters used are

Z 8

v+l =#+ioo,

e 0.1 10-14,

a=A=0,

7/2, o0 0, 4 and 8,

s 0.1.10 -20

Also recorded are data relating to In F(v + 1) (see (23)-(28)). The first and second
numbers on the line NU are the real and imaginary parts of v, respectively, and
similarly for data on the line GAMMA (NU + 1) =.

To facilitate a priori estimation of the error, Table 2 gives values of ]L,(v, z)/
F(v + 1)[ and lUre(V, z)/F(v + 1)[ for the following values of the parameters:

z=8, a=A=0,

3711
v+l =p+ioo, P=2’2’2’ 0,2,4,...,10,

n=m= 6,7,8,...,20.

Actually we can permit and to depend on N and M, respectively. But then the pertinent
recursion formulas (9) and (17) must be altered.

and that both G(M) and H(M) grow like

(2a + 2v 3)
exp

4

Both eZz-VC(N) and D(N) are polynomials in v of degree 2n a. It calls for
remark, however, that one can just as well generate the sequences sC(N) and sD(N)
where s is an arbitrary scale factor independent ofN, since only the ratio C(N)/D(N)
is needed. Similarly, eZz-VG(M) and H(M) are polynomials in v of degree m a
(provided rn __> 1) and rn, respectively, and we can generate tG(M) and tH(M) where

is free of M.3 This is important in practice to avoid overflow. Observe that the
numerical values assigned to s and depend on e and the particular type ofcomput-
ing equipment used. For guidance, it is known that both C(N) and D(N) are
O(F(2N + v + 1 a)),

F(2N + v + 1 a) (2N a)!(2N + 1 ay(1 + O(N-
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TABLE
Typical approximationsfor F(v + 1)

Z 0.8000000000000000D +01
NU 0.2500000000000000D +01
A=0.0

N

0

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

C(N)/D(N) R(N)

0.6072522215027854D-01 0.324D +01
-0.1177325735566625D +00 0.342D +01
0.1942755925125257D +00 0.311D +01

-0.1499193165428189D +01 0.480D +01
0.2223005207639932D +01 0.108D +01
0.3474646102625896D +01 0.174D +00
0.3287942221865348D +01 0.127D-01
0.3301359042871663D +01
0.3300570264189797D + 01
0.3300607067913083D + 01
0.3300605667636696D + 01
0.3300605711889519D +01
0.3300605710709574D + 01
0.3300605710736471D +01
0.3300605710735942D + 01
0.3300605710735950D + 01
0.3300605710735950D + 01

0.753D -03
0.354D -04
0.136D -05
0.431 D -07
0.115D -08
0.264D 10
0.520D -12
0.866D 14
0.222D 15
0.0

M

0

2
3
4
5
6
7
8
9

10
11

G(M)/H(M) W(M)

0.1897663192196205D 01 0.377D -02
0.2277195830635446D -01 0.267D -04
0.2274551003886740D 01 0.250D -06
0.2274526743130751D -01 0.772D -08
0.2274526012085870D -01 0.409D -09
0.2274525974233226D -01 0.304D -10
0.2274525971477689D -01 0.288D 11
0.2274525971222103D 01 0.328D -12
0.2274525971193594D -01 0.430D 13
0.2274525971189911D -01 0.622D -14
0.2274525971189375D -01 0.860D 15
0.2274525971189289D -01 0.0

GAMMA (NU +1) 0.3323350970447843D +01
K +IL GAMMA (NU +1)
0.5*LOG (K*K + L,L) 0.1200973602347075D +01
PHI 0.0
BETA 0.3500000000000000D +01
Xl 0.0
S=0.0

S(N)

0.975D + 00
0.103D +01
0.935D + 00
0.144D +01
0.324D + 00
0.524D -01
0.381D -02
0.227D -03
0.107D -04
0.408D -06
0.130D -07
0.347D -09
0.794D -11
0.157D -12
0.261D -14
0.668D 16
0.0

Y(M)

0.113D -02
0.803D -05
0.753D -07
0.232D -08
0.123D -09
0.916D -11
0.868D 12
0.987D -13
0.130D 13
0.187D -14
0.259D -15
0.0
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Z 0.8000000000000000D 01
NU 0.2500000000000000D 01
A=0,0

0.4000000000000000D 01

N C(N)/D(N) (REAL)

0 0.2716458159668867D -01
0.6897216907222269D -01

2 0.2942056165002189D -02
3 0.2575026113146132D 00
4 0.1561400730657003D 00
5 0.2291067503330697D 00
6 0.2224770789072401 D 00
7 0.2225728013388493D 00
8 0.2225919163307489D 00
9 0.2225899679201291 D 00

10 0.2225900744755584D 00
11 0.2225900703934754D 00
12 0.2225900705127446D 00
13 0.2225900705099731 D 00
14 0.2225900705100255D 00
15 0.2225900705100247D 00

C(N)/D(N) (IMAGINARY) R(N)

0.5431057090362354D -01 0.447D 00
0.1587113934835240D -01 0.366D 00

-0.2806433446668101D -01 0.366D 00
0.1769425342416403D 00 0.494D 00

-0.2539804518338708D 00 0.909D -01
-0.3282492324241860D 00 0.139D -01
-0.3148468610989733D 00 0.110D-02
-0.3160125795248319D 00 0.691D-04
-0.3159428832869618D 00 0.338D -05
-0.3159457946822422D 00 0.133D -06
-0.3159457082077062D 00 0.432D -08
-0.3159457099461022D 00 0.118D-09
-0.3159457099291516D 00 0.273D-11
-0.3159457099288608D 00 0.546D 13
-0.3159457099288791D 00 0.982D 15
-0.3159457099288785D 00 0.0

G(M)/H(M) (IMAGINARY) W(M)

0.3389762609038017D -02 0.186D -01
-0.1459353416080147D -01 0.898D -03
-0.1518615882837604D -01 0.636D -04
0.1518445568924814D 01 0.542D 05

-0.1518119151523717D -01 0.534D -06
0.1518073006483716D 01 0.599D 07

-0.1518067798901339D -01 0.757D -08
0.1518067245536636D 01 0.106D 08

-0.1518067188575171D -01 0.165D -09
-0.1518067183136164D -01 0.278D -10
-0.1518067182748120D -01 0.505D -11
-0.1518067182761661D -01 0.984D -12
-0.1518067182778134D -01 0.203D -12
-0.1518067182783909D -01 0.444D 13
-0.1518067182785593D -01 0.101D -13
-0.1518067182786058D -01 0.230D 14
-0.1518067182786185D -01 0.453D -15
-0.1518067182786219D -01 0.0

M G(M)/H(M) (REAL)

0 -0.35644217200776981 -01
0.3498984242183827D -01

2 -0.3560567014818902D -01
3 -0.3566515018224126D -01
4 0.3566890987633954D -01
5 -0.3566904574412844D -01
6 -0.3566903617775854D -01
7 -0.3566903264338116D -01
8 -0.3566903193779813D -01
9 0.3566903181108371 D 01

10 0.3566903178856681 D 01
11 0.3566903178448145D 01
12 -0.3566903178371576D -01
13 0.3566903178356695D 01
14 0.3566903178353694D 01
15 0.3566903178353069D 01
16 0.3566903178352934D 01
17 -0.3566903178352905D -01

GAMMA (NU +1) 0.1869210387264956D 00
K+IL GAMMA (NU+I)
0.5,LOG(K*K + L,L) -0.9669467752727471D
PHI-" 0.5226296879483303D 01
BETA 0.5315072906367322D 01
XI 0.8519663271732719D 00
S=0.0

00

0.3311263817567407D 00

S(N)

0.117D 01
0.962D 00
0.962D 00
0.130D 01
0.239D 00
0.366D -01
0.291 D 02
0.182D -03
0.888D -O5
0.350D -06
0.114D -07
0.310D -09
0.719D -11
0.144D 12
0.258D 14
0.0

Y(M)

0.488D -01
0.236D -02
0.167D -03
0.143D -04
0.140D -05
0.157D -06
0.199D -07
0.280D 08
0.433D 09
0.730D 10
0.133D -10
0.259D 11
0.535D -12
0.117D -12
0.265D 13
0.605D -14
0.119D -14
0.0
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Z 0.8000000000000000D 01
NU 0.2500000000000000D 01
A 0.0

0.8000000000000000D 01

N C(N)/D(N) (REAL)

0 -0.3642182836451304D -01
-0.6000981534478674D -01

2 0.5269752720745536D -01
3 -0.5047283953617965D -01
4 0.4843015625317477D 01
5 0.4857636950755245D 01
6 0.4863727452911832D 01
7 -0.4862872319009302D -01
8 0.4862910131021031 D 01
9 -0.4862910169133455D -01

10 0.4862910092059164D -01
11 -0.4862910096045970D -01
12 -0.4862910095933553D -01
13 0.4862910095935492D -01
14 0.4862910955935477D -01

C(N)/D(N) (IMAGINARY) R(N)

-0.4859015356825528D -01 0.548D -01
0.4921224055167995D -02 0.114D -01
0.6465458769242584D -02 0.438D -02
0.4536836782767226D -02 0.187D -02
0.4209479816145428D -02 0.676D -03
0.4928410833344967D -02 0.902D -04
0.4855259599630383D -02 0.817D -05
0.4854872128805095D -02 0.554D -06
0.4855306891462782D -02 0.289D -07
0.4855277044253696D -02 0.120D -08
0.4855278005678841D -02 0.406D 10
0.4855277993931871D -02 0.114D -11
0.4855277993613363D -02 0.273D 13
0.4855277993633314D -02 0.572D 15
0.48552779936327640 -02 0.0

G(M)/H(M) (IMAGINARY) W(M)

-0.5160625135459283D -01 0.5050 -01
-0.6689580438438069D -02 0.331D -02
-0.4014822340439671D -02 0.369D -03
-0.3763890391333904D -02 0.524D -04
-0.3738697475901107D -02 0.851D -05
-0.3736846936063718D -02 0.151D -05
-0.3736955802698447D -02 0.284D -06
-0.37370529761587830 -02 0.5660 -07
-0.37370844190679800 -02 0.118D -07
-0.3737092652531001D -02 0.257D -08
-0.37370946248596160 -02 0.585D -09
-0.3737095076241622D -02 0.138D -09
-0.3737095176813370D -02 0.339 D 10
0.3737095198788647D 02 0.861 D 11
0.3737095203493894D -02 0.226D 11

-0.3737095204471811D -02 0.613D -12
-0.3737095204664380D -02 0.171 D 12
-0.3737095204698150D -02 0.488D 13
0.3737095204702363D -02 0.141D 13

-0.3737095204702100D -02 0.398D -14
-0.3737095204701605D -02 0.935D 15
-0.3737095204701337D -02 0.0

M G(M)/H(M) (REAL)

0 0.3720833220434495D -01
0.5178555111288123D -01

2 0.5303403128464572D -01
3 0.5323158541461844D -01
4 0.5326822413442684D -01
5 0.5327509263942108D -01
6 0.5327633048837056D -01
7 0.5327654059326604D 01
8 0.5327657344623811 D -01
9 0.53/27657791189345D 01

10 0.5327657832843548D 01
11 0.5327657830161350D -01
12 0.5327657826977892D -01
13 0.5327657825675627D 01
14 0.5327657825240628D 01
15 0.5327657825106217D -01
16 0.5327657825066091 D 01
17 0.5327657825054283D -01
18 0.5327657825050822D -01
19 0.5327657825049806D 01
20 0.5327657825049506D 01
21 0.5327657825049416D -01

GAMMA (NU +1) 0.4647477291139390D-02
K+IL GAMMA (NU+I)
0.5*LOG(KK + L,L) -0.5343293332726673D
PHI 0.2361121753612002D 00
BETA 0.8732124598286488D 01
Xl 0.1158385885197509D 01
S 0.2000000000000000D 01

0.1118182788931428D -02

S(N)

0.115D 02
0.238D 01
0.915D 00
0.391 D 00
0.141D 00
0.189D -01
0.171D -02
0.116D -03
0.605D -05
0.251 D 06
0.849D -08
0.239D -09
0.572D 11
0.120D -12
0.0

Y(M)

0.106D 02
0.692D 00
0.771 D 01
0.110D -01
0.178D -02
0.315D -03
0.595D -04
0.118D 04
0.247 D 05
0.539D -06
0.122D -06
0.289 D 07
0.709D -08
0.180D -08
0.473D -09
0.128D -09
0.357 D 10
0.102D -10
0.295D -11
0.832D 12
0.196D -12
0.0
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TABLE 2
Numerical values of asymptotic estimates of errors in the approximations for I(v + 1)

L,(v,z) 1/2 + oi,
F(v + 1)’

n/o 0 4 6 10

6 0.129(+00) 0.108(+00) 0.104(+00) 0.161(+00) 0.392(--01) 0.595(--02)
7 0.878(--02) 0.770(--02) 0.709(--02) 0.138(--01) 0.562(--02) 0.103(--02)
8 0.474(--03) 0.427(--03) 0.387(--03) 0.794(--03) 0.519(--03) 0.117(--03)
9 0.207(--04) 0.190(--04) 0.172(--04) 0.340(--04) 0.330(--04) 0.936(--05)
10 0.745(--06) 0.696(--06) 0.630(--06) 0.115(--05) 0.153(--05) 0.551(--06)
11 0.225(--07) 0.213(--07) 0.193(--07) 0.322(--07) 0.535(--07) 0.247(--07)
12 0.577(--09) 0.550(--09) 0.504(--09) 0.768(--09) 0.148(--08) 0.872(--09)
13 0.127(-- 10) 0.122(-- 10) 0.113(-- 10) 0.159(--10) 0.334(-- 10) 0.247(-- 10)
14 0.243(-- 12) 0.235(-- 12) 0.218(-- 12) 0.287(-- 12) 0.629(-- 12) 0.575(-- 12)
15 0.408(-- 14) 0.396(-- 14) 0.370(-- 14) 0.460(-- 14) 0.101(-- 13) 0.112(-- 13)
16 0.605(-- 16) 0.558(-- 16) 0.554(-- 16) 0.657(-- 16) 0.142(-- 15) 0.183(-- 15)
17 0.798(-- 18) 0.778(-- 18) 0.736(-- 18) 0.842(-- 18) 0.175(-- 17) 0.259(--17)
18 0.941(--20) 0.921(--20) 0.875(--20) 0.972(--20) 0.192(--19) 0.317(--19)
19 0.100(--21) 0.981(--22) 0.936(--22) 0.102(--21) 0.191(--21) 0.342(--21)
20 0.962(--24) 0.945(--24) 0.905(--24) 0.965(--24) 0.172(--23) 0.327(--23)

Um(v,z)
1/2 + oi,

r’(v + 1)

m/o 0 4 10

6 0.846(--13) 0.158(--10) 0.296(--08) 0.313(--06) 0.211(--04) 0.101(--02)
7 0.113(--13) 0.217(--11) 0.446(--09) 0.525(--07) 0.393(--05) 0.205(--03)
8 0.169(--14) 0.334(--12) 0.736(--10) 0.955(--08) 0.788(--06) 0.448(--04)
9 0.280(--15) 0.566(--13) 0.132(--10) 0.186(--08) 0.168(--06) 0.104(--04)

10 0.505(--16) 0.104(--13) 0.254(--11) 0.385(--09) 0.377(--07) 0.254(--05)
11 0.979(--17) 0.204(--14) 0.523(--12) 0.842(--10) 0.889(--08) 0.645(--06)
12 0.203(--17) 0.428(--15) 0.114(--12) 0.194(--10) 0.219(--08) 0.170(--06)
13 0.444(--18) 0.949(--16) 0.260(--13) 0.466(--11) 0.559(--09) 0.466(--07)
14 0.103(--18) 0.221(--16) 0.625(--14) 0.117(--11) 0.148(--09) 0.131(--07)
15 0.248(-- 19) 0.541(-- 17) 0.156(-- 14) 0.304(-- 12) 0.406(-- 10) 0.381(--08)
16 0.627(--20) 0.138(--17) 0.407(--15) 0.821(--13) 0.115(--10) 0.113(--08)
17 0.165(--20) 0.364(--18) 0.110(--15) 0.229(--13) 0.334(--11) 0.346(--09)
18 0.449(--21) 0.998(--19) 0.307(--16) 0.658(--14) 0.997(--12) 0.108(--09)
19 0.126(--21) 0.282(-- 19) 0.884(-- 17) 0.195(-- 14) 0.306(-- 12) 0.347(-- 10)
20 0.366(--22) 0.824(--20) 0.262(--17) 0.592(--15) 0.961(--13) 0.113(--10)
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n/

L.(v, z)

l’ v=5/2 +rni, z=8

4 6

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0.380(-02)
0.226(-03)
0.106(-04)
0.407(-06)
0.129(-07)
0.347(-09)
0.793(-11)
0.157(-12)
0.270(- 14)
0.410(-16)
o.553(-8)
0.665(-20)
0.720(- 22)
0.703(-24)
0.624(-26)

0.348(-02) 0.323(-02) 0.531(-02) 0.228(-02) 0.458(-03)
0.210(-03) 0.195(-03) 0.340(-03) 0.225(-03) 0.545(-04)
0.100(-04) 0.933(-05) 0.159(-04) 0.152(-04) 0.455(-05)
0.389(-06) 0.363(-06) 0.584(-06) 0.744(-06) 0.279(-06)
0.124(-07) 0.117(-07) 0.175(-07) 0.275(-07) 0.130(-07)
0.335(-09) 0.316(-09) 0.444(-09) 0.797(-09) 0.477(-09)
0.770(-11) 0.730(-11) 0.965(-11) 0.188(-10) 0.140(-10)
0.153(- 12) 0.145(- 12) 0.182(- 12) 0.368(- 12) 0.335(- 12)
0.264(- 14) 0.235(- 14) 0.304(- 14) 0.613(- 14) 0.669(- 14)
0.403(-16) 0.386(-16) 0.448(-16) 0.888(-16) 0.113(-15)
0.543(- 18) 0.523(- 18) 0.589(- 18) 0.113(- 17) 0.163(- 17)
0.655(-20) 0.633(-20) 0.697(-20) 0.128(-19) 0.205(-19)
0.710(-22) 0.687(-22) 0.742(-22) 0.130(-21) 0.226(-21)
0.694(-24) 0.674(-24) 0.717(-24) 0.120(-23) 0.220(-23)
0.617(-26) 0.600(-26) 0.631(-26) 0.101(-25) 0.192(-25)

1) 5/2 + oi, =8

4 6

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

0.868(
0.988(
0.30(-
0.193(-
0.317(-
0.567(-
0.109(-
0.225(
0.492(
o.3(-
0.273(-
0.687(
o.8o(-
0.489(-
o.137(-

12)
13)
13)
14)
15)
16)
16)
17)
18)
18)
19)
2O)
2O)
21)
21)

0.143(-
0.174(-
0.240(
0.368(-
0.621(-
0.114(-
0.223(
0.467(-
0.103(-
0.241(-
0.586(
0.149(-
0.393(
0.08(-
0.304(

09) 0.196(-07) 0.137(-05) 0.600(-04) 0.193(-02)
10) 0.279(-08) 0.233(-06) 0.119(-04) 0.426(-03)
11) 0.432(-09) 0.420(-07) 0.248(-05) 0.100(-03)
12) 0.730(-10) 0.805(-08) 0.542(-06) 0.246(-04)
13) 0.133(-10) 0.163(-08) 0.124(-06) 0.625(-05)
13) 0.259(-11) 0.348(-09) 0.292(-07) 0.164(-05)
14) 0.536(-12) 0.779(-10) 0.718(-08) 0.443(-06)
15) 0.117(-12) 0.182(-10) 0.183(-08) 0.123(-06)
15) 0.270(-13) 0.445(-11) 0.479(-09) 0.350(-07)
16) 0.649(-14) 0.113(-11) 0.130(-09) 0.102(-07)
17) 0.163(-14) 0.297(-12) 0.363(-10) 0.305(-08)
17) 0.425(-15) 0.808(-13) 0.104(-10) 0.933(-09)
18) 0.115(-15) 0.227(-13) 0.307(-11) 0.291(-09)
18) 0.321(- 16) 0.656(- 14) 0.929(- 12) 0.928(-10)
19) 0.926(- 17) 0.195(- 14) 0.288(- 12) 0.302(-10)
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n/ 0

z)L,(v,_; 9/2 + coi
r(v+ )’

4 10

6 0136(-03) 0.130(-03) 0.125(-03)
7 0.673(-05) 0.650(-05) 0.627(-05)
8 0.269(-06) 0.261(-06) 0.252(-06)
9 0.884(-08) 0.864(-08) 0.836(-08)
10 0.244(-09) 0.239(-09) 0.232(-09)
11 0.572(- 11) 0.562(- 11) 0.547(- 11)
12 0.116(- 12) 0.114(- 12) 0.111(- 12)
13 0.203(- 14) 0.201(- 14) 0.196(-14)
14 0.314(- 16) 0.310(- 16) 0.303(- 16)
15 0.429(- 18) 0.425(- 18) 0.416(-18)
16 0.524(-20) 0.519(-20) 0.509(-20)
17 0.573(-22) 0.568(-22) 0.558(-22)
18 0.566(-24) 0.562(-24) 0.553(-24)
19 0.507(-26) 0.504(-26) 0.496(-26)
20 0.414(-28) 0.412(-28) 0.406(-28)

0.191(-03)
0.951(-05)
0.369(-06)
O. 116( 07)
0.307(-09)
0.691(-11)
0.135(-12)
0.230(- 14)
0.347(- 16)
0.465(- 18)
0.558(-20)
0.602(-22)
0.589(-24)
0.523(-26)
0.424(-28)

0.126(-03) 0.327(-04)
0.883(-05) 0.278(-05)
0.447(-06) 0.174(-06)
0.171(-07) 0.828(-08)
0.511(-09) 0.309(-09)
0.124(- 10) 0.925(- 11)
0.250(- 12) 0.226(- 12)
0.429(- 14) 0.460(- 14)
0.636(- 16) 0.791(- 16)
0.828(- 18) 0.116(- 17)
0.958(-20) 0.148(- 19)
0.994(-22) 0.166(-21)
0.932(-24) 0.164(-23)
0.795(- 26) 0.146(- 25)
0.620(- 28) 0.116(- 27)

m/o 0

U,,,(v,z)] 9/2 + o)i,
F(v + 1)

4 10

6 0.241(-- 10) 0.321(--08)
7 0.204(-- 11) 0.310(--09)
8 0.214(-- 12) 0.354(-- 10)
9 0.265(-- 13) 0.465(-- 11)
10 0.375(-- 14) 0.686(--12)
11 0.590(-- 15) 0.112(-- 12)
12 0.102(-- 15) 0.199(-- 13)
13 0.191(-- 16) 0.381(-- 14)
14 0.384(-- 17) 0.780(-- 15)
15 0.819(-- 18) 0.169(-- 15)
16 0.185(-- 18) 0.387(-- 16)
17 0.438(-- 19) 0.928(-- 17)
18 0.109(-- 19) 0.232(-- 17)
19 0.280(--20) 0.605(-- 18)
20

0.259(-06)
0.336(-07)
0.473(-08)
0.728(-09)
0.121(-09)
0.218( O)
0.48(-)
0.853(-12)
0.184(- 12)
0.418(-13)
0.995(- 14)
0.247(- 14)
0.638(- 15)
0.171(-15)

0.751(-21) 0.164(- 18) 0.473(- 16)

0.952(-05) 0.230(-03) 0.449(-02)
0.168(-05) 0.508(-04) 0.113(-02)
0.304(-06) 0.114(-04) 0.296(-03)
0.571(-07) 0.260(-05) 0.789(-04)
0.112(-07) 0.605(-06) 0.213(-04)
0.230(-08) 0.144(-06) 0.585(-05)
0.494(-09) 0.352(-07) 0.163(-05)
0.111(-09)
0.260(- O)
0.634(- 11)
0.160(-11)
0.421(-12)
0.114(-12)
0.319(-13)
0.918(-14)

0.885(-08) 0.460(-06)
0.229(-08) 0.132(--.06)
0.609(-09) 0.387(-07)
0.167(-09) 0.116(-07)
0.468(- 10) 0.352(-08)
0.135(- 10) 0.109(-08)
0.400(- 11) 0.344(- 09)
0.121(- 11) 0.111(-09)

For the evaluation of lUm(v,z)/F(v + 1)] we employed (13) with O(k -3) neglected.
For the computation of ]L,,(v, z)/F(v + 1)1, we used (6) modified as follows so that
gamma functions with positive integer arguments only need be computed. To this
end, we replaced F(n+v+ l-a) by F(n+6+ l-a), =F(n+6+ 1

a +//)/F(n + + 1 a), where is the largest positive integer or zero contained
in /- and /3 v- 6. Then was approximated by use of the asymptotic
expansion of the ratio of gamma functions for large n + 6 + 1 a with terms of
O(n-3) omitted. The other two gamma functions in (6) were treated in a similar
fashion.

To manifest the remarkable efficiency of our asymptotic estimates of.the
error, Table 3 compares values of IL,(v, z)/F(v + 1)] and U,,(v, z)/F(v + 1) with the
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corresponding values of S(n) and Y(n), respectively (see Table 1) for v + 1 =/ + coi,
p , 09 =0, 4, 8andn =6, 7, 8, 9.

TABLE 3
Comparison ofasymptotic estimates of the error and the true error

L,( v, z) U,(v, z)
r(v + 1) S(n) r(v + 1) Y(n)

v 5/2

6 0.380(-02) 0.381(-02) 0.868(-12)
7 0.226(-03) 0.226(-03) 0.988(-13)
8 0.106(-04) 0.106(-04) 0.130(-13)
9 0.407(-06) 0.408(-06) 0.193(-14)

0.868(- 12)
0.987(- 13)
0.130(- 13)
0.187(- 14)

v 5/2 + 4i

6 0.323(-02)
7 0.195(-03)
8 0933(-05)
9 0.363(-06)

0.291(-02) 0.197(-07) 0.199(-07)
0.182(-03) 0.279(-08) 0.280(-08)
0.888(-05) 0.432(-09) 0.433(-09)
0.350(-06) 0.730(- 10) 0.730(- 10)

v 5/2 + 8i

6 0.228(-02) 0.171(-02) 0.600(-04) 0.594(-04)
7 0.225(-03) 0.116(-03) 0.119(-04) 0.118(-04)
8 0.152(-04) 0.605(-05) 0.248(-05) 0.247(-05)
9 0.744(-06) 0.251(-06) 0.542(-06) 0.539(-06)

TABLE 4
Comparison ofapproximationsfor J,(v, z)

J*,(v, z) J*n*(v, z) J,(v, z) J*,(v, z) J*,*(v, z) J,(v, z)

v 1/2 V 5/2

6 0.433 0.433 0.434 0.602 0.601 0.597
7 0.477 0.476 0.481 0.635 0.633 0.631
8 0.512 0.514 0.515 0.661 0.660 0.657
9 0.546 0.546 0.549 0.685 0.683 0.678

V= 1/2+4i V= 5/2+4i

6 0.456 0.510 0.496 0.641 0.673 0.648
7 0.504 0.540 0.534 0.672 0.693 0.676
8 0.542 0.568 0.562 0.694 0.710 0.697
9 0.576 0.593 0.589 0.715 0.727 0.715

V= 1/2+8i V= 5/2+8i

6 0.406 0.738 0.665 0.560 0.885 0.816
7 0.434 0.729 0.678 0.581 0.868 0.818
8 0.461 0.727 0.693 0.601 0.858 0.821
9 0.486 0.729 0.705 0.622 0.853 0.827
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For another set of interesting data, let

L,(v,z)F(v + 1)
J.(v z)

Ln + (v, z)F(v + 3)

as determined from the values of S(n) as illustrated by the calculations in Table 1
J*n(v, z) be Jn(v, z) as determined from the modified procedure for the evaluation
of L,(v, z)/F(v + 1) as described in this section, N n; J*n*(V, Z) be J,(v, z) as
determined from (34) with O(n-3) omitted.

Values of these three quantities are presented in Table 4 for the same set of
parameters given in Table 3 and also for v 1/2 + ico.

5. Acknowledgment. I am indebted to Miss Rosemary Moran for the
calculations. Together, we will publish elsewhere a complete F0gTgAN program
for the evaluation of F(v + 1) for complex v.
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CONTINUOUS DEPENDENCE ON THE DATA FOR
A STEFAN PROBLEM*

C. Y. CHAN’

Abstract. The continuous dependence on the data for the Stefan problem is proved by using
comparison lemmas and properties of the fundamental singularity for the heat equation.

1. Introduction. Sherman [9], [10, pp. 4-5] gave a unified treatment of a
problem considered by Friedman [4], Kyner [5] and Miranker [7], and of a
problem considered by Boley and Weiner [1], Citron [3], Landau [6] and Sherman
[8]. Sherman proved the existence and uniqueness of the set of solutions {u(x,t),s(t)}
of the following system"

CUxx(X,t)= ut(x,t) for0<x<s(t), > O,

u(x, O)= dp(x) <= O, dp(a) O,

ux(O,t)= f(t) >= O fort>0,

u(s(t),t)= O fort>0,

-s’(t) + kux(S(t), t)= q(t) >= 0 fort > 0,

s(O) a > O.

Here c and k are (positive) constants; b(x) is continuously differentiable; f(t) and
q(t) are continuous. (The symbol denotes "the derivative.")

Under the assumptions that f(t) and q(t) have continuous first derivatives
and b(x) is twice continuously differentiable, Sherman [10] further proved the
continuous dependence ofthe set of solutions on the set of data, { f(t), q(t), b(x), a}.
We are to prove, in this paper, the continuous dependence without this extra
regularity assumption.

2. Continuous dependence. Without loss of generality in the final result,
let us assume that c 1 in the proofs. Let {u(x, t), sx(t)} and {U2(X t), S2(t)} be
two sets of solutions (on 0 _< =< T < ) corresponding respectively to the
two sets of Stefan data, {f(t),q(t),ca(x),al} and {fz(t),q2(t),Cz(x),a2}. An
argument similar to that used in establishing Theorem 6 in [2, p. 12] for the case
b < b2 gives us the following comparison lemma.

LEMMA 1. If f(t) <= f2(t) for 0 < < o0, (/)I(X) (/)2(X) over their common
domain of definition, q(t) >= q2(t) for 0 < < 00, and a < a2, then sx(t) < s2(t)
forO < < oo.

Using Lemma and the strong maximum principle for the function u2 u,
we have the next comparison lemma.

LEMMA 2. If the assumptions of Lemma 1 are valid with strict inequalities, then
ua(x, t) > /,/2(x, t)in {0 < x <__ s(t), 0 < < }.
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Let g denote 1.u.b. Igl taken on the domain for which g is defined. For
1, 2, let

with Ix]* denoting the largest integer =< x,

and

Vi
211 j Fi{(4Fi)"’ 1

4Fi- 1 + (4Fi)"’ max (11

Then by Sherman [10, pp. 5-7], we have, for 0 < =< T,

(2.1) ui(si(t), t) <= vi.

The main result of this paper is the following theorem.
THEOREM. The set of solutions {u(x, t), s(t)} depends continuously on the data

{f(t), q(t), ok(x), a} forO <= <= Tandfor x < s(t), where f(t)andq(t)are continuous,
and dp(x) is continuously differentiable.

Proof. Let If1 --f211 < e, [Iql q2 < 3, 11qSx b2l[ < r/and [al a21
Also let {u*(x, t), s*(t)} be the set of solutions corresponding to the set of Stefan
data { fl(t) + e, q,(t) 6, 4,(x) r/, a + e}. Here b, r/is extended to x a

+ e. Also q may be negative; in this case, Lemmas 1 and 2 remain valid
while the existence and uniqueness of a set of solutions can be proved by using
the technique of Sherman [9], [10, pp. 4-5]. Then by Lemmas 1 and 2,

s*(t) > sl(t) and s*(t) > Sz(t) for 0 =< < oe,

and

u*(x t) < u (x t)

u*(x, t) < Uz(X, t)

in {0 < x <= s(t),O < < oe},

in {0 < x =< S2(t), 0 < < }.

Using the initial boundary conditions and evaluating

(u u) d dr, O,

we get

s(t) a + k f(r) dr u(, t) d.
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Now,

Lk (f(r) + fi())dr < 2kte,

f0 {q,(v -(q()- 6)} d < 2t6,

k ck,(O d (ck,() )d

s*(t) ; (t)

k u*(, t)d u,(, t)d
.0

k (u*(, t) u,(, t)) d + u*(, t)d < 0
si(t)

since u*(x, t) _< 0 [10, pp. 4-5]. From these we have, for 1, 2,

(2.2) 0 < s*(t)- s(t) < 2 + 2kte + 2t + 2karl + 2 Ib rl] k.

We denote the right-hand side of the last inequality by E. Therefore, for 0 =< < m,

[Sl(t)- S2(t)[ [Sl(t)- s*(t)[ + [s*(t)- s2(t)[
(2.3)

< 4 + 4kt + 4tb + 4kA*rl + 4 b
where A* max {a, a2}.

The fundamental singularity for the heat equation is given by

[ (- 021K(x, t; , ) [2x//r(t )]-1 exp t J"
Hence, the Neumann function for the half-plane x > 0 is given by

N(x, t; , z) K(x, t;,z) + K(-x,t; ,z).

Integrating Green’s identity

(Nu uN) -(Nu) 0

over the domain {0 < < s(), e < < e}, and letting e --* O, we get

u(x, t) N(x, t; , 0)b() d + N(x, t; s(.), z)u(s(z), z) d

N(x, t; O, Of(z) d.

and
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Hence, over the common domain of definition,

ui(x, t) u*(x, t) N(x, t; , O)bi() d N(x, t; , 0)()1() ) d

+ (N(x, t; si(’c), "c)ui(si(’c), z) N(x, t; s*(z), z)u(s*(’c), z)) d’c

+ N(x, t; O, r)(f(r) + fi(r)) dr

F + F2 + F.

Then

fOi fa +
IF1[ < 2r/ N(x, t; , O) d / limb1 r/ll N(x, t; , O) d

4t 4t

Over the range ofintegration we have 0 < exp {-(x- )2/(4t)} l forO < < ,
and 0<exp{-(x+02/(40} < 1 for 0<t< . As a function of w2,
exp { wZ/(4t)} is monotonically decreasing. Thus for each arbitrary fixed x < s(t),

IFll < 4r/+ (])1 r/llB*(t),

where B*(t) 0 as 0 or as - . And

F2 ui(si(r), z)(N(x, t; si(r), ) N(x, t; s*(’c), "c)) dr

+ (ui(si(r), ) u(s*(r), r))N(x, t; s*(z), "c)d

=H /H2

By the mean value theorem and (2.1), we have

IHll Yi max [si(" S*(TJ)I
O<:<t

Ne(x, t; a(z), ) d

where a(z) lies between Si(’C and s*(z). Hence for any arbitrary fixed (x, t),

IH ,I < viEF,
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where F is a constant, since the integral exists. Also

IH2[ (qi(z) + s}(z) q*(z) s*’(z))N(x, t; s*(z), z)dz

f- 1 iN(x, t; s*(), r)(s’, () s*’()) r

4w/< kxf6 + -[si(0) s*(O)[N(x, t; a + , O)

1
+ o_<_<tmax [si(’r) s*(z)[N(x, t; a + , O)

and

4x/ 1
<6 + -N(x, t; al + 0, 0)(2e + E),

4,5IF3[ < 2e N(x, t; O, z) dz <= - e.

Hence, for arbitrary fixed (x, t), we have

lug(x, t) u(x, t)l <= lug(x, t) u*(x, t)[ + lu*(x, t) u(x, t)l

(2.4) < 8r/ + 2llbx-r/ B*(t) + (vl + vz)EF

2
+ k,f + -t, t; al + , Ot: + F +.

From (2.2), E 0 as {e, 6, r/, e} {0, 0, 0, 0}. Therefore, it follows from (2.3)
and (2.4) that the set of solutions {u(x, t), s(t)} depends continuously on the initial
boundary data.

Acknowledgment. The author would like to express his gratitude to his
supervisor, Professor G. F. D. Duff.
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THE FRACTIONAL DERIVATIVE OF A COMPOSITE FUNCTION*

THOMAS J. OSLERf

(1.1)

1. Introduction. In the elementary calculus one considers the derivative of
order N of the composite function f(z) F(h(z)) and obtains the formula [5, p. 19]

N

DNf(z U.(z)DT,()f(z)
n=0 /!

where

-h(z))rDh(z)"-r.

In this paper we consider the extension of (1.1) to fractional derivatives. We derive
the fundamental result

ng<z,f(z f(z)g’(Z)[ h(Z)- h(W) a+l

(1.2) Dh()t. h’(z) lg(z) g(w) w:z’
where the notation D(z)f(z) means the fractional derivative of order a of f(z)
with respect to g(z). The Leibniz rule for fractional derivatives is then applied to
(1.2) to obtain the new series expansion

(1.3)

where

D()f(z) E
7+n

F(z, w)g’(z)
D{-n h’(z)

h(z)- h(w)/a+l}g(z) g(w)]

r( + 1)
7+n F(e-),-n+ 1)F(),+n+ 1)

The formula (1.1) from the elementary calculus is shown to be a special case of
the "generalized chain rule" (1.3). A few specific examples of these general results
are studied.

The concept of the fractional derivative with respect to an arbitrary function
has been used in recent papers [3], [4]. However, to the best of the author’s
knowledge, the full definition and notation D(z)f(z), introduced in his paper [8],
are new. Indeed, it is this new notation which suggests the possibility ofinvestigating
the fractional derivative of a composite function so as to generalize the calculus
formula (1.1).

The Leibniz rule for fractional derivatives

+ n
D--"uD+"vD()u(z)v(z)

* Received by the editors July 10, 1969.
t Department of Mathematics, St. Joseph’s College, Philadelphia, Pennsylvania 1913 I.
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was first studied by Watanabe [10] in 1931. Recently the author [8] found a new
proof for this Leibniz rule which revealed its precise region of convergence in
the z-plane. Since the Leibniz rule plays a central role in the investigation of the
series expansions in this paper, the reader should consult [8] before proceeding.

Finally, a few specific examples of (1.3) are examined. Novel derivations of the
known result

F(,l-z;p-+ 1;1/2)=

and Kummer’s formula

2F(p + 1)F(p/2 + 1)
r(p/2 + )r(p + 1)

F(p/2)F(p )
F( + 1, p p ; 1)

2F(p)F(p/2.- )

are obtained as well as new results.
The generalized chain rule, the Leibniz rule, the relation DD D+, and

other operations illustrate that the fractional calculus exists as a natural extension
of the elementary calculus. Recent papers illustrating the application of the
fractional calculus to problems in ordinary, partial and integral equations [3], [4],
[6], [7], [9] demonstrate that it is a highly suggestive tool. Higgins [7] has observed
that "although results using fractional integral operators can always be obtained
by other methods, the succinct simplicity of the formulation may often suggest
approaches which might not be evident in a classical approach." It is hoped that
this paper will further reveal the uses of fractional derivatives.

2. Fractional derivatives and Leibniz rule. We now review briefly the definition
of fractional derivative and the statement of the Leibniz rule. A full discussion
of these ideas is found in [8].

DEFINITION 1. The fractional derivative or order of f(z) with respect to

h(z) is

(2.1) Dtz)f(z
F( + 1)fi+)-’- f(t)h’(t)dt

2rci ’o) (h(t) h(z))+ 1"

The branch line for (h(t)- h(z))+ starts at z, passes through h-1(0),
and continues to infinity. The contour of integration starts at h- 1(0), encircles

z in the positive sense once, and returns to h-1(0) without crossing the
branch line of (h(t)- h(z))+ 1. f(z) and h(z) are assumed to possess sufficient
regularity to give the integral (2.1) meaning.

The critical use of the Leibniz rule for fractional derivatives,

(2.2) (D(zu(z)v(z)= D, "u(z)D’v(z),
requires a description of the region in the z-plane over which the series (2.2)
converges. To simplify the following discussion we describe this region of con-
vergence as the "Leibniz region" and give its definition.

DEFINITION 2. Let u(h-1(z)) and v(h-1(z)) be defined and analytic on the
simply connected region . Let z 0 be an interior or boundary point of .
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() denotes the set of all z such that the closed disk It zl Ill contains only
points in 13 {0}. We call the set of all z in h-1(6()) the Leibniz region ofu
and v with respect to h and denote it by -(u, v h).

We state the precise version of the Leibniz rule from [8] as a theorem for
future reference.

THEOREM (Leibniz rule). Let u(h- (z)) and v(h- (Z)) be definedandanalytic in

the simply connected region . Let

_
u(h- l(z)) dz,

_
v(h- l(z)) dz and u(h- l(z))

v(h-l(z))dz vanish over any simple closed contour in LJ {0} passing through
the origin. Then the Leibniz rule (2.2) is true for z in (’(u, v h) and arbitrary for
which is defined.

7+n
Having reviewed the definition of fractional derivative and the Leibniz rule

we proceed to study the fractional derivative of a composite function. We shall
see that the results are easy applications of the Leibniz rule and Definition 1.

3. The generalized chain rule. We begin by deriving the fundamental relation

(3.1) D’(z)f(z) D’(zit h (z) tg(z) g(w)]

This relation combined with the Leibniz rule yields the generalized chain rule for
fractional derivatives.

THEOREM 2. Let f(g-l(z)) and f(h-l(z)) be defined and analytic on the simply
connected region , and let the origin be an interior or boundary point of. Suppose
also that g-I(Z) and h-l(z) are regular univalent functions on and that h-1(0)

1(0). Let + f(g-l(z)) dz vanish over every simple closed contour in LJ {0)g-

through the origin. Then thefundamental relation (3.1) is valid.
Proof. The result follows immediately upon converting both sides of the

fundamental relation (3.1) to contour integrals by means of the definition of
fractional derivative (2.1).

The Leibniz rule can be applied to the right-hand side of (3.1) once we select
u(z) and v(z) such that

u(z)v(z)
f(z)g’(z)

h’(z)
h(z)- h(w)
g(z)- g(w)

a+l

To indicate all possible methods of factoring, we introduce the arbitrary function
F(z, w) and set

(3.2) u(z)
F(z, w)g’(w)

h’(z)

and

v(z)
f(z)

V(z, w)"



FRACTIONAL DERIVATIVE 291

The Leibniz rule (2.2) yields the desired generalized chain rule at once:

O,,’ f(z)
D(z)f(z)

7 + n F- ;v)
(3.3)

.F(z, w)g’(z) h(z) h(w)’ + }D- ( h’(z) g(z) g(w) w="
The precise conclusion is stated as a theorem.

THEOREM 3. Let f(z), g(z) and h(z) satisfy the conditions of Theorem 2. Let
F(h-l(z), h-(w)) be regular on x . Let u(z) and v(z) be defined by (3.2) and
satisfy the conditions of Theorem 1. Then the generalized chain rule (3.3) is valid for

re ,o ar , rar, , Zor whic, isz i8 the Leibniz
7+n

We conclude the analytical investigation of the generalized chain rule by
converting (3.3) into a form somewhat like the elementary calculus formula (1.1).
The new form is

l
{Dz)F(z w)(h(z)- h(w))"}Dz) F(f;)w)(3.4) D(z)f(z)

where

The elementary calculus formula (1.1) is seen as the special case in which is
an integer, g(z) z and F(z, w) 1.

THEOREM 4. With the hypothesis of Theorem 3, the relations (3.4) and (3.5)
are valid.

Proof. Set 0 in the generalized chain rule (3.3). The summation now
extends from n 0 to v rather than from to . We see at once that

Dt-’ h’(z) g(z)- g(w) w:

1

n OgtzF(z w)(h(z) h(w))

upon writing both sides as a contour integral by (2.1). The relation (3.5) is obtained
at once upon expanding (h(z) h(w)) by the binomial theorem.

It is useful to note that Theorem 4 is valid even when h-(0) and g-(0) are
not equal. This is seen at once upon replacing h(z) by h(z) h(g- x(0)) in (3.4) and
observing that h’(z) and Dt do not change.

We have demonstrated that the formulas from the elementary calculus for
the derivatives of a composite function generalize to fractional derivatives in a
natural way. We proceed to investigate some consequences of the generalized
chain rule through the study of a few specific examples.

4. Examples. We conclude this paper with an examination of a few special
cases of the generalized chain rule. These require the evaluation of the fractional
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derivatives of elementary functions. A table of fractional derivatives or integrals
such as that found in [2, vol. 2, pp. 185-214] is useful for this purpose.

The notation for the special functions used is that of Erd61yi, Magnus,
Oberhettinger and Tricomi [1], [2].

Example 1. Setting f(z) zp-z, g(z) z2 and h(z)= z in the fundamental
relation (3.1), we obtain

Dzp-2 Dz2Zp- X(z + w) llw=.
The left-hand side is evaluated with the aid of the relation

F(q + 1)zq-

F(q- + 1)’

after replacing z by Z2. Using [2, vol. 2, no. 9, p. 186] we obtain Kummer’s formula

F(a + 1, p" p a" 1)
F(p/2)I"(p a)
2F(p)F(p/2 a)"

Example 2. Letting f(z)= zp, g(z)= z2, h(z)= z, F(z, w)= zP(z + w)+
and ? 0 in the generalized chain rule (3.3), we obtain

F(p/2+ 1) F(1-a+n)F(p+ 1)(-1)"(2)
F(p/2 a + 1)- ,o ’1 n-p - +

which reduces to

(4.1)
F(p a + 1)F(p/2 + 1)2
F(p/2 a + 1)F(p + 1)

F(a, 1 a;p a + 1; 1/2).

It may be noted that this novel method for determining the known relation (4.1)
provides a direct evaluation of the hypergeometric series of argument z 1/2.

Example 3. Setting g(z) z, h(z) zk and F(z, w) zq in (3.4), we obtain

Dzf(Z
F(q + 1)zq- (--zk)"
F(q ]),=o n". D’"f(z)z-

k+ 1Fk
q+ 1 q+2, q+k

-n,
k k k

q-a+ 1 q-a+2 q-a+k
k k k

,1

with the aid of [2, vol. 2, no. 11, p. 186]. This is the generalized chain rule for the
fractional derivative of the composite function f(z) F(zk) in terms of derivatives
with respect to zk.

Example 4. Setting g(z) zp, h(z) z and F(z, w) zq-p+ in (3.4), we obtain

Dz,f(z)
(- 1)nDzpzq(w z) Df(z)zp-q-1

n=O t/
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Using the Cauchy integral formula for fractional derivatives (2.1), we easily see that

(-1)"Dzq(w z)"
(- 1)"-’-XP

D; I(Zp wp)-o- 1zq
n! w=z F(-) w=z

Finally, using [2, vol. 2, no. 11, p. 186] we obtain

Df(z)
pF(q + 1)zq-p-p+

F(-)
(- z)"O"zf(z)zP q-

.=o F(q+n+2)
p+aFp

.(+ 1,q+l q+2 q+p.q+n+2 q+n+3 q+n+p+ 1.1
P P P P P P

Computation ofthe coefficient of Df(z)zp-q- by means of(3.5) rather than by the
procedure outlined above reveals that

e+l,q+l q+2 q+p.q+n+2 q+n+3 q+n+p+l
p+ lFp 1-- --P P P P P P

equals the finite sum of gamma functions

r(-)r(q + n + 2) x (-)"+"r((q + n r + )/p)
pF(q + 1) =o/’2 (n- r)!F((q + n- r + 1 pe)/p)"

Replacement of z by z/p in (4.2) yields the generalized chain rule for the fractional
derivative off(z l/p) in terms of derivatives with respect to z /p.

5. Acknowledgment. The author wishes to express his indebtedness to
Professor S. N. Karp of the Courant Institute of Mathematical Sciences at New
York University for his advice and encouragement.
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EQUICONVERGENCE AND ALMOST EVERYWHERE
CONVERGENCE OF HERMITE AND LAGUERRE SERIES*

BENJAMIN MUCKENHOUPT"

1. Introduction. The purpose of this paper is to prove equiconvergence
theorems for both Laguerre and Hermite series with weaker hypotheses than those
given by Szeg6 in 8]. As usual, these hypotheses are conditions on the absolute
value of the function, and they are shown to be the best possible conditions of this
type. These results along with Hunt’s theorem for almost everywhere convergence
of Fourier series give general almost everywhere convergence theorems for
Hermite and Laguerre series.

The results proved here are stated in 2. The principal tool used to obtain
them is an estimate for Laguerre polynomials in [3] for 0 __> 0 and in [5] for -1
< < 0. Except for the use of this estimate at one crucial point, the proofs in
3 of the equiconvergence theorems, Theorems 1 and 2, are the same as those

given by Szeg6 in [8]. Szeg6 gives two sets of hypotheses for Laguerre series and
two for Hermite series; it is easy to show that these hypotheses imply the con-
ditions required here. A simple example in 12 for the Laguerre case shows that
there is a function that satisfies the conditions given here but neither of Szeg6’s
sets of hypotheses. Furthermore, this function cannot be written as the sum of
two functions, each satisfying one set of Szeg6’s hypotheses. Similar functions
exist in the Hermite case.

Many other sets of conditions that are sufficient to imply equiconvergence
can be derived from Theorems and 2. Corollaries 3 and 4 contain a collection
that include those given by Szeg6.

The almost everywhere convergence results, Corollaries 1 and 2, are proved
in 4. They are an obvious application of the theorems.

As discussed in [8], there has been a history ofprogressively weaker conditions
on the absolute value of the function in equiconvergence theorems for Hermite
and Laguerre series. The ones obtained here are the best possible of this type
since if If[ does not satisfy the conditions, then by adjusting the algebraic sign
of f properly the conclusion is false. This is the content of Theorems 3 and 4,
and 5-11 are devoted to proving them.

Theorems 3 and 4 are intrinsically much more difficult to prove than Theorems
1 and 2. For Theorem 1, estimates of integrals not containing Laguerre poly-
nomials must be used to estimate integrals that do contain Laguerre polynomials.
An accurate upper bound for the absolute value of the polynomial is sufficient
for this. The proofofTheorem 3 is the opposite problem ;here estimates ofintegrals
containing Laguerre polynomials must be used to bound integrals not containing
Laguerre polynomials. Since the Laguerre polynomials have zeros in the relevant

* Received by the editors September 8, 1969.
’Department of Mathematics, Rutgers University, The State University of New Jersey, New

Brunswick, New Jersey 08903. This work was supported in part .by the National Science Foundation
under Grants GP 7539 and GP 11403.
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ranges of integration, good asymptotic formulas and careful reasoning must be
used to do this.

In 12, in addition to the function described above, examples of other func-
tions are given to show that the theorems proved here cannot be greatly improved.
Examples are also given to shed some light on the meaning of the conditions in
Theorems and 2.

2. Statements of the results. As usual, for a fixed > -1 the Laguerre
polynomials, L(x), will be defined by

r"L,(x)= (1 r)--lexp -----they are orthogonal on [0, oo) with weight function e-Xx. The Hermite poly-
nomials will be defined by Hn(x)r"/n! exp (2xr- r2); they are orthogonal
on (-av, oo) with weight function exp (-x2).

The equiconvergence theorems to be proved are the following.
THEOREM l. Given > 1, assume that f(x) has a Laguerre series with para-

meter , let s(jl x) denote the n-th partial sum of that series and assume that

(2.1) m If(x) c-X/2x/2- 1/2

m/2 (m + -ffg -Xf dx o(1), m --+ oo,

(2.2) fa f(x)l e- X/2x/2- 3/4 dx < oo

and, in case

(2.3) j if(x)lx/2 -1/4 dx < c
0

Then if y > 0 and 0 < 6 < yl/2,

Is 1 IYl/2+6 sin 2nl/2(yl/2--t) ](2.4) lim ",(f, Y) f(t2) 12 dt O.
n- y/_ y

This holds uniformly for everyfixed positive interval Ir, sl if O < 6 < r1/2.
THEOREM 2. Assume that f(x) has a Hermite series, let s,(f x)denote the n-th

partial sum of that series and assume that

(2.5)
ml/2 If(--X) + If(x)l
1/2/2 (m + m113 -i/4 exp 1X2 X-1/2 dx o(1), m --+ m,

and

(2.6) fl If(- X)lx+ f(x)l
exp

Then if 6 > 0 and y is real,

1X2

(2.7) hm [Sn(Jl Y)
I f/ f(t)--

n-+ ,l y-

sin (2n)’/2(y t)
y--t
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This holds uniformlyfor y in every finite interval.
The exact statements of the sense in which Theorems 1 and 2 are the best

possible are the following.
THEORFM 3. Iff(x) does not satisfy one or more of the conditions, (2.1), (2.2)

and (2.3), then there exists a junction, fl(x), such that [f(x)[ [f(x)[, and for almost
every y > 0 and every 6 satisfying 0 < 6 < yl/2, equation (2.4), with f replaced
by f is false.

THEOREM 4. If f(x) does not satisfy (2.5), (2.6) or both, then there exists a

function, f(x), such that [f(x)[ -If(x)[, and for almost every real y and every
fi > O, equation (2.7), with f replaced by f, is false.

In 12 an example will be given to show that "almost every" in Theorem 3
cannot be replaced by "every" or "all but a countable number of." Examples will
also be given in 12 to show that a function may violate (2.1), (2.2) or (2.3) but
still have the conclusion of Theorem 1 valid.

It will appear in the proofs and from other examples in 12 that conditions
(2.2) and (2.3) are much more subtle than (2.1). It is easy to see that if the con-
clusion of Theorem holds, then the individual terms of f’s Laguerre series,
a(f)L(y), must satisfy lim,_, a(f)L(y) 0 for every y > 0. It will be shown in
the proof of Theorem 3 that if lim,_o a(f)L(y)= 0 for every fa satisfying
[fl(x)[ If(x)[ and every y > 0, then (2.1) must hold. Examples in 12 show,
however, that this condition does not imply (2.2) or (2.3).

Similar comments apply to the Hermite case.
The almost everywhere convergence results are the following; in these

log + x is the function equal to log x for x _>_ 1 and 0 otherwise.
COROLLARY 1. Given > -1, assume that f(x) has a Laguerre series with

parameter, , let ,(f x) denote the n-th partial sum of that series and assume that
If(x)l(log+lf(x)[)2 is integrable on [_a, b] 0, ). If (2.1), (2.2) and (2.3) are true,
then s(f, x) converges to f(x) for almost every x in a, b]. If (2.1), (2.2) or (2.3) is
.false, there exists f(x) such that Jf(x)l If(x)l and the set of all x in [a, b] for
which s,(f, x) converges to fl(x) has measure O.

COIOLLAV 2. Assume thatf(x) has a Hermite series, let s,(f x)denote the n-th
partial sum of that series and assume that ]f(x)l(log+lf(x)l)2 is integrable on [a, b]
(-, o). If (2.5) and (2.6) are true, then s,(f, x) converges to f(x) for almost

every x in [a, b_ If (2.5) or (2.6) is false, there exists f(x) such that [f(x)[ [f(x)[
and the set of all x in Ia, b] for which s,(f, x) converges to f(x) has measure O.

The relationship between Theorems 1 and 2 and the results in 8, Theorems
9.1.5 and 9.1.6, pp. 244--245] is illustrated by the following two corollaries.

COROLLARY 3. Assume that <= p <= and the hypotheses of Theorem are
all satisfied except that (2.1) and, if __<p < 4/3, (2.2) are replaced by the condition

(2.8) If(x)e Pdx

o(ml/4+ 1/(3p)), 1 =< p < 4/3,

o(ml/Z(log m)-/4), p 4/3,

o(m- 1/4 + 1/p), p > 4/3.

Then the conclusion of Theorem 1 is valid.
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COROLLARY 4. Assume that 1 <= p <= oe and the hypotheses of Theorem 2 are
all satisfied except that (2.5) and, /f 1 =< p < 4/3, (2.6) are replaced by the con-
dition

(2"9) fm I’lf(x)l + lf(--X)ll pdx(x2/2)

o(n 1-1/(3p)), 1 < p < 4/3,

o(n3/’*(logn)-I/’), p=4/3,

O(I’ll/P), p > 4/3.

Then the conclusion of Theorem 2 is valid.
Corollary 3 with p 1 has a hypothesis that appears slightly weaker than

the first set of hypotheses in Theorem 9.1.5 of [8], but they are in fact equivalent.
Similarly, Corollary 3 with p 2 is equivalent to Theorem 9.1.5 with its second
set of hypotheses. Corollary 4 with p 1 is equivalent to Theorem 9.1.6 with the
first set of hypotheses and with p 2 is equivalent to Theorem 9.1.6 with the
second set of hypotheses.

It is also interesting to note that for p > 4/3 the hypotheses of Corollaries
3 and 4 become stronger as p increases.

3. Proofs of Theorems 1 and 2. Szeg6’s proof in 8, pp. 264-266] of his
equiconvergence theorem, Theorem 9.1.5, for Laguerre series uses nothing more
than the hypotheses of Theorem 1 up to the last line of the proof. At that point
all that remains to be proved is that

(3.1) n/2 + 3/4f
3n

and

(3.2) n -/2 + 3/4 f3n
e-it lf(t)L(t)l dt o(1)

e-’t llf(t)L,+ l(t)[ at o(1).

Consequently, it will be sufficient to prove (3.1) and (3.2) from the hypotheses of
Theorem 1 to complete the proof of Theorem 1.

To prove (3.1) let v 4n + 2 + 2 and write the left side of(3.1) as the sum of

(3.3) n -/2 +/ e-’t [f(t)t(t)l dr,

(3.4) n -/2 + 3/4. e-’t llf(t)L(t)l dt

and

(3.5) n -/2 + 3/4- e-tff al f(t)L(t)l dr.

By [1, p. 699], given a fixed e 0, there exist positive constants, C and D,
such that
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(p + p/ -1/4 X) 1/4, 1/V<=X<=V,

(3.6) e_x/Zx/2n_/2]L,(x)l < C exp [-D.(x v)3/Zv -1/2]

Ce-x, 2v <= x.

The restriction in [1] to >= 0 is caused by the fact that their proof was based on
asymptotic estimates for L(x) that were proved in [3] only for _> 0. However,
in [5] these estimates are proved for -1 < < 0. The reasoning in [1] then can
be used to prove that (3.6) is true for all > 1.

Using (3.6) in (3.3) and the hypothesis (2.1) with m the least integer greater
than v immediately shows that (3.3) is o(1). Similarly, using (3.6) in (3.5) and the
hypothesis (2.2) shows that (3.5) is o(1).

To treat (3.4), observe that (2.1) implies that given e > 0 there exists Uo such
that for all real u > Uo,

(3.7) If(x)l e-/2x/2- 1/2 dx < b/1/12
--Ul/3

Using (3.6) in (3.4) shows that (3.4) is bounded by

/v+(k+ 1)v 1/3 --t/2t/2-- 1/2

C o |
e exp (- Dk3/)

(3.8)
k dv+kv 1/3 ---/’- + )/ If(t)l dr.

If v > Uo, (3.7) can be used to show that (3.8) is less than e times a fixed constant.
This shows that (3.4) is o(1) and completes the proof of (3.1).

Showing that (3.2) holds is the same this completes the proof of Theorem 1.
Theorem 2 follows from Theorem 1 in exactly the same way that Theorem

9.1.6 of [8] is derived from Theorem 9.1.5 of [8] as described in [8, pp. 268-_269].

4. Proofs of the corollaries. To prove the first assertion in Corollary 1,
chooseu, vand6sothat0<6<u,(u-6, v+6) c(a1/2,b 1/2) andv-u+26
< 2n and assume that (2.1), (2.2) and (2.3) are true. By Theorem 1,

1 (y/2+o sin 2nl/2(y 1/2 t)
(4.1) ! f(t2) yl/2

dt

has the same limit for y/2 > u as s(f y) whenever (4.1) converges. Now let m(n)
denote the greatest integer less than or equal to 2n 1/2 and let Dn(x) be the ordinary
Dirichlet kernel, [sin (n + 1/2)x]/[2 sin x/2]. Then the fact that f(t2) is integrable on
(u 6, v + 6) and the Riemann-Lebesgue theorem show that (4.1) and

1 fv/6 f(t2)Dm()(y 1/2 t) dt
l’ u_

have the same limit whenever (4.2) converges and yl/2 is in (u, v).
Since If(tz)l(log+lf(t2)]) is integrable on (u , v + 6), Hunt’s convergence

theorem [4, p. 235] implies that there is a set E of measure 0 such that (4.2) con-
verges to f(y) for yl/a in (u, v) E. If E* is the set of all y such that yl/2 is in E,
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then E* has measure 0 and (4.2) converges to f(y) for y in (/,/2, /)2) E*. Therefore,
s,(f, y) converges to f(y) for almost all y in (u2,/)2). Since (a, b) can be written as
the countable union of intervals (u2,/)2) of this type, s,(f, y) converges to f(y) for
almost every y in [a, bl.

The second assertion in Corollary 1 is now easy to prove. Let f not satisfy
one of the conditions (2.1), (2.2)or (2.3)and let fl be the function whose existence is
asserted by Theorem 3. Now the proof for the first part of Corollary 1 shows that
(4.1), with f replaced by fl, converges to f(y) for almost every y in [a, b]. Since the
difference between that expression and s](fl, y) converges to 0 on at most a subset
of measure 0 by Theorem 3, the set of y in [a, b] for which s,(f, y) converges to
f(y) must have measure 0. This completes the proof of Corollary 1.

The proof of Corollary 2 is the same as the proof of Corollary 1.
To prove Corollary 3, use H61der’s inequality to show that the left side of

(2.1) is bounded by

(4.3) If(x) e-x/2x1/2lP dx dx
m/2 /2 (m + m/3 x)/

where lip + 1/q 1. It is now easy to compute the second integral in (4.3) and
use (2.8) to show that (4.3)is o(1). This implies that (2.1) is true.

If 1 _< p < 4/3, (2.8) and H61der’s inequality show that

(4.4) If(x) e-X/2xq2- 3/41 dx o(m1/2- 2/(3p)).
/2

This implies (2.2) in this case.
Since (2.8) implies the hypotheses of Theorem 1 that are not assumed in

Corollary 3, Theorem gives the conclusion of Corollary 3.
Corollary 4 is proved similarly.

5. Known results. The proofs of Theorems 3 and 4 are given in 5-11.
The proof of Theorem 3 requires considerable knowledge about Laguerre poly-
nomials; the needed facts that appear elsewhere are gathered in this section.
Section 6 contains two basic lemmas about sequences of Laguerre polynomials
and preliminary results needed to prove them. Section 7 contains simple estimates
of various integrals containing Laguerre polynomials. Section 8 contains the most
involved part of the proof in four similar lemmas. In 9 it is shown that Theorem 3
is a fairly easy consequence of 5-8. In 10 certain basic facts about Hermite
polynomials are quoted that are needed to prove Theorem 4. In 11, Theorem 4
is proved by replacing the Hermite polynomials with Laguerre polynomialsand
then using the lemmas in 6-8.

To simplify expressions the notation

(5.1) ’,(x) F(n + 0 + 1)
xl/2 e-X/2L(x)

will be used. In all that follows e will be assumed to be greater than 1 and fixed
so that the dependence of constants on will not be given. The notation v 4n
+ 2e + 2 will be used throughout; to avoid some ambiguities when n 0 and
e < 0, v will be defined to be 2 in these cases.
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From [1, p. 699] there are positive constants, C and D, such that for all n >__ 0,

(5.2)

C(xv)’/
C(XF)- 1/4,
ICy- 1/4X- 1/12

C-/

[IX- 1,’ + 1’1/3] 1/4’

CC Dx,
and for all n 1,

(5.3) I+ l(X) 5-l(X)l -<

O<=x< l/v,

1/2v =< x N 2v,

2v<__x<,

CxOq2Fo/2 0 < X < 1Iv

CX1/4V 3/4. 1Iv < x

The third estimate in (5.2) is a consequence of the second, fourth and fifth. It is a
poor estimate, but it is easier to use than the others and is sufficient for most of
the computations. As noted after (3.6), the estimates in [1] are stated only for

__> 0, but the results of [5] show that (5.2) and (5.3) are valid for all > 1.
Two Laguerre polynomial identities will be needed"

(5.4) Ln+ l(x)--- -(n + 1)x-aL+ I(X) -’i- (g/ -- ( -+- 1)X-1L(x)
and

n+ 1 2n+e+ 1-x
(5.5) L.- l(X) --Ln+ l(X) + Ln(X).n+ n+

These are slight modifications respectively of(5.1.14) and (5.1.10)of [8, pp. 100-101].
The asymptotic expansion (5.4) of [3, p. 245] shows that for 1/v <= x v 1/3,

(5.6) L(x)
F(n + e + 1)

n eX/2 jo([vx]l/2) + oIX1/4(vx + l)

Using the estimate for the Bessel function, (1.71.7) of [8, p. 15], we have

COS

Stirling’s formula and (5.1) show that

-1/2 Vn(X) -i)g-i-)4/COS 2(r/x)1/2
07c

2

(5.7)

x
2

+ O(X-3/2), X 1.

1-k-X2 g/-1 X g/1/3

Define G 1/4v(20- sin 20)- 1/4r where 0 cos -1 (x1/2F-1/2). Expressions
(7.6) and (7.7) of [7] are

(x)
(2/rc)1/2(-1)’ [ vl/4]xl/,(v x)l/4cos G + 0 (vx) -3/ +

(v -)7/4 1 <= x <__ v-- v1/3,

(5.8)
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and

(5.9) 5+ (x) ._ l(X)

Next, define

25/2(-- 1)nxl/4
1/2F3/4

(5.10) D,(x y) z(x)’,(y),
k=0

(5.11) jl(n, x, y) ,(x)q,(y),

(5.12) j2(n,x,y)
nSO(y)[S, + l(x) &o_ l(x)]

y--x

and

lx1/2v.

(5.13) j3(n, x, y) j2(n, y, x).

Then by (2.22) of [7] there are sequences b, and c, bounded above and below by
positive constants depending only on such that

(5.14) D,, b,,jx + c,,(j2 + j3).

Three lemmas from [6] will be needed and are stated here as Lemmas 1-3.
They are Lemmas 2, 4 and 5 respectively of [6] for proofs see [6].

LEMMA 1. Let L be an integer greater than 20 and let I be a set of L consecutive
integers. If for n in I, 1/(3L) _< g(n + 1) g(n) <= 1/4re and g(n + 1) g(n) is mono-
tone increasing in n, then for at least of the integers, n, in I, Icos g(n)l -> 1/200.

LEMMA 2. If y >= (90)3, > --1 and x is a fixed number such that 5y/6 <= x

<= y y/3, then for at least two thirds of the integers, n, such that y <= 4n + 2
+ 2 <= y + yx COS GI __> 1/200.

LFMMA 3. Let w(x) be a nonnegative function and a positive real number.
Let f(n, x) be a function such that for every x in a set E and every integer in afinite
set of integers, I, 0 <_ f(n, x) <= 1, and for each x in E, f(n, x) >__ for at least of
the n’s in I. Then ff(n,x)w(x)dx >= (t/lO) few(x)dx for at least { of the n’s in I.

6. Sequences of Laguerre polynomials. The purpose of this section is to
prove Lemmas 5 and 6. Various preliminary results are given for these proofs.

First, it will be shown that for v- < x < v/3,

(6.1) &o,+ l(X)- (’n- l(X)--- rcl/2n3/4
sin 2(nx)l/2

2 4
+ 0

nl/2xl/2

To prove this, assume that x is in the indicated range. Equations (5.4) and (5.5) can
be combined to show that

(6.2)

vx
L+ x(x)- L_ l(x)=

2(n + 1)(n + z)
L+(x)

2(n+ 1)x+v+ L(x).
2(n + 1)(n +

Next, replace all the Laguerre polynomials in (6.2) by using (5.1), and multiply
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the resulting identity by

e-/2x/2[’(n -1)-il+
This shows that 5,+ l(x) 50,- l(x) equals

nl/,+ l(x) + 0 + 0
n

(x) + &’,+ l(x).

Now using the fact obtained from (5.2) that [,(x)l =< C(nx)- 1/4 on the error terms
in (6.3) and using (5.7) on the principal term completes the proof of (6.1).

The following will be needed in the proofs of Lemmas 5 and 6.
LEMMA 4. If rk and Sk are sequences, limk- Irk[ Z and E is the set of all

nonnegative x for which lim SUpR- [COS (rkX1/2 + Sk)[ < 1/2, then E has measure O.
Let E* be the set of all x such that x2 is in E. Let Ek be the set of x for which

[cos (rkX + Sk)[ < 1/2. Then

(6.4) E*= U Ek.
j=l k=j

If b a > 2Z(rk)-1, then by the definition of Ek, m(Ia, b] f-) Ek) <-- 1/2(b a) where
re(D) denotes the Lebesgue measure of D. Then for any j and any interval a, b],
m([a, b] [ f-)=j Ek) <-- (b a). But then (3 =j Ek has no points of density so its
measure is 0 for each j. Equation (6.4) then shows that re(E*) 0. It follows im-
mediately that re(E) O.

LEMMA 5. If lim, a,’.(x)= 0 for x in a subset, E, of [0, ) of positive
measure, then a, o(n/’).

Suppose that the conclusion is false so that there is an e > 0 and a strictly
monotone sequence nk such that

(6.5) a,k(nk) -1/ >_ e.

Using (5.7) shows that for each positive x in E,

(6.6) kolim ank(nk)-l/4(cosI2(nkx)l/2
But then (6.5 implies that

(6.7) k-.oolim cos I2(nkx)l/ 2 4
0

for each positive x in E. Lemma 4 then implies that m(E) 0. This contradiction
proves Lemma 5.

LEMMA 6. If t,(x) (a, + xrb,)(’,(x) + c,[--w,+ l(x) -l(x)] is bounded
for each x in a subset of [0, oe) of positive measure, then a, O(nl/), b, .O(nTM)
and c, O(n3/4).

Suppose that the conclusion of the lemma is false. Then there is a strictly
monotone sequence, nk, such that

(6.8) (nk)-1/’(la,l + Ib.l) + (nk)-3/lc.l >= k

and either (i) a,/b. converges to a finite limit, u, or (ii)la,/b.kl converges to c,
or (iii) a, b, 0 for all k. Using the hypothesis, it is easy to see that there is a
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set E c (0, oo) of positive measure such that t,(x) is bounded for each x in E,
x + u in case (i) has the same algebraic sign for all x in E, and x + u in case (i) and
x in all cases vary by no more than a factor of 11/10 for x in E. In each case it
follows readily that there exist constants, C > 0 and ko, such that

(6.9) I% + xb,l >= C(1%1 + Ib,l), x e E, k > ko,

(6.10) la, + xb.kl < -la, + yb,], x E, y e E, k > ko,

and a, + x"b, has the same algebraic sign for all x E provided that k is fixed
and greater than ko.

Now define R(k, x) and O(k, x) to satisfy R(k, x) >= O, n < O(k, x) <= n,

(6.11) R(k, x) cos O(k, x) n- x/2(nkx)- x/4(a,k + xb,)
and

(6.12) R(k, x) sin O(k, x) 2n- x/:xx/4(nk)-3/4Cnk.
Then using (5.7) and (6.1) shows that for x in E,

(6.13) t,(x) R(k, x) cos 2(nx)1/ + O(k, x) n2 4n + O([n]-x/z)

Now let Xo be a fixed point in E and k an integer greater than ko. Using
(6.10) and the facts that for x in E, a, + xrb,k has constant algebraic sign and x
varies by no more than a factor of 11/10, shows that for x in E, O(k,x) stays in one
quadrant and tan O(k, x) varies by no more than a factor of 4/3. Consequently,
ifk > ko and xeE,

(6.14) ]O(k, x) O(k, Xo)l <= sup
u/3
+ua

1

by use ofthe law ofthe mean on the function tan- u. By (6.8)and (6.9) lim,_, ooR(k, x)
for each x in E. Then (6.13) shows that if x is in E,

-oolim cos [2(nkx) x/2 + O(k,x) n2 4nI =0.

This and (6.14) show that for x in E,

lim sup
koo

cos 2(nx) x/2 + O(k, Xo)
2 4

1

Lemma 4 then shows that E has measure 0. This contradiction proves Lemma 6.

7. Simple consequences of Lemmas 1-3.
LEMMa 7. Lemma 2 remains valid if, in the conclusion, "cos" is replaced by

"sin."
This follows from the fact that Lemma 2 is proved directly from Lemma 1

and the fact that the proof of Lemma 1 is equally valid if "cos" is replaced by
’-’sin" in its conclusion.
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LEMMA 8. If0 < y 1/30, > 1, and x is afixed number such that y <__ x <= 1,
then for at least two thirds of the integers, n, such that y-

cos[2(nx)l/2 o7t rl >
1

2 4 200

This is a simple application of Lemma 1. Let g(n) 2(-nx)/2 + n/2
+ 7:/4, let I be the set of integers such that y- =< n =< 2y- and let L be the
number of integers in I. Then 20 < y- 1 =< L =< y- + 1 and

2xX/2
g(n + 1) g(n)

(--n) 1/2 -4-(-n- 1) 1/2"

It is easy to verify that for n in I, g(n + l)- g(n) is monotone increasing and
1/(3L) =< g(n + l) g(n) <= 1/4n. By Lemma 1, Icos g(n)l _-> 1/200 for at least - of
the n’s in I. This immediately gives the conclusion of this lemma.

The integral estimates that will be needed in the proof of Theorems 3 and 4
will now be given as Lemmas 9-11.

LEMMA 9. Given > -1, there exist constants C >__ 1, C2 > 0 and Yo > 0
such that if y > Yo, Ey [5y/6, y Cy1/3] and w(x) is a measurable function,
then

f w(x)l dx
(7.1) Y/(y- x)

for at least -} of the n’s satisfying y <__ 4n + 2 + 2 <_ y + y/3.
Assume that y <= 4n + 2 + 2 <= y + y/3. The estimate (5.8)shows that there

is a constant, C3, such that for any C __> 1, the left side of (7.1) is bounded below by

(7.2) (2/n)/2 fe Iw(x)cos GI fe Iw(x)lv/ dx
X1/4(1.,_ x)l/4dX C3 (v- x) 7/4

Using Lemmas 2 and 3 on the first integral in (7.2) and the definition of Ey on
the second one shows that if y >= (90)3 there is a positive constant, C4, such that
for of the indicated n’s, (7.2) is bounded below by

fE lw dx _C3(C1)_3/2f
E

Iw(x)l dx
1_4.

(x)’
x)l/4 xl/4(F x)l/4"

(7.3)
yX V

Taking C1 as the larger of 1 and (2C3/C4)2/3 proves (7.1) with C2 1/2C4 and
Yo (90)3.

LEMMA 10. Given > -1, there exist constants C1 >= 2, C2 > 0 and Yo > 0
such that/f y > Yo, Er [C1, y/C1] and w(x) is a measurable function, then

(7.4) f_ (’+ l(X) Z-l(X) IW(X)] dx C2 f Iw(x)lxl/4y -3/4 dx
dE

for at least of the n’s satisfying y <= 4n + 2cz + 2 <= y + yl/3.
The estimate (5.9) shows that there is a constant, C3, such that for any C1 => 2

the left side of (7.4) is bounded below by

(7.5) nl/Ev3/4 x sin GI Iw(x)l dx v-lw(x)l dx,
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The proof is then like that of Lemma 9; Lemmas 3 and 7 are used and C1 is made
large enough to give the result.

LEMMA 11. Given > -1, there exist constants C1 >= 1, C2 > 0 and Yo > 0
such that if 0 < y <= Yo, Ey [Cly, 1] and w(x) is a measurable function, then

(7.6) fe I,(x)w(x)l dx >= C2 fe w(x)lx-1/4yTM dx

for at least - of the n’s satisfying y-1 <_ n <= 2y-1.
The proof is like that of Lemmas 9 and 10; it uses (5.7) and Lemmas 8 and 3.

8. More lemmas. The four lemmas of this section are all similar and are
specifically oriented toward proving Theorems 3 and 4.

LEMMA 12. Let g(x) be a nonnegative function and assume that > -1. If
for every function, gl(x), satisfying Igl(x)l g(x),

(8.1) gl(x)q(x)dx O(gtl/4), n - ,
then

(8.2) fi’ g(x)dx
2),

/2 (n + n

Assume that (8.2) is false. Then there is an e > 0 and arbitrarily large n’s
such that

(8.3) f) g(x) dx 1/2

/2 (n q- n 1/3 x) TM
> en

Let Er [5y/6, y Cly 1/3] where C1 is as in Lemma 9. It is easy to see that
there is a positive constant, C, such that if x is in Ey and Er In/2, hi,
then (y x)-1/4 _> C(n + n1/3 x)-1/4. Furthermore, since (5/6)4 < 1/2, for large
n, In/2, n] can be written as the union of 4E.,’s that are subsets of In/2, hi. These
facts and (8.3) show that there are arbitrarily large y’s for which

f g(x) dx Cey1/2

(8.4)
(3 -x-)i/4 > ----.

Three sequences, n, y and z, will be defined inductively. Let Z 1. Given
z, the numbers y, n and z + will be chosen as described below.

Choose y so that y > 2z, y is greater than the Yo of Lemma 9,

(8.5) x- 1/4g(x) dx < (yk)

and (8.4) is true with y yk. The integral in (8.5) exists since (8.1) implies that
g(x) is locally integrable. With C2 as in Lemma 9, Lemma 9 shows that

fe re, g(x) dx
(8.6) I(x)lg(x) dx

Yk Yk

for at least -} of the n’s satisfying y <_ 4n + 2 + 2 <= y + y/3. Let n be one of
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these n’s. Combining (8.6) with (8.4) shows that

" CC2y/,(8.7) ],,(x)lg(x) dx >= -Yk

By hypothesis g(x)(x)dx exists. Consequently a number, z/, can

be chosen so that z/ > y and

(8.8) I(x)lg(x)dx < 1.

Now define gx(x) g(x)sgn 5e(x) for Zk <= X < Zk/ 1, k 1,2, Given
ak,

(8.9) ,(x)gl(X)dx

is bounded below by the difference of

(8.10) I,,(x)lg(x) dx

and

(8.11)

The first integral in (8.11) is bounded by use of(5.2), (8.5)and the fact that 2Zk < Yk
=< 4nk + 2 + 2. The second integral in (8.11) is bounded by 1 because of (8.8).
The integral (8.10) is greater than a constant times (nk)TM by (8.7) and the facts
that E [Zk, Zk+ 1] and 4nk + 2 + 2 <_ 2Yk. Therefore, for sufficiently large k,
(8.9) is bounded below by a constant times n,/. This contradiction of (8.1) com-
pletes the proof of Lemma 12.

LEMMA 13. Let g(x) be a nonnegative function and assume that > -1. If
for every function, gl(x), satisfying [g (x)[ g(x),

(8.12) j g(x).(x)dx o(n/’), n ,
0

then
2/n

(8.13) g(x) dx o(n/4), n --. .
d 1In

The proof is similar to that of Lemma 12. Assume that (8.13) is false, 1.et C,
C2 and Yo be as in Lemma 11 and let Ey [Cy, 2Cy]. Then there are an e > 0
and positive y’s arbitrarily close to zero such that

(8.14) g(x)x- TM dx > ey- 1/2

Sequences Zk, Yk and r/k will be defined inductively. Let z 1. Given Zk, the
numbers Yk, nk and Z +1 will be defined as described below.
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Choose Yk so that 2Cxyk <= z, 0 < y <= Yo, (8.14) holds with y y and

g(x)x- 1/4 dx <= y 1/4.

By Lemma 11,

(8.16) fe lq)(x)lg(x)dx>__C2fv, g(x)x-1/y],/’dx

for at least } of the n’s satisfying y/- < n < 2y/- Let n be one such n. Combining
(8.14) and (8.16) shows that

(8.17) ;v [2’(x)lg(x) dx > ,C2y 1/4.

Define zk + so that 0 < z + =< Cly and

(8.18) I(x)lg(x) dx <= 1.

Now let gl(x)= g(x)sgn 5,k(x) for z+l < x =< z, k 1,2, Given a
k, write

(8.19) g(x),(x) dx

as the sum of integrals over [0, z,+ ], [z,+ , z] and [z, 1]. Inequalities (5.2) and
(8.15) show that the third of these is bounded by a constant independent of k while
(8.18) shows the same for the first part. Inequality (8.17) shows that the second
part is greater than a constant times n/, and, therefore, the same is true for
(8.19). This contradicts (8.12) and completes the proof of Lemma 13.

LEMMA 14. Let g(x) be a nonnegative function and assume that > -1. If
for every function, gl(x), satisfying [gl(x)[ g(x),

(8.20) gl(x)[c+ l(X) ’Pna_ l(X) dx 0(n-3/4),

then

(8.21) fl g(x)xTM dx < c

Assume that (8.21) is not true. Let C1, C2 and Yo be as in Lemma 10. Let
Z C1; given zk, numbers y, n and z+ will be chosen as described below.

Choose y so that yk >= Cz, y > Yo and

(8.22) f
r’/c 8C

g(x)x TM dx >= -2 g(x)xTM dx,

where C is the constant in (5.3). This is possible since (8.21) is assumed false and,
as shown by (8.20), g(x) is locally integrable.
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Next choose nk so that yk <= 4n + 2e + 2 _<_ 2y and

fy,,/c fy,,/c g(x)x 1/4 dx
(8.23) ]50 +,k(x) 55 +,(x)lg(x)dx >= C2

z, z, Y3k/4
this is possible by Lemma 10 since z, <= y,/C1 and, as will be shown by the defini-
tion of the z’s, C1 =< zk.

Finally, choose z/ so that z,/ >= 2y,/C and

(8.24) 150] +,(x) 505 +,(x)lg(x) dx < n[/

this is possible because of (8.20).
Now define gl(x) g(x) sgn [50] +,(x) 505 +,(x)] for z =< x < zk+ 1,

k 1,2,..., and gl(x) g(x) for 1 =< x < zl. Then for n n the left side of
(8.20) can be written as the sum of integrals over [1, z], [z, z+ 1] and [zk+ 1, m].
Using (5.3) on the first of these, (8.23) and (8.22) on the second and (8.24) on the
third shows that the left side of(8.20) with n n and k sufficiently large is bounded
below by

(8.25) n/ 1 + C g(x)xTM dx

Since (8.21) was assumed to be false, this contradicts (8.20). This completes the
proof of Lemma 14.

LEMa 15. Let g(x) be a nonnegative function and assume that > -1. If
for every function, gl(x), satisfying [gl(x)[ g(x),

(8.26)

then

f gl(x)50,(x) dx O(n- 1/4.),

g(x)x-1/4, dx < .
Assume that (8.27) is false, let C1, C2 and Y0 be as in Lemma 11 and let C

be as in (5.2). Let z 1; given zk, numbers y, n and z+l will be chosen as
described below.

Choose yk so that Cly < zk, 0 < y =< Yo, and

3Cfzl(8.28) g(x)x- 1/4. dx g(X)X- 1/4 dx.

Next, choose n to be an integer satisfying y/- __< n =< 2y/- and

(8.29) g(x)l.,,(x)l dx >= C2 g(x)x 1/4.y/4. dx;
Yk Yk

this is possible by Lemma 11 since Clyk =< z and, as will be shown by the definition
of the z s, z <= 1.
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Finally, choose Zk+ SO that 0 < Zk+ - 1/2ClYk and

(8.30) g(x),,,(x)dx . l/l; 1/4.

this is possible because of (8.26).
Define gl(x)= g(x)sgn k(x) for Zk+l < X Zk, k 1, 2,’... As in the

last proof, it is now easy to prove that the left side of (8.26) with n nk is bounded
below by

(8.31) n TM 1 + C g(x)x- TM dx

The assumption that (8.27) is false then produces a contradiction of (8.26). This
completes the proof of Lemma 15.. Proof f Terem 3. Theorem 3 will now be proved by showing that the
negation of its conclusion implies the negation of its hypothesis. Accordingly,
assume that f(x) is a function such that for each f(x) satisfying
there exists a subset, E, of [0, ) ofpositive measure and for each y in E a satisfy-
ing 0 < < y/ for which (2.4) is true with f replaced by f. It will be proved
that (2.1), (2.2) and (2.3) are true.

Given anf and the corresponding set E, choose a y E and its and subtract
the (n 1)th term in (2.4), with f replaced by f, from the nth term. Since (2.4)
is true and

sin (2n)/2(y 1/2 x) sin (2n- 2)1/2(y 1/2 x)
O(n-y/Z x y/ x

uniformly for all x, it follows that

(9.1) s(A,y)- S-l(A,y o(1) + O(n -/) A(xe)dx..
dyl/2_6

Since f must have a Laguerre series to make (2.4) meaningful, f is integrable
on [y1/2 6, y/2 + 6] so the right side of (9.1) is o(1). Therefore,

(9.2) ,lim c(r(n + + f(x)L(x) e-x dx O.

Since (9.2) is true for all y in E and E has positive measure, Lemma 5 and (5.1) show
that

(9.) f(x) e-X/x/(x) dx o(n/).

Since (9.3) is true for all f with f(x)l f(x), it is true for the sum of an f
and the function that equals f for x in I and is -f for x not in I. This shows
that for any I [0, ),

(9.4 f(x) e-/x/(x) dx o(n/").

Taking I [1, ), we can now apply Lemma 12 with g(x)= If(x) e-X/x/;
this immediately proves (2.1).
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Several other simple consequences of (9.4) will be needed at a later stage
in this proof. First, (2.1) imllies that

(9.5) [f(x)l e-X/2x’/2 dx o(n3/4).
/2

Now writing the integral as the sum of integrals over [2k, 2k/ ], k 0, 1, 2,...,
and using (9.5) shows that

(9.6) f lf(x)l e-x/2x/2-1 dx < z

(9.7)

Taking I [0, 1] in (9.4) and applying Lemma 13 proves that

f2/. If(x)lx/2 dx o(nX/’).
/n

Again, splitting up the integral and applying (9.7) proves

(9.8) j f(x)x/2 + x/2 dx <
o

A simple consequence of (9.8) is the fact that

l/n

(9.9) n/2 + 1/2 f(x)x+ dx o(1).

To prove (2.2) and (2.3) the whole expression for the partial sums will be used.
Again, given fl, let E denote the corresponding set. Choose a and b so that
0 < a __< 1 __< b < and E1 [2a, 1/2b] f3 E has positive measure. As mentioned
before, the fact that fl has a Laguerre series implies that fl is integrable on any
compact subset of (0, ). This fact, the hypothesis and the Riemann-Lebesgue
theorem show that for y El,

[ f/ sin 2n/2(y/2 x) 1(9.10) lim s(f y) fl(x2) 1/2 dx O.
tl--’ 1/2 y x

Now let F(x)= f(x) for a =< x =< b and F(x)= 0 elsewhere. Since F(x)
satisfies the hypotheses of Theorem 1 it satisfies the conclusion. The reasoning
above then shows that (9.10) is satisfied with fl replaced by F for every y in E.
Subtracting this result from (9.10) and using the definition of F then shows that
for every y in

(9.11) lim [s,(fl, y) s,(F, y)] 0.

Using (5.1), (5.10) and (5.14) and writing R [0, a)IA (b, ) shows that
s,(fl, y) s](F, y) equals the sum of

(9.12)

and

(9.13)

b,, ey/2y -q2 ;R fl(x) e-X/2x/2jl(n, x, y) dx

Cn ey/2Y /2 fR fl(X) e-X/2x/2(j2(n, x, y) + j3(n, x, y)) dx.
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Using (9.4), (5.11) and (5.2) shows that the integral in (9.12) is o(1). Since b, and c,
are bounded above and below by positive constants, (9.12) is o(1) and (9.11)
implies that the integral in (9.13) is o(1) for y in E.

Now, if y E and x [0, a], then (y x)- y- [1 + O(x)] while if y E
and x [b, oe), then (y x)-1 x-[-1 + O(x-)]. Now use (5.12) and (5.13)
to replace j2 and j3 in (9.13) and replace the resulting (y x)-a by the estimates
just given. Using (5.2), (5.3), (9.6), (9.8) and (9.9), it is easy to show that for each
y E the error terms are bounded as n -, oe. The principal term resulting from
J3 and integrating over [b, oe) is also bounded for each y in E. Since the integral
in (9.13) was a bounded function of n for each y in E, the sum of the remaining
parts,

(9.14)

(9.15)

and

n
&,(y) f(x) e-X/2x/2[&’+ (x) ,_ (x)] dx,

Y

-nff’,(y) fl(x) e.-X/2xq2- l[n+ I(X) o_ I(X) dx

(9.16) ---n [a] + I(Y) 9n (Y)] f(x) e-x/Zx/Z(x)dx,
Y

must be a bounded function of n for each y in El.
Now apply Lemma 6 to y times the sum of (9.14), (9.15)and (9.16). This shows

that

(9.17)

and

n f(x) e-X/2xq2-1[o+ l(X)

_
l(X) dx O(y/1/4)

(9.18) n fl(x)e-x/2xq2(x)dx 0(/73/4).

Since (9.17) is true for every fl with If(x)l f(x), Lemma 14 can be applied
to show that

(9.19) f(x)l e-X/2xq2- 3/4 dx

Since f must be integrable on [1, b] to have a Laguerre series, (2.2) is proved.
Similarly, (9.18)and Lemma 15 imply (2.3). This completes the proof ofTheorem 3.

10. Hermite polynomial expressions. Theorem 4 can be proved either by
proving analogues of the lemmas in 5-8 for Hermite polynomials or by reducing
the Hermite polynomial expressions that occur to Laguerre polynomial expres-
sions and using the lemmas in 5-8. The second method will be used. Various
needed facts about Hermite polynomials will be quoted in this section. The proof
of Theorem 4 is given in 11.

To simplify expressions, the function

(10.1) f,(x) exp(-1/2x2)n-I/’(2"n!)-/2H,,(x)
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will be used. Define d,(x, y) by

(10.2) d,(x, y) k(X),k(y);
k=0

using (5.5.9) of [8, p. 105] and (10.1) shows that

(10.3) d,,(x y)=(n+l) 1/2f"+l(x)gt"(y)-2/"(x)+l(y)"
2 x-y

Now, starting with the identity,

(10.4) H,(x) 2xH,_l(x) 2(n 1)H,,_ 2(x),

(5.5.8) of [8, p. 105], it is easy to verify that

nil,+ 2(x) + 4(n + 1)xZH,(x) 4(n3 n)H,,_ 2(x)
(10.5) H, +l(x)

(4n + 2)x

Now use (10.5) to eliminate the ,u#, + l(x) and 4,+ l(y) in (10.3). The result is that
there are sequences of constants, a,, b,, c,, bounded above and below by positive
constants such that for n >= 2, d,,(x, y) equals the sum of

(10.6) a,,f,(x)Ut,(y),

nb,,
,.(x) [,u#. + 2(Y) oct’.- 2(Y)](10.7)

y(x y)

nb,,
(10.8) Ygt.(y) [X.+x(x2(x) 4.- 2(x)]

and

(10.9)
c.:g.(x)._ 2(Y)

+
c.t.(Y) a(x)

y(x y) x(x y)

Expression (5.6.1) of [8, p. 105] states that

(10.10) Hz,(X) (- 1)"22"n!L 1/2(x2).

Combining this with (5.1) and (10.1) shows that

(10.11) 42.(x) (- )"lxl/2; /2(x2).

This, (5.2) and (5.3) show that there are positive constants, C and D, such that for
n>l,

(10.12)

(10.13)

and

(10.14)

12,(x)l Cn- /4(1 + Ixl 1/3)

l2,(x)l =< C exp (- Dx2)

for all x,

for x2 _>_ 9n,

12.+2(x) 2.-2(x)1 Cn-3/(1 + Ixl) for all x.
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11. Proof ofTheorem 4. As in the proof ofTheorem 3 it will be shown that the
negation of the conclusion of Theorem 4 implies the negation of its hypothesis.
Therefore, assume that f(x) is a function such that for each fl satisfying If(x)l

If(x)l there exists a subset, E, of (-o, o) of positive measure and for each y
in E a > 0 for which (2.7) is true with f replaced by fl. It will be proved that
(2.5) and (2.6) are true.

Given an fl and the corresponding set E, it follows from (2.7) that for y in E,

(11.1) lim
H,,(y)

fl(x)H,,(x) exp x2) dx 0
,,-. 2"n

in the same way that (9.2) was derived from (2.4). For n 2m, (10.1) and (10.11)
can be used in (11.1) to show that for y in E and y : 0,

(11.2) lim 2,/e(y) f(x)lxl/2,/(xe)exp(-1/2xe)dx O.
moo

Lemma 5 then implies that the integral in (11.2) is o(ml/’); with a change ofvariable
this becomes

(11.3) [fl(x 1/2) + fl(-xl/2)]x -1/ e-/2 1/(x)dx o(m1/)

for every fl(x) satisfying If(x)l- If(x)l. By the reasoning used to obtain (9.4)
from (9.3) it follows that for any subset, I, of [0, ),

(11.4) j [fl(x1/2) _+_ fl(__X1/2)]X 1/4 e-X/2 1/2(x)dX o(ml/,).

Now since all functions g(x) with Ig(x)l If(xl/2)l + If(- X1/2)[ can be written
in the formfl(x 1/2) + fl(-X/2),Lemma 12can be applied to (ll.4)with I [1, )
to prove that

fi’ If(xl/2)l + If(-xl/2)l -1/,,(11.5)
/2 (n + n 1/3 x) 1/4 x e dx-- o(nl/2).

This immediately implies (2.5).
Other consequences of (11.4) will be needed in the proof of (2.6). First, from

(2.5) it follows that

(11.6) [If(x)l / If(-x)lqn-/x -/2 exp(- 1/2x2)dx 0(1).
dnX/2/2

From this it follows easily that

(11.7) [If(x)l + f X)I]X -3/2 exp (- 1/2x2) dx < 0(3.

From (11.7) it is easy to show that for b >= 1,

(11.8) f If(x)zm(X)Ix- exp(-- 1/2x2)dx o(m/’*)
xl>=b
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by splitting the integral into integrals over b <= Ixl <= 3m1/2 and 3m1/2 IxI and
using (10.12) on the first and (10.13) on the second. From (11.4) and (10.11) it
follows that for any b,

(11.9) fl(X)f2m(X)exp(-- 1/2x2)dx o(ml/4).
xl>=b

Now, given fl(x) and its corresponding set, E, choose b _> 1 so that E1
[--1/2b, 1/2b] (q E has positive measure. Define F(x)= f(x) for Ixl _-< b and

F(x) 0 elsewhere. Equation (2.7) and the reasoning that produced (9.11) from
(2.4) show that for y E,

(11.10) lim [s,(f, y) s,(F, y) O.

Using the notation (10.2), we see that for y in El,

(11.11) lim d2,,(x, y)f(x)exp(-1/2x2)dx O.
n--*oo dlxl>=b

Now replace d2,(x, y) in (11.11) by the sum of(10.6)-(10.9) and write (x y)-
x- + O(x-2). Using (11.9) on the term resulting from (10.6), (11.8) on the term

resulting from (10.9), and (10.12), (10.14) and (11.7) on the error terms resulting
from (10.7) and (10.8) shows that all these integrals are bounded functions of
n for each y 4:0 in E 1. Since a,, b, and c, are bounded above and below by positive
constants, the sum of the principal terms resulting from (10.7) and (10.8),

(11.12) --n[oef2n+2(Y) )ef2n-2(Y)] fl fl(X)2n(X)
dx

Y xl >= x exp (1/2x2)
and

(11.13) nz.(y) fix fl(X)[2n+2(X) C2n-2(X)] MX
I>__b X2 exp (X2/2)

is a bounded function of n for each y - 0 in E
Next use (10.11) to replace the ’s in (11.12) and (11.13) and apply Lemma 6.

This implies that the integral in (11.13) is 0(n-3/4). With a change of variable
this becomes

[ fl(X1/2) + fa(- X 1/2)
(11.14) X5/4 eX/2 [2(X)- 2(X)] dx O(n-3/4).

Now with the remark used to derive (11.5), Lemma 14 implies that

(11.15) [If(x1 + f(- X1/2)I]X-I e-X dx < .
Changing the variable and using the fact that a function with a Hermite series
must be integrable on a compact set implies (2.6). This completes the proof of
Theorem 4.

12. Examples of functions. To show some of the advantages and limitations
of the theorems proved, various examples of functions will be given. First a list
of the interesting characteristics of these functions will be giyen, then a discussion
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of what each function illustrates, and finally the definition of the functions and
proofs that they have the asserted characteristics. These examples will only con-
cern the Laguerre results, Theorems 1 and 3 and Corollary 3; similar examples
could be given for the Hermite results.

As befGre, let a,(f) denote the coefficient of L,(x) in f’s Laguerre expansion
with parameter . Functions, f(x), will be produced with each of the following
characteristics:

(a) Satisfies hypotheses of Theorem 1 but cannot be written as the sum of
two functions, each satisfying one set of hypotheses of Theorem 9.1.5 of [8, pp.
244-245].

(b) Satisfies hypotheses of Theorem 1 but does not satisfy hypotheses of
Corollary 3 for any p.

(c) Satisfies hypotheses of Theorem 1 but does not satisfy

(12.1) fo If(x)l e--’/2x/2-1/4(1 + x)- 1/4

[In- xl + nl/3] TM
dx-- o(l).

(d) Violates (2.1) but satisfies the conclusion of Theorem 1.
(e) Violates (2.2) but satisfies the conclusion of Theorem 1.
(f) Violates (2.3) when > -1/2 but satisfies conclusion of Theorem 1.
(g) Violates (2.2) but for every fl satisfying Ifx(x)l If(x)l, lim,_ a,(f)L,(y)

0 for every y in (0, c).
(h) Violates (2.3) when > -1/2 but for every fl satisfying Ifa(x)l

lim a(fl)L(y) 0 for every y in (0, c).
(i) Violates (2.1) but for every fl satisfying If(x)l If(x)l, equation (2.4),

with f replaced by fl, holds for an uncountable set of y’s.
Functions (a) and (b) show that Theorem 1 is actually stronger than its principal

competitors. Function (c) shows that an obvious amalgamation of (2.1)-(2.3) is
not a substitute for them so that the statement of Theorem 1 cannot be simplified
by using (12.1)in place of (2.1)-(2.3). It is easy to see that if the integral in (12.1)is
taken over [0, n] CI Fan, c) for any fixed a > 1, then the condition would be
equivalent to (2.1)-(2.3). Requiring that the integral over (n, an) also be o(1),
however, is an additional unneeded condition.

Examples (d)-(f) show that none of the conditions (2.1)-(2.3) is necessary for
the conclusion of Theorem 1 to hold. In fact, the sum ofthese three functions would
violate all three of those conditions but still satisfy the conclusion of Theorem 1.
Consequently, there must be less restrictive conditions that will give the conclusion
of Theorem 1; because of Theorem 3, however, they cannot be conditions on the
absolute value of the function.

Examples (g) and (h) illustrate an essential difference between (2.1) and the
other two hypotheses. The first part of the proof of Theorem 3 in 9 showed that
if for everyfl satisfying Ifa(x)l If(x)l, lim a(fl)L(y) 0 for a set of y’s of positive
measure, then (2.1) holds. Examples (g) and (h) show that this condition on the
terms of the series does not imply (2.2) or (2.3).

Example 9 shows that "almost every" in Theorem 3 cannot be replaced by
anything stronger such as "every" or "all but a countable number of."
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Now the definitions of the functions will be given. For example (a) take

X/2x-/2+x/a,(logx)
-2 2k- 2k/2 <x < 2 k= 2

f(x)=
0, elsewhere.

It is easy to verify (2.1)-(2.3). If f(x) could be written as the sum of g(x) + h(x)
with g satisfying the first set of Szeg6’s conditions in Theorem 9.1.5 and h satisfying
the second set, then they would satisfy the following:

(12.2) e- X/2x/2lg(x)l dx o(r/7/12)

and

(12.3)
zn

le-X/2x/2h(x)l 2 dx o(nX/2).

Now if x is in [2 2k/2, 2], e-X/2x/2lf(x)l => and it is easy to show that

(12.4) le-X/2x/2f(x)l <= 12 e-X/2x’/2g(x)] + e-X/2x/2h(x)l 2.

If (12.2) and (12.3) were true, then (12.4) could be used to show that

(12.5) e-"/2x/21f(x)l dx 0(2v/2).
2k/2

On the other hand a direct computation shows that the left side of (12.5) is greater
than a positive constant times k-223t’/a,. This shows that such a decomposition is
impossible.

It is easy to verify that example (a) also has the characteristics of example (b).
Example (c) is the function, f(x), defined by

ex/Zx-o/2+ /2k- 1/2

2 < x < 2 + 2/2 k 1 2
f(x) (x- 2 + 2k/3)3/a,

0, elsewhere.

Taking n 2, it is easy to see that f(x) does not satisfy (12.1) by integrating over

2k, 2 + 2/2]. Verifying (2.1)-(2.3) is routine.
For example (d) let Ik be the set of all n such that 2- __< 4n + 2 + 2 __< 2 + .

Define

X/2x-/2+ 1/a. sgn (sin ax), 2 2//3 _< X _< 2 k 1 2, ...,
f(x)

/.0, elsewhere,

where a is chosen so large that

(12.6) f(x) e-X/2x/2Qn(x) dx l
2k73

for n in I; this is possible by the Riemann-Lebesgue theorem for Rademacher
functions. It is easy to verify for m 2 that (2.1) is violated by f(x).

To prove that this function and the functions in the next two examples
satisfy the conclusion of Theorem 1, the following lemma will be used.
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LEMMA 16. Let f(x) be a function that has a Laguerre series with parameter
let f(x) denote the function that equals f(x) for x >_ b and is 0 elsewhere and let
f(x) f(x) f(x). If
(12.7) lim lim sup Is(fb, Y)I 0

and

(12.8) lim lim sup Is(f, Y)I 0
b-O n

and these limits are uniform for y in any closed subinterval of (0, ), then f satisfies
the conclusion of Theorem 1.

First, consider a function, f(x), that is 0 on [0, 1]. Given e > 0 and a closed
subinterval, r, s], of (0, ), choose b so that b > 4s and

(12.9) lim sup Is(fb, Y)I < 1/4e

for all y in Jr, s]; this is possible by (12.7). Using (12.9) and the fact thatfb satisfies
the hypotheses of Theorem shows that for a fixed 6 satisfying 0 < 6 < r 1/2,
there is an N such that

(12.10) Is,(f, Y)I < 1/2e
and

(12.11) Y) | f(t2)
sin 2n/2(y/2 t)

y/2
dt

provided that n > N and y is in Jr, s]. The fact that s,(f, y) s(fb, Y) + s(fb, Y)
then shows that

(12.12) f(t2)
T(, ] yl/2

sin 2nl/2(y 1/2 t)
yl/2

dt

provided that n > N and y is in [r, s]. This shows that f satisfies the conclusion
of Theorem 1.

Iff(x) is 0 on (1, ), a similar proof can be given using (12.8) instead of(12.7).
Since any function defined on [0, ) can be written as the sum of a function that
is 0 on [0, 1] and one that is 0 on (1, ), this completes the proof of the lemma.

Returning to example (d), observe that (12.8) is trivially satisfied. Now

(12.13) Sa{ fb y) ey/2 -a/2
,w Y f(x) e X/2x/2Dn(x, y) dx,

where D, is the function defined in (5.10). If y is in an interval Jr, s] c (0, ) and
b => 2s, it is easy to show that the part of s,(fb, y) contributed by j2 and j3 is less
than a constant times b-1/6 by use of (5.2), (5.3) and absolute value inequalities.
The contribution ofjl is handled similarly except for the integration over intervals
[2 2k/3, 2k] for which n lies in Ik; these are estimated by using (12.6). The con-
tribution ofj is found to be less than a constant times n- 1/6. Since all these parts
satisfy (12.7), f(x) satisfies the conclusion of Theorem 1.
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For example (e) use the function

X /2 1/4 eX/2

f(x) (log x) (log log x)
x => 3,

0, x<3.

This clearly violates (2.2). On the other hand, (6.1) shows easily that if y is in an
interval It, s] = (0, ) and b _>_ 2s, then there is a constant, C, such that

/8

f(x) e x,(12.14) cY/Zy -/2 -x/Zx/2j2(17 y)dx < Cn-1/8

To show that f(x) satisfies the conclusion of Theorem 1 it is sufficient to prove
(12.7) by use of (12.13). Inequalities (5.2) and (5.3) can be used to show that the
contribution to s from j is less than a constant times (log n)- and the contribu-
tion from j3 is less than a constant times b-1/3. For the j2 part write the integral
as the sum of integrals over [b, nl/8], In 1/8, 2v] and [2v, oe). On the first of these
use (12.14), on the second use (5.2) and (5.3) and on the third use the fact obtained
from (5.2) that 15e,+ l(x)- 5,- l(x)l is bounded by a constant times e-x. The
contribution from the j2 part is then seen to be less than a constant times (log
log n)- 1. It follows from these estimates that (12.7) is true and, thereby, that f(x)
satisfies the conclusion of Theorem 1.

For example (f) choose an > -1/2 and use the function

X-Ot/2- 3/4- (log x)- 0 < x < ,,
f(x)

O, 1/2 <= x.

It is easy to verify that (2.3) fails. If y is in an interval It, s]c (0, oe) and 0 < b

=< 1/2r, then (5.7) shows that there is a constant, C, such that

(12.15) er/2y -/2 f(x) e-x/2x/2j3(rt x y)dx <
log n

To show that f(x) satisfies the conclusion of Theorem 1 it is sufficient to prove
(12.8) by use of the analogue of (12.13) for S(fb, y). The contributions from jl and
j2 cause no difficulty and the contribution from j3 is estimated using (12.15).

For examples (g) and (h) it is easy to verify by use of (5.2) that examples (e)
and (f) respectively have the desired properties.

Two lemmas will be needed to obtain the properties of example (i).
LEMMA 17. Given a sequence, ak, such that a >= 9 and ak+l >-(2rcat)2, let

[’l/2v"$1 [1 2],and for k> let S be the set of all x in S_l for which Icost-
rc/2 rc/4)l =< a/- 1/. Then S fq= Sk is an uncountable set.

It will be shown that each closed interval subset ofS_ of length greater than
or equal to 2/a_ contains at least two disjoint closed interval subsets of S of
length greater than or equal to 2/a. This is sufficient to prove the lemma since this
gives an uncountable collection of sequences of nested closed intervals with the
kth interval of each sequence in Sk.

Given a closed interval subset of S_ with length greater than or equal to
2/a_1, f(x)= cos(a/Zx- 0rc/2- re/4) has at least two full periods in this
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interval and, therefore, equals at least twice. Between these two points where
fk(X) 1 there are two points where fk(x) 0; call them x and x2. Now if x
is in Ix1 a[ 1, xl + a-1] or [x2 a[ 1, x2 + a[ 1], the law of the mean shows
easily that Ifk(x)[ <= a 1/z. Since these intervals are subsets of Sk-1 they are also
subsets of Sk. It is also clear that they are disjoint since Ix1 x21 _>- rca-1/2. This
completes the proof of Lemma 17.

LEMMA 18. Let ak satisfy the hypotheses ofLemma 17, let S be the corresponding
set, and let S* be the set of all x such that x 1/2 is in S. Then there exists a constant,
C, such that .for all x in S* and all k,

In(X)l Cn-1/4-min 1
1 +14n--akl

H1/2

Given a k, this follows easily from the fact that X 1/2 is in S and (5.7).
Now for example (i) let ak be a sequence satisfying the hypotheses ofLemma 17

and define

,1/3 < x < aex/2X or + 1/4- ak tk
f(x)=

O, elsewhere.

It will be shown that

sn(f l, Y) 0(12.16) lim lim sup

uniformly for y in the set S* described in Lemma 18 and fl satisfying fl(X)l
f(x). That (2.4) is true uniformly for y in S* and all such functions, fl, can then

be proved in the same way that Lemma 16 was proved.
Sn(f l, Y)Using (12.13) and the estimates (5.2) and (5.3) shows that the parts of

resulting from j2 and j3 are less than a constant times b-1/6. The term resulting
from j is bounded above by

(12.17) ey/2y-/2l(y)l xl/4-l(x)l dx.
k--al/3

To estimate (12.17) split the summation in (12.17) into the terms for which

ak =< 1/2V, 1/2V =< ak _--< 2v, and ak >= 2v where v 4n + 2 + 2. The first and third
parts are easily seen to be less than a constant times n-1/6 by use of (5.2). The
middle part consists of at most one term; using Lemma 18 and (5.2) shows that
that term is bounded by a constant times

(12.18) v- 1/4- min [1, 1+ [v--akl.lfak k’’l/4-’’-l/4-dXV
vl/2 XI

__
)1 1/4-"

k--al/3 [I v /3]

If Iv akl >= vl/2 (12.18)is bounded by a constant times V -1/24. If Iv akl < 11/2

(12.18) is bounded by a constant times [la vl + 1/313/4-5/12, and this is also
s,,(f 1, Y) also satisfiesbounded by a constant times v-1/24. Therefore, this part of

(12.16). This completes the proof concerning example (i).
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THE HANKEL TRANSFORMATION OF NEGATIVE ORDER FOR
DISTRIBUTIONS OF RAPID GROWTH*

E. L. KOH

1. Introduction. The Hankel transformation has been extended to orders
/ < -1/2 in such a way that an inverse transformation is defined 1]. This extension
was made for certain distributions of slow growth such that for/ => -1/2, the trans-
form coincides with that discussed in [2]. In this paper, we remove the restriction
on the growth of the distributions. Specifically, we extend the Hankel transform of
arbitrary order to distributions of rapid growth [3].

2. Notation. We shall use the notation and terminology in [1]-[3]. I denotes
the interval (0, ); x, y and w are real one-dimensional variables with x restricted
to I. r/denotes a complex variable, y + iw, and a function of r/will be restricted
to its principal branch. By a smooth function we mean one that has derivatives of
all orders at every point of I. b and will denote testing functions whilefand F
are generalized functions. The number assigned by f to some testing function
will be denoted by (f, b). We use the following operators"

dk

Dk Dk dzk,
k O, 1,2,...,

Nu zU+ /ZDz-U-

N- z"+ 1/2 t-U- 1/2 dr,

Mu z-U- /2DzU+ 1/2.

Here, the variable z may at times be complex. Other symbols will be defined as
they are used.

3. The spaces u,b, u, 0.,b, u and their duals. We now summarize some of
the results obtained in 3].

Let # be a fixed number in (-, ) and b be some positive number. u,b is
the topological vector space of all smooth, complex-valued functions (x) on
0 < x < such that b(x) 0 on b < x < and for every nonnegative integer,
k,

7(b) A sup ](x -aD)kx u- 1/2b(x)l <
0<x<o

The countable set of seminorms {7}=0 generates the topology for ’u,o. It was
shown in [3] that u, is a Hausdorff, locally convex, first countable, complete,
countably normed space (see [4, p. 6]). Also for b < c, u, u, and the topo-
logy induced on u, by u, is identical to the topology of
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5, is then defined to be the strict inductive limit (see [4, p. 213) of the
where b traverses a monotonically increasing sequence ofpositive numbers tending
to oe. Its dual ), is the space of generalized functions (distributions) on which the
Hankel transform of arbitrary order is to be extended. These generalized functions
are of arbitrary growth as x oe. Both 3, and , are complete.

Similarly, for the given g and b, ,, is defined to be the space of functions
(q) such that q-u-/2(q) is an even entire function of q and for k 0, 1, 2,...,

,k(O) sup [e-b[w[q2k-u- 1/20(q)[ < @,

where q y + iw and the supremum is taken over the entire q-plane. Again,
.,b holds the same properties listed above for .,b.. is the strict inductive limit of the .,b, and ’. is the dual space of
These spaces are again complete.

4. The Hankel transformation on . for -. By an application of
Griffith’s theorem [5], it was shown that tbr p -, the Hankel transformation

A. is an isomorphism from .,b onto .,b (see [3, Theorem 1]) and from . onto. (see [3, Theorem 2]). Consequently, the generalized Hankel transformation
for -) was defined on . as the adjoint of A. on u Specifically, if p >
f e ., 4 . and A. e ., then Auf is defined as a functional on . by

(1) <,f, O) <f, 4>.
Under this definition, ’ is an isomorphism from N onto ’, and its inverse is
itself, i.e., ()

5. The Hankel transformation on , for arbitrary . We now develop the
Hankel transformation of arbitrary order for generalized functions in . But
first we prove certain operations on ,, and

LEMMA 1. For any real value of , the mapping N,4 is an isomorphism
from , onto +,, the inverse mapping being N2.

Proof. It has been shown [3, Lemma 3] that N,4 is a continuous linear
mapping of, into ,+ ,. Since N2 is clearly linear and is the inverse of
we only need to prove that N2 maps +, continuously into N,,. By a proof
analogous to that of Lemma 2 of [1], we have, for 4(x) + 1,,

(2) 7(N- 1(/)) __+ ((/)), k 1,2, 3, ....
For the case k 0, we have

b2

(3) 7(N-ab(x)) =< -7+ l(b).

The results (2) and (3) prove that b N-Xb is a continuous linear mapping of
+ , into u,o. It follows that - Nb is one-to-one and onto. This completes

the proof.
LEMMA 2. For any integer m andfor any real value of#, the mapping rlmO

is an isomorphism from o, onto o+ m,.

Proof. This follows from the fact that +a, "(r/"O) ,(O) for every integer m.
In the sequel, we shall use the following operators. Let # be a fixed real number
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and let k be any positive integer such that k >= -# 1/2. Then for any 4(x)
we set

(4) O(r/) .,a[4(x)] - (-1)ar/-.+N.+_ N.+ 1N.4(x),
and for any O(q) e ..b we set

(5) b(x) d.-k[O(r/)] & (-- 1)aN iN-21 N-+la_ ld/+a/’/aO(/),
where d.+a is the classical Hankel transformation given by

(6) (&0)(y) O(z),j J.(zy) az.

LEMMA 3. For any real #, the transformation dla,k as defined by (4) is an isomor-
phism from ]u.b onto u.,b. Its inverse is defined by (5). Whenever
coincides with u as an isomorphism defined by (6) from u,b onto u,b"

Proof. The first assertion follows from the facts that 4 Nu + k- N.+ Nudp
is an isomorphism from u,b ontou+ k,b (Lemma 1), b -. du +k is an isomorphism
from u+k,b onto 3u.+k,b for # + k __> -1/2 (Theorem 1 of [3]), and q3 - t/-k is an
isomorphism from ,+k,b onto ..b (Lemma 2).

The second assertion follows from Lemmas 1 and 2 and the fact that t;+lk
U + k on .+ k,b. Thus, for # + k >= 1/2, du + krlk(tl) d]+lkrlk(rl) u+ k,b by

Theorem 1 of [3].
To prove the last assertion, we let 4(x) u,b. Consider

-l- l(u+ lNu)(rl) -r/-1 xU+ /2[Dx-U- i/2c(x)]xrixJu+ l(rix) dx.

By an integration by parts we obtain

__/-l(t + xNu)(q) _-1 x a.+ l(X) - J.(x)(x)dx
o

Since (x)=O for bx< and (x)Ju+l(qX)=O(x2u+2) as xO+,
the limit terms vanish. Therefore (u)(q)= -q-l(u+Nu)(q). By induction
on k, we have

(7) (.)(q) (- 1)kq-k(u+kNu+k-a Nu+ 1Nu)(q).

The right-hand side of (7) is (du.aqS)(r/). This completes the proof.
Equation (7) also implies the following corollary.
COROLLARY 1. For any positive integers k and p both greater than -#

tfZ lt,k dla,p

Since . and ,. are strict inductive limits of the N’u.b and ..b respectively,
we deduce the following theorem from Lemma 3 and the properties of continuous
linear operators on inductive limits [4, pp. 20-24].

THEOREM 1. For any real value of #, lli,k is an isomorphism from u onto
Whenever # >= -1/2, u,k coincides with du as an isomorphism from Nu onto u.

We now define the Hankel transformation of arbitrary order on , as the
adjoint to .,k on .. Let # be any real number. Let k be any positive integer
_>_ # 1/2. For f e , and b e . we define the Hankel transform ,f by

(8) (,f, .,ab) (f, 5.
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In view of Theorem 1, we can state the following theorem.
THEOREM 2. For any real value of #, u is an isomorphism from u onto .
When # >__ -1/2, the definition (8) coincides with that in [3]. Note that our

definition differs from that in [1] where the Hankel transformation on H’u is defined
by

(9) <’.f, (I)> <f,

for f e H, and (I)e H. (see [1, (13)]). This definition is possible there because
is an automorphism on H.. In the present work, we have seen that/, carries an
element of onto the space oy.. Thus (9) will not be valid for f e , whereas (8)
is; the right-hand side of (8) defines the Hankel transform .f of any f e . as a
functional on

6. Some operational formulas. We now establish certain transformation
formulas relating to the Bessel-type differential operator MuNu. Since u is a
subspace of Hu (see [3, Lemma 6]), we have the following immediate result from
[1, Lemma 5].

LEMMA 4. Let/ be any fixed real number and k a positive integer >= -la :.
Then, for every 4)

(10) MuNuAu,k la,k(-- X2(/))
We shall also need the following lemmas.
LEMMA 5. Under the hypothesis of Lemma 4,

(11) u+ 1,k(Nu) r//u,k((])

Proof. For 4) 6, it is clear from Lemmas 1 to 3 and Theorem 1 that both
sides of(11) have a sense and belong to u+ . Equality follows from the definition
of, and Corollary for

iu+ i,k(Nu(])) (-- 1)kq-ku+ +kNu+k Nu+ I(Nu(/))

-,+,(4)

LEMMA 6. Let # and k be as in Lemma 4. Then for every d? + 1,

(12) 4u,(Mu4)) Y//# + 1,k()"

Proof. By Lemmas 4 and 14 of [3], it follows that both sides of (12) are in
Using the relation

(13) Nu+k-1 Nu+ 1Nuq(x) Xu+k+ 1/2(X- 1D)kx-"-1/2(X)
we have

Au,k(Mub) (_ 1)kq- ju+dqx)xU++ 1/2X2(X- 1D)k+ 1X-g- 1- 1/2(/) dx

fo(14) +(-1)kr/-(2# + 2k + 2) x/Ju+drlx)

Xtt+k+ 1/2(X- iD),x-.- 1- 1/2 dx.
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We now show that r/A.+ 1,k(b) reduces to (14). Indeed,

/’/t* + 1,k((/)) (-- 1)/-+ Ju++ 1(IX)Xf+k+ + 1/2(X- 1D)kx-t,- 1- 1/2(/) dy.

From the formula [6, (51), p. 11]

Ju+,+ (rlX) -rl- xU+’Dx-U-t’Ju+t,(rlX)
and an integration by parts, we obtain

r//u+ 1,k((/) (_ 1)k+lrl-k+l/2 X2U+2k+2(x-1D)kx-U-l-1/24)

D[x-U-t’Ju+,(rlx)l dx

{(__l)k+ly/-k+l/2 X,+k+2jtt+k(I,IX)(x-1D)kx-I-1/2(D
,0

x-u-kju+k(rlx)D[x2U+ 2k+ 2(X- 1D),

X-#- 1- 1/2(/)’] axe.
The limit terms vanish because 4) 0 on b =< x < oo for some b,
and as x --+ 0 +, x"++ 2J,+(r/x) O(x) for/ + k __> -1/2. Since D[x2+ 2+(x- 1D)
x-u-l-1/2qS] x2"+2+3(x-lD)+ax-"-1-/24) + (2/ + 2k + 2)x2"+2k+1

(x-1D)x-"-1-1/24) we see that r/f,+ 1,(4)) equals the right-hand side of (14).
This completes the proof.

Lemma 5 and 6 can be combined to yield the following lemma.
LEMMA 7. Let # be any fixed real number and k a positive integer >__ -# :.

Then, for every q
(15) 4u,,(MuNudp) r/2u,().

As usual, we define the operators N,, M. and multiplication-by-x on
(or i,) as the respective adjoints of the operators N,, M, and multiplication-
by-x on . (or u). As continuous linear maps on . and aX,, we have obvious
analogues to Lemmas 8 to 10 and 21 to 23 of [3]. Since the proofs are identical we
shall omit them. But we shall use these lemmas with the tacit understanding that
the order # can be any real number. Thus, in the next theorem, the operation
M.N, is a continuous linear mapping of’; (or gt.) into itself. Similarly, the opera-
tion F -+ x2F is a continuous linear mapping from (or u) into u_ 2 (or @/t,- 2)
and therefore into itself. (See [3, Lemmas 8 and 20] .)

THEOREM 3. For any real # and f e

(16) M.N.4.f a.[ x2f]
and

(17) 4uM,Nuf rl
2 tf ’uf

Proof. In view of Theorem 2 and our comments in the previous paragraph,
all terms in (16) and (17) can be identified as functionals belonging to ;. Let p
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be any real number and k a positive integer => -# 1/2. Let q5 e M.. Then, by the
definitions of ’., multiplication-by-x and MuN. together with Lemma 4, we have

(d(-xZf), d.,k(b)) (-x2f, dp) (f,-xZd?5

(M.N.4’.f,
This proves (16). Analogously, we prove (17) by invoking Lemma 7. Thus

(AiM.N.f,//t,k((/))) (M.N.f, 4) (f,

(A.f,A.,kM.N.ch) (.f,--rl:A.,k(Ch))

This completes the proof.
Equation (17) can be applied to the differential equation

(18) P(M.N.)f 0

which was solved for f in [3] provided # >= -1/2. Here, the roots of the polynomial
P(-r/z) are assumed to be r/= 7. 0 with the multiplicities k.(n +_ 1, ..., +_ q,
7. 7-., k. k_.). If p is allowed to be any real number, a similar computation
as in [3] shows that a solution to (18) is f e N given by

(19) (f, 4) b. @
v=0

where is the image of b in under the ,k transformation. Equation (19)
reduces to the solution obtained in I3] whenever/ > -1/2.

Acknowledgment. The author wishes to thank one of the referees for his
suggested improvements in the proofs of Lemmas 3 and 5.
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NOTE ON CERTAIN TRIANGULAR ARRAYS*

L. CARLITZ-

1. H.W. Gould [1] has introduced two triangular arrays A,, G, in the follow-
ing way. The array A, may be defined by

(1.1)

He showed that

k=0 j=0 k=0

(1.2) A+k

2r + 2k + l/2t/21Ako k odd
2k+l

2r + 2k + lt2t(r+l)/21A
2k+l

k even.

Thus it remains to determine A. The array G, may be defined by

(1.3) -[(j+ 3)/21GjA2
j:i (2r + 1)!

r!2

or alternatively

(1.4) jj!2JAjGi { 0, ir,

j:i (2j 4- 1)! 2t(+ 3)/2], i= r.

The object of the present note is to show that

(1.5) A -2tt+ 1)/2]-2rC2r + 2[(r+3)/2](22r+2 1)--B2r+2
r+l’

where the B, are the Bernoulli numbers defined by

n
ex- 1 ,=o n!’

while C, is defined by either of (see [2, p. 28])

2 2 nxn Bn +
e +

C, C, 2"+ 1(1 2n+ 1).
,=0 n! n+l

As for G, we show that

(1.6) G, 2.1.3.5 (2r 1)
2r+1

2k+1
B2r_2k O<=k<=r,
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and in particular

(1.7)

2. Since

G[ 2.1.3.5... (2r + 1)B2r.

1

k=O r+l
[Br+l(n + 1) Br+

where

(2.1) B.(x)
s=0

B,._ xs

we may replace (1.1) by

2t(+ 3)/2] , + l(n -4- 1) B2j +
2 /-lj?(2.2)

2r + 2
[B2r+2(r/ -}- 1) B2r+2 2r-2j+lB2j

j=o 2j+l

Since (2.2) holds for n 0, 1, 2, ..., it is an identity in n. We substitute from (2.1)
in (2.2), divide by n + 1 and then put n -1. The result is

(2.3) 2tt’+3)/2]B2r+ AB2j.
j=O

Since

(2.3) reduces to

-1/2, r=O,
B2r+

0, r>0,

(2.4) ASB2j
j=O

We now make use of (1.2). It will be convenient to put

(2.5)

Thus (1.2) becomes

Since

it is clear that

A+k

A 2t(r+ 1)/2],[3.

2r + 2k + 1

2r

2r + 2k + 1

2r

2t/2]+{a+ 1)/2X, k odd,

2t( + 1)/21 + a/2kO, k even.

[r/2] + (k + 1)/2 [(r + k + 1)/2],

[(r + 1)/2] + k/2 [(r + k + 1)/2],

k odd,

k even,

(2.6)
2r + 2k + 1

2t" + a+ 1)/2]0.
2r



330 L. CARLITZ

Combining (2.4) and (2.6), we have

2r+l {1, r=O,
(2.7) .{-JB2j

=o 2j 0, r>0.

Now multiply both sides of (2.7) by x2r+ 1/(2r + 1)! and sum over r. We find that

V’ B
x2 ’ 0

X2 +
X.

Since =o B,(x"/n!) x/(e" 1), it follows that

x2 X Xo B2j= (2j)! e"-I +2
Therefore

xeX+l
2ex- 1

X2r+ 2(e 1)
(2.8) =o (2r+i)’. ex+

Comparing (2.8) with

(2.9) y,, C,2__"x"__ 2

,=o n! e + 1’
it follows at once that 3 2-2rC2r + 1. Thus

A 2+ 1)/21-2rC2. +(2.10)
and, by (2.6),

2r + 1)2[+ 1)/21_2r+2Jc2r_2j+ 1.(2.11) A5 2j
For example, (2.11) gives

(2.12) A (2r + 1)2t+ 1)/2].

3. Returning to (1.1), we evidently have

{ [B2r+2(n)- B2’+2]}2[{r+3)/2] nZr+l +
2r + 2

2r-2j+{?ljnn2J +
2j +I[B2j+I(n)-B2j+]}"1j=0

Equating coefficients of n2r-s+2, we get, for 0 < s < 2r + 1,

2[(r+3)/2] 2r + 21B
2r+2 s

Replacing s by 2s + 2, we have

(3.1)
2j + 12) 2[(r+ 3)/2]

=o2j+ 1 ’2s+ A= 2r+2

Now put

(3.2) A5

j=o 2j + .1 s
AB,.

2s +

2r+1

2j
)/2

O<s<r.
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Then (3.1) becomes

so that

j=s+l

2r- 2s

2j-2s- 1 A= 2

(3.3) _j 2 0 < s < r.
.i=o 2j+l

We may rewrite (3.3) in the form

(3.4) -r+s =2, s= 1 2 3
j=o 2j+l

It follows from (3.4) by an easy induction that ,a._j o, so that (3.2) becomes

(3.5) A
2r+l

2j
2t(r+ 1)/2],)-

in agreement with (2.6). We have therefore proved (1.2).

4. Turning now to G., it is clear from (1.4) and (2.11) that

-’ 2r+ 1)2t(r+l)/21-2+zJC2_2j+lGJi J!2J t O’
(4.1)

j=i 2j (2j q- 1)! 2[(r+3)/2]

It is convenient to put

(4.2) Ci=Gi
j!2J

(2j+ )!
Thus (4.1) becomes

(4.3) 2 -(2r- 2j+ 1)C2r_2j +
j=g 2j 1,

Now multiply by x2r+ 1/(2r + 1)! and sum over r. We get

xZi+ xZ+ 2 /2r+ 1

(i + . =.(r + .= j
2-(2v- 2J + 1)C2r_ 2j + 1(1

x2J x2r 2j+

j,’= (2 c’J"
r-j

y" 2-(2r-zJ+ l’Czr-zj+l(2r 2j + 1)’.

x2J x2r +

,’= (.(]
=o

2-2’+ 1)C2r+ 1(2r + 1)’.

Ex2r+ 1/(2r + 1)!3 so thatBy (2.9) we have 2/(e + 1) 1 q- 2=o 2-2r+ 1)C2r+
=o 2-2+ 1C2+ 1[xir+ 1/(2r + 1)!] (e 1)/(e + 1). Therefore

x2J x2i + e + 1
(4.4) (i

(2j). (2i + 1)I. e 1
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Since

x2i + e + 1

(2i+ 1)!ex- 1

Thus (4.4) yields

x2i + 2X2i X
+

(2i + 1)! (2i + 1)! ex- 1

x2i + 2x2i X

(2i + 1)!
+

(2i + 1)! x-’,Z2,o
X2i + 2

2 B._ 2i (n 2i)(2i + 1)!
+

(2i + 1)!,=

x2i + xn
+

(2i + 1)! n!

2i+ 1=

2
(4.5) (i

2i +

(4.6)

Finally, by (4.2),

Bn- 2i--2i + 1 2in=2i

X22j
BzJ- 2i

2i (2j)!

2J) B2j-

GI 2 3 5 (2j 1)(2j+l) Bzj_2i.
2i+1

In particular, we have

(4.7)

and

(4.8) GJo 2.1.3.5... (2j + 1)B2j.
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THE LOCATION OF SINGULARITIES OF TWO-DIMENSIONAL
HARMONIC FUNCTIONS. I: THEORY*

R. F. MILLAR"

Abstract. A procedure is developed for locating singularities oftwo-dimensional, exterior harmonic
functions . The method is capable ofextension to more general differential equations and, in principle
at least, to higher dimensions. It utilizes the fact that may be expanded in Fourier series about a

point Po external to the boundary C. On the circle of convergence lies at least one singularity of .
The envelope formed by the circles ofconvergence as Po describes a closed curve about C will bound the
singularities. The radius ofthe circle ofconvergence is obtained by determining the asymptotic behavior
of the Fourier coefficients. For the Dirichlet problem, this is made possible by expressing as the
potential of a double layer, of density/, on C. The asymptotic behavior of the coefficients is governed
by the singularities of/ in the plane of the complex arclength parameter s. Properties of/ are found by
using the Fredholm integral equation of the second kind which it satisfies; the explicit solution is not
required.

1. Introduction. In an increasing number of problems, one is interested in
determining the location and nature of the singularities of the solution to an
elliptic partial differential equation. By way of illustration, we need only look to
the fields of fluid dynamics (see, for example, the later chapters of ]) and geophy-
sics;in both, the Laplace equation is involved.

In geophysics, such problems (which fall into the class of so-called inverse
problems) are encountered with the interpretation of magnetic and gravitational
anomalies [2]-5]. In its simplest (two-dimensional) form, the following situation
arises: on a simple closed curve C, one is given the values of a function which is
known to be harmonic on one side (the "exterior") of C. It is required to continue
@ analytically across C and, thereby, to locate the singularities interior to C. These
are equivalent to the real sources of in the sense that their potential is equal to
on and outside C.

In a completely different context, we were recently led to examine a problem
[6] quite similar to that just described. This arose through an attempt to justify
an exterior electromagnetic field expansion and involved a search for the singu-
larities ofan exterior Green’s function for the two-dimensional Laplace equation. A
technique adequate for the purpose was developed. The intent of the present paper
is to refine this method sufficiently to determine the convex hull of the possible
singularities on and within C. In some cases, we may be able to deduce whether the
singularities are isolated or form a continuum but, in many applications, know-
ledge of the convex hull alone is sufficient.

It is well known that two-dimensional problems for Laplace’s equation may
be discussed most elegantly by introducing a complex potential. Furthermore,
the method of reflection (described, for example, in [1, Chap. 16, 4]) proviles a
powerful and direct means of analytic continuation, even for nonlinear elliptic
equations in two independent variables. Doubtless, the final results to be de-
scribed in the following work could be obtained as readily by these methods. But
while they are confined to two dimensions, the present notions are capable of
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extension to more general linear elliptic equations and to higher dimensions. It is
the generality of our procedure which is its asset. We wish to describe the method;
its principles are most readily demonstrated by application to Laplace’s equation
in two dimensions.

The basic idea is quite elementary, namely, that a function @, harmonic
outside a circle with center Po, may be expanded in a Fourier series in 0, the coeffi-
cients being inverse powers of p; here (p, 0) are polar coordinates with p 0
at Po. This series converges for all p greater than some minimum value p,,. On
p p,, lies at least one singularity of , for convergence of the series in p > Pm
implies analyticity of the solution in the same domain, and conversely. If Po is
permitted to describe a closed path Co about C (or, more precisely, about all the
singularities of @), the envelope interior to C of the family of circles p Pm
defines a closed convex curve bounding all singularities of @. By expanding Co to
infinity, this convex curve shrinks onto the convex hull of singularities of @.

Evidently the most serious difficulty in this program lies in the determination
of Pm. This is contingent upon knowledge of the asymptotic behavior of the
Fourier coefficients. But if @ is expressed as the potential of a double layer on C
ofdensity #, it turns out that the asymptotic form ofthe Fourier coefficients depends
in part on the singularities of # #(s) in the complex plane of arclength s. The
density t satisfies a Fredholm integral equation of the second kind, from which
necessary analytic properties of # may be deduced without the explicit inversion
of the equation.

Clearly, the proposed envelope method cannot in general locate all singulari-
ties with precision. This uncertainty is the price that we must pay for not solving
the integral equation.

An alternative approach is to expand @ in a Fourier series with increasing
powers of p. This will converge for all p less than some maximum value, again
denoted by Pm; it will be seen later that the pole Po must now lie outside C. Then
the interior envelope of the family of circles p p,,, obtained when Po describes
a closed path Co about C, will bound the singularities of @. It is clear that the
closer Co is to C itself, the more deeply can we enter the domain containing the
singularities.

For a closed curve C of finite length, these two procedures are largely equi-
valent. However, if C is permitted to be an open contour, infinite in length, which
divides the plane into two semi-infinite regions, then the first procedure cannot be
effected and the second yields only that part of the convex hull of singularities
which faces C.

In many respects, the present theory resembles the integral operator methods
developed by S. Bergman [8] and extended by R. P. Gilbert (see, for example, [7]).
In connection with two-dimensional problems, Bergman and Gilbert apply a
suitable integral operator to an analytic function of a single complex variable to
generate a solution of the differential equation; in our work, the analogue of this
analytic function is #.

This term has been used previously by R. P. Gilbert [7, p. 23] in a rather different sense. In his
work, the envelope determines where the integral representation of a function of several complex
variables may have pinch-type singularities, while here it bounds the singularity domain of @.
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In this paper, attention is confined to Laplace’s equation in two dimensions;
generalizations will be considered later. Only the formal aspects of the theory are
presented here; its application to two examples is deferred until Part II.

The remainder of Part is organized as follows. In 2, the problem is formu-
lated and the Fourier coefficients of are expressed as line integrals on C. The
analytic continuation of (s) is described in 3, and, in as much generality as
possible, the asymptotic determination of the Fourier coefficients is discussed.
The convex hull of singularities is determined in 4, and a few remarks of a general
nature follow in 5.

2. Formulation.
2.1. Notational preliminaries. We consider real two-dimensional potentials

in the w (-- u + iv)-plane. Let be harmonic ou[side a simple closed curve C of
length l; a point on C is specified in terms ofarclength s by w W(s) u(s) + iv(s),
0 _<_ s =< l, with W(0)= W(/), W’(s) :/: O. Suppose is given on C, and denote by D
the set of singularities of ; see Fig. 1. Then D consists of points inside, and pos-
sibly on, C. By continuing analytically across C, we intend to find H(D), the
convex hull of D. The origin w 0 may be chosen arbitrarily here it is assumed to
lie within C and the closed curve Co containing C is taken to be a circle of radius
Ro centered at w 0.

FIc. 1. Geometric configuration and symbolsfor exterior expansion of t

2.2. Exterior expansion. We shall expand as a series in 0 and powers of
l/p, p 0 being the point Po on Co. Then

(2.1) (p, O) + (a, e-i,o + b, ei")p -",
n=l

wherein is a real constant.
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Next, let CR be a circle of radius R, center P0, which contains C. Because
b, ft,, we need only consider

(2.2) a e(R, O) dO.

To determine properties of a,, we must relate (R, 0) to the prescribed values
on C. This is accomplished by writing (R, 0) o as the potential of a double
layer on C:

(2.3)

Here r denotes distance between points on C and CR, differentiation is in the
direction of the unit normal fi out of C, and # is the double layer density for future
reference, we note that s is assumed to increase in the clockwise direction.

We insert (2.3) into (2.2) and invert orders of integration. The 0-integration
may be performed with the aid of the expansion

(2.4) log r log R cos m(O 0’)
m=lm 1"(]

wherein (p’, 0’) are the polar coordinates of P on C with respect to the pole P0. If
we define

(2.5) p p’ ei’,

it is an easy calculation to show that

ft. Vp" inp"- l(dp/ds)
and

(2.6) a, - #(s)p"- ds n =1 2 3

Suppose that the q(s) (q(s) real) are the prescribed values of on C. Upon

1 cr)(2.7) 7#(z) #(s)
r -n ds p(z) + ,

the integral is a Cauchy principal value at s z. With an appropriate choice of
o and sufficiently smooth q(z) and C, this equation will possess a solution which
is unique to within an unimportant additive constant; see, for example, I9, p.
214 ff.].

It is not necessary to solve (2.7). Of importance is its form which permits us
to continue # into the plane of complex s and thereby assists us to estimate the
magnitude of a, as n .

To put the integral into a more familiar form, we write

(2.8)
P =- W(s) Ro ei

e(S),

letting (R, 0) in (2.3) approach a point specified by arclength z on C, we see that
satisfies
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with W(s) (-- u(s) + iv(s)) specifying P on C and (s) defined to within an arbitrary
additive integral multiple of 2ri. Consequently (2.6) becomes

(2.9) a,, -i #(s)’(s) e"(S) ds, n 1,2, 3, ...,

a form which suggests estimation of a, for large n by well-established asymptotic
methods. Thus saddle points of and singularities of p and in the complex
s-plane play a decisive role.

Before continuing with the evaluation of a,, we shall outline the procedure
for expanding (I) in increasing powers of p.

2.3. Interior expansion. It is a simple matter to derive the corresponding
interior expansion. For convenience, we use the same notation to specify analogues
of symbols occurring in 2.2.

We expand as

(2.10) d(p, O) o + (A, e -’’ + B,, ei")p".
n=l

Here o q(0, 0) and, because is real, we need consider only B,. An analysis
similar to the above gives

(2.11) B,, --}i #(s)’(s) e -’(s) ds, n 1,2, 3,

however, to obtain (2.11), it is necessary to assume that Po lies outside C in order
that p’> R.

3. Asymptotic behavior of Fourier coefficients. We now return to the pro-
blem of determining the form of a, for large n, by considering the integral (2.9).
A prerequisite is knowledge of properties of # and (. The chief task of this section
is to examine/, which is unknown; this we shall do with the aid of (2.7). But first
we shall briefly consider the prescribed function (.

3.1. General properties of . The function " is defined by (2.8). We note that
it has logarithmic branch points at those s for which W(s) Roei. Nevertheless,
the integrand is single-valued;it will have zeros at such points. We shall find that
these points can be of importance see 3 of Part II.

In the subsequent work, we assume that C is a sufficiently smooth curve and
that u(s), v(s) and q)(s) are real analytic functions of s with fundamental period 1.
In order that continuation be possible, we must assume further that at least part
of the segment 0 < s _<_ lies within the domain of analyticity to avoid complica-
tions, we take the entire real axis of s to be in this domain. Then, because s is the
arclength parameter,

(3.1) u’(s)2 + v’(s)2 1

at every point of the s-plane that can be reached by analytic continuation from a
point on the real axis. Consequently, neither W’(s) (=_ u’(s) + iv’(s)) nor W’(s) (=_ u’(s)

iv’(s)) can vanish at an interior point of the domain of analyticity of W. Thus
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possesses no saddle points; any points at which "(s) vanishes must be among the
singularities of W.

On the other hand, were a parameter other than arclength employed, saddle
points could well arise. This was the case in [6], and the examples in Part II are of
this type.

To summarize, we observe that " will be singular where W is singular, has
logarithmic branch points for those s which satisfy W(s)= Roei and has no
saddle points.

3.2. General properties of #. While the detailed structure of tt depends on the
specific form of C, a qualitative idea of its general properties can be gained from
(2.7). Here we use the right-hand side of (2.7) to continue #(r) away from the real
axis.

[The method to be described is similar to that which has been developed in
quantum field theory and partial differential equations (see, for example [7]) to
locate singularities of integrals;however, we find it convenient to fix the path of
integration although the end result will not differ from that found by deforming
the contour when possible to avoid singularities of the integrand.l

The most important question that then arises is whether the domain into which
we continue # is sufficiently large for our purposes; that is, does it extend to the
relevant singularities of It and ? We are able to show that it does.

Let us examine the kernel in (2.7):

(3.2) r On
Or [u(s)- u(r,)]v’(s)- Iv(s)-

[u(s)- u()] + Iv(s)- v()3

K(s, r), say.

Here the denominator is equal to r2, the square of the distance between two
points on C.

By direct calculation, we see that (3.2) is analytic in : in a neighborhood of the
real z-axis for every s in 0 < s < l, and is there continuous in both r and s. We
conclude that the integral in (2.7) is analytic near the real r-axis. Consequently the
right-hand side of (2.7) provides an analytic continuation of r#(r) into a neighbor-
hood of the real r-axis.

Remark. K(s, r) is not typical of kernels that arise from more general equa-
tions, or in higher dimensions. K(s, r) is regular for real z, while other kernels may
be singular on the contour, or surface, of integration. But a singular kernel can
still yield an integral which defines an analytic function, and this suffices to make
the continuation possible.

What, then, is the extent of the domain A into which we can continue
Clearly this is determined by the singularities ofq and Wand the form ofthe kernel.
In general, q is unrestricted, other than to be analytic and periodic. We conclude
that the singularities of # arise essentially from two different sources (i) singulari-
ties that are prescribed arbitrarily through o(r) (and which therefore are not
related to the analytic form of C), and (ii) singularities arising through the integral
in (2.7). We consider all singularities of type (i) to be known, and direct our further
attention to (ii).
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Generally speaking, the existence of singularities in the integral (2.7) may be
attributed to two sources’they may arise because r coincides with a singularity
of W, or they may be related to the vanishing of the denominator in (3.2). To be
more precise, we further classify type (ii) singularities into groups (iia) and (iib).
Class (iia) singularities are those that arise directly from, and occur at, the singular
points of W; these are easily located. Singularities of class (iib) arise through the
vanishing of the denominator in (3.2), coupled with singularities of q) and W; they
are discussed below.

3.2.1. The root loci r2= 0. We have remarked that type (iib) singularities
are associated with vanishing of the denominator in (3.2). The precise connection
will be made in 3.2.2, but it is clear that we must first examine the equation
r2 0; furthermore, the discussion of the preceding section shows that we may
disregard the trivial solution r s.

We shall assume that the numerator and denominator vanish simultaneously
only in a set of isolated points; if the case were otherwise, some of the subsequent
remarks would need modification. In fact, it is not difficult to argue that r s
modulo (this condition will be understood where necessary) is, in general, the only
common zero interior to A ofboth numerator and denominator ofK(s, r), although
isolated common roots might occur.

Therefore we shall only examine the root locus (or loci) r r(s) traced by r
as s describes the interval 0 =< s =< subject to the conditions r2 0, r - s. We
see that the root loci are solutions of one or other of the equations

(3.3) u(s)- iv(s)= u(r)- iv(r),

(3.4) u(s) + iv(s) u(r) + iv(T),

where 0 =< s =< l, 0 =< Re r =< l, : s; here we have confined attention to the perio-
dic strip 0 <_ Re r <_ 1.

In the most elementary cases (3.3) and (3.4) have no solutions in the finite
r-plane. For .example, if C is a circle of radius c and we choose w 0 to be its
center, then

u(s) +_ iv(s)= ce +-i/

and the above equations have no solution (other than the trivial solution r s)
in the strip. In cases such as these, the continuation of #(r) can be effected com-
pletely by means of (2.7); the only singularities in the finite plane will be of types
(i) and (iia).

Next we assume that (3.3) and (3.4) have nontrivial solutions, and we now
mention some useful properties of such loci; for simplicity, we confine attention
chiefly to (3.3).

We observe that the root loci are analytic curves which can terminate only at
singularities or at infinity; this is a consequence of the nonvanishing of u’ _+ iv’ at
points of analyticity (see, for example, [10, p. 245]).

We have already indicated that a sufficiently small neighborhood of the real
axis of r is free from root loci; in particular, no locus intersects the real axis.
Moreover, if (3.3) has more than one solution, they cannot intersect at a point
of analyticity because u’-iv’ 0 and r(s) is a single-valued function of s.
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However, different loci may join smoothly together; this occurred in [6]. The
possibility that a solution of (3.3) intersects one of (3.4) does not seem to be
excluded; that this has no effect on the analyticity of t will be seen below.

3.2.2. The domain A. We next describe a procedure for finding the part of
the domain of analyticity A in 0 =< Re z __< I. If 0 __< s =< and z is near the real
axis, we know that the integral in (2.7) is analytic in z; but as z approaches a root
locus, a pole of the integrand tends to the real axis of s from one side or the other.
Let us denote this domain of analyticity by A1. Then (2.7) is valid throughout
A1, which is symmetrical with respect to the real axis, and is bounded in 0 __< Re
=< /by root loci.

Since A1 contains the segment [0, 1] of the real axis, we can continue/t(r) out
of A1 into a larger domain A2 When r crosses cA1, a pole crosses the contour of
integration we denote this pole (a solution of (3.3) or (3.4)) by s(z) (s(r) A 1) it is
easy to show that the residue contribution is -4-n#(s(r)), the choice of sign being
dependent on whether the pole crosses the real axis from above or below. Then
from (2.7) we have

lfl 1 1
#(z) _-4- #(s()) + #(s)K(s, "c) ds --q)(’c) + -,

(3.5)

s(’OA1, "A2 A1.

Together, (2.7) and (3.5) determine #(z) throughout A2. By again invoking
the implicit function theorem [10, p. 245] we see that s() is an analytic function of
and, since s(z) A1, the right-hand side of (3.5) provides an analytic continuation
of #() into A2 A x.

Because #(s(r)) is determined by (2.7), with replaced therein by s(r), (3.5)
may be rewritten as

() fl #(s)[K(s,’c) +_ K(s,s(’c))] ds-l + (b +_ {go(s(,)) + (I)}],
(3.6)

s()A1, "A2 A1.

For the moment, let us assume that there are no solutions to (3.3) and (3.4),
other than those bounding A1. Then describes OA2 when s(z) describes all, or
part, of c3A1. We can continue #() out of A2 into a larger domain A3 in doing so,
a pole of K(s, s(’c)) crosses the real axis of s, and the appropriate residue must be
considered. Then A3 contains all points of analyticity of #(z) in the entire strip
0<Rez</.

On the other hand, if (3.3) and (3.4) possess solutions other than those bound-
ing A1, we must also consider residues due to poles of K(s, "c) and K(s, s(’O) which
cross the real axis of s when z or s() penetrates one of these loci.

In general, we see that # can be continued analytically to any finite point
of analyticity in the strip 0 __< Re __< l, in a finite number of steps.

If a solution of (3.3) intersects with one of (3.4) when s So and
continuation is still possible. As approaches such an intersection, two first order
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poles tend to coalesce on the integration contour at So. If they approach from the
same side, the contour may be deformed away from the real axis (permitting z
to pass through Zo)and then deformed back, the two poles being captured in the
process kt(z) is thus continued past Zo without incident. If the poles approach the
integration contour from opposite sides, and tend to form a "pinch," a similar
procedure continues #(z) past Zo; here, however, we must use the fact that the
numerator in (2. 7) also vanishes for s So and z Zo.

We see that (2.7), (3.6), and possibly additional equations of similar form,
determine/(z) throughout the domain A in which it is analytic. If u, v and q are
all entire functions, then # is entire.

For the case in which there are no solutions to (3.3) and (3.4) other than those
bounding A1, these results may be summarized as follows:let S denote the set of
singular points of u(’c), v(z) and qg(z). Then in general the singularities of kt(z) are
members of the set T {zl’c S or s(’c) S} augmented, possibly, by the point at
infinity. It is apparent that f S if z S, so the singular points of #(z) are arranged
symmetrically about the real axis. We see that all possible singularities of # in the
finite plane of its argument can be located directly by reference to the given data
of the problem.

3.3. Bounds for the Fourier coefficients. We now return to the discussion of
a, (and B,). But first we emphasize that the following treatment is largely qualitative
and a number of assertions would require verification in specific cases.

We deform the integration contour in the s-plane and require that the expo-
nential be dominant on the deformed contour or contours. The growth of/ can
be estimated from (2.7) or (3.6) (or from a suitable generalization thereof); the
form of (3.2) suggests that the integral is bounded at infinity.

Because of its periodicity, the values of the integrand in (2.9) (or (2.11)) for
s ia and s + ia (-oe < a < oe) are equal. Thus the integration contour
0 __< s =< may be translated in the direction ofthe imaginary axis without changing
the value of the integral, provided it meets no singularity of the integrand. When a
singularity s So is captured, a suitable loop deformation of the contour must
be made; the contribution of such to a, is a term which, for n oe, is
O(expn[(So) + ) and to B, the singularity contributes a term which is
O(exp {-n[(So)- el}) for every e > 0 but for no e < 0. We assume that the
deformations are such that a, and B, are dominated by one or more of these terms.

We see that the optimal deformations are in directions which minimize the
O-terms, and one (or more) singularities provide the dominant contribution. In
the case of a,, this determines the distance from P0 to the most distant singularity.
Continuation of the deformation process yields further contributions from sin-
gularities of #(s) which correspond to singularities of closer to Po. A similar
interpretation can be placed on the singularities of #(s) relevant to B,. For. sim-
plicity, we restrict attention to the dominant term. To be specific, let S denote the
set of singular points captured when the contour in (2.9) is deformed, and let Sn
be the corresponding set for (2.11). Then the dominant singularity (or singularities)
for a, is that which maximizes Re (So), So Sa and the dominant singularity for
B is that which minimizes Re ’(So), So SB.

Suppose then that s so denotes the dominant singularity or singularities



for a,, while s sn is dominant for B,; note that s‘‘ and sn may depend on Ro
and 0o. For simplicity, we assume that there is a finite number of such points in
each case for any particular values of Ro and 0o in (2.8). As we shall see in 4,
this implies that only a finite number of singularities lie on the circle ofconvergence
P Pro. Then we see that

(3.7) a, O(l[W(s‘‘)- Roe’] eel"),

(3.8) B,, O(]e/[W(s,) Ro e’J] ")

as n ---, oo for every e > 0 and for no e < 0. The constants implied are uniformly
bounded in n.

4. Convex hull of singularities. Each of the relations (3.7) and (3.8) suffices to
determine H(D); these bounds are quite crude and sharper estimates would be
required if more detailed information were desired. The procedure to find H(D)
is formally the same, whether we use the interior expansion or the exterior represen-
tation; we consider only the latter.

From (2.1) and (3.7), we see that the minimal radius is determined by

(4.1) pZm W(S‘‘) Ro e/[ 2,

which on writing W(s‘‘)= a ei (o, fl real) becomes

(4.2) p2,, Ro2 2aRo cos (0o fl) + 0
2

There is at least one singularity of q3 on the circle p p,,. To find H(D), we
set Pm Ro + 6,, in (4.2) and solve for 6,, by choosing the root which remains
finite and becomes independent of Ro as Ro --, oo. On letting Ro oo (so the
circular arcs which envelop H(D) become straight-line segments), we find that
CSm (00):

(4.3) (0o) - cos (0o -/3).

The family of tangents to OH(D) satisfies

(4.4) u cos 0o + v sin 0o -6(0o).

On eliminating 0o between (4.4) and its derivative with respect to 0o, we obtain
the envelope equation.

If there is but one s‘‘ and it does not change as 0o varies, we find that H(D)
is the isolated point in the w-plane determined by

(4.5) w o eia =- u(s‘‘) + iv(s,,).

In this case, q3 possesses just one singularity. If two or more points s‘‘ contribute
over disjoint ranges of the interval 0 =< 0o < 2re, then cH(D) is a convex polygon.
The relevant values W(s‘‘) being 0, ee", n 1, 2, 3, ..., N, the vertices of OH(D)
are the points w w,"

(4.6) w, 0, eits", n 1,2, 3, ..., N.
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It may be conjectured that to each isolated singular point of the set
13 o_<0o__<2 Sa (see 3.3) there corresponds an isolated singularity of which may
or may not be a boundary point of H(D). More generally, we see that any part of
OH(D) which does not consist ofstraight-line segments must arise from a continuum
of singularities (that is, a natural boundary) of # or W.

5. Additional remarks. In the preceding sections, we have developed a method
for locating singularities of two-dimensional exterior harmonic functions. The
procedure may be regarded as a special case of the integral operator methods of
Bergman [8] and Gilbert [7]. We have avoided the use of a complex potential or
the reflection method which, though more elegant, are restricted to two-dimen-
sional applications. Our method can be extended to more general elliptic equa-
tions and to higher dimensions; it has been illustrated here in its most simple
setting.

While we have considered only the Dirichlet boundary condition, a Neumann
problem is equally amenable to analysis; here it would be necessary to represent
the harmonic function as the potential of a simple layer on C.

For each boundary condition, we obtain a Fredholm integral equation of the
second kind for the unknown density; this is employed to locate singularities of
the density. An alternative approach could be based on the integral equations of
the second kind which are satisfied on C by c3,/On (Dirichlet problem) and
(Neumann problem) these may be obtained with the aid of Green’s theorem.

Finally, we note that we could examine the corresponding interior problem
for the harmonic function W, such that W *o is generated by the double-layer
density #. Here the effect of not solving (2.7) is to restrict Po to the interior of C;
consequently the singularities of W, which lie outside C, are located with less
precision that those of .

In the paper that follows, we show that the method developed here is of more
than purely theoretical interest, by applying it to two examples.
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THE LOCATION OF SINGULARITIES OF TWO-DIMENSIONAL
HARMONIC FUNCTIONS. II: APPLICATIONS*

R. F. MILLAR"

Abstract. The procedure developed in Part is applied to two examples, the intention in each case
being to illustrate some feature of the method. For the first example, a previously considered problem is
reexamined" here the boundary C in the w-plane is

w exp i(x + ibcos x), 0 < x <
and the two singularities are located precisely. For the second example, C is taken to be an ellipse"
the singularities at the foci are found.

1. Introduction. In Part I of the present work we developed a method for
locating the singularities of a two-dimensional harmonic function @ which
satisfies a given Dirichlet-type condition on a suitable boundary C. Only the
formal aspects ofthe theory were discussed. In this part we shall apply these notions
to locate the singularities in two examples. Each is chosen not necessarily with the
intention of obtaining a new result, but rather to illustrate some particular feature
of the method.

In 2, we reexamine a previously considered problem [1]. This involves
locating the singularities when the boundary C in the w-plane is determined b)

w exp itc(x + ib cos x)}, 0 __< x =< 2n)c.

It illustrates how use of a parameter other than arclength on C may introduce
saddle points into the discussion. But there is another important reason for
considering this example. While previously we were able only to bound the
singularities within a certain circle, our envelope method shows that there are two
point singularities and locates them precisely.

In 3, for a final example we take C to be an ellipse. Here W(s) has singularities
in the finite plane of its argument. It is convenient to parametrize C by the eccentric
angle t, rather than s; some of the singularities of W become saddle points in the
t-plane. We find singularities of at the two foci of C.

Reference to equations and sections in Part will be prefixed by the letter "I."

2. An example arising from diffraction theory. An earlier paper 1] dealt with
the scattering of a downcoming scalar plane wave by a periodic surface with the
profile

(2.1) y bcos x, - < x < o.

In the course of this investigation, we were led to determine a condition for which
the periodic harmonic Green’s function (with pole at infinity) for the surface (2.1)
had no singularities (except at infinity) in y > -b. We defined z x + iy and
mapped the strip 0 __< x __< a (-= 2n/) conformally onto the w (-- u + iv)-plane
by the transformation

(2.2) w e-inz"
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then w traced out the curve C containing w 0 as x ranged over the interval
[0, a] with y given by (2.1). Our transformed problem now called for a condition
under which the singularities of q (q being harmonic outside C and equal to
-1/2 log (u2 + v2) on C) lay within the circle Iwl e -b. If

(2.3) 2 exp x(b cosh tcXo Xo),

with

(2.4) sinh xXo 1/(xb),

we found that a necessary and sufficient condition was

(2.5) 2 < e-b"

this implied that 0 __< xb < 0.448.
By using the method developed in Part I, we are able to improve on this result.

It is not necessary to restrict 2 by (2.5) so our conclusion is valid for all tcb. We shall
find that there are two isolated singularities within C; we locate them precisely
at the points u 2, v 0, and u v 0.

In [1], we found it more convenient to parametrize the curve C by x than by
arclength s; consequently, instead of (I, 2.7) we found

(2.6)

v(x) + v(t)
[u(t) u(x)] v’(t) [v(t) v(x)] u’(t)

[V(t)- U(x)] 2 + Ev(t)- V(x)] 2 dt

xbcos xx + .
We took Ro 0 in [1] the generalization to Ro > 0 gives, in place of (I, 2.9),

(2.7) a,, ix v(x)’(x) e"(x) dx.

In these equations, v(x) p(s), where p(s) is the double layer density at a point on
C specified by arclength s,

(2.8)

while

(2.9)

s [1 + (tcb sin/0)2] 1/2

U(x) =- ebcx cos tcx,

V(x) =- -ebx sin

and, to within an arbitrary integral multiple of 2ci,

(2.10) (x) log [exp x(b cos xx ix) Ro ei].

Because of the formal similarity between (2.6) and (I, 2.7) (see also (I, 3.2)),
the arguments of I, 3.2 may be repeated to determine properties of v; in particular,
we find that at most one root locus is crossed in continuing v(x) from an x-value
on the real axis to any other x (see [1, Fig. 6]).
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However, there is one difference introduced by our change of parameter. Let
t(x) denote the position of the pole, the analogue of s(:) in I, 3.2.2. Then

(2.11) dt(x)= U’(x) +__ iV’(x)
dx U’(t(x)) +__ iV’(t(x))’

where the choice of sign is determined by the relevant solution of

[u(t)- U(x)] + Iv(t)- V(x)] 0, x;

for purposes of discussion, we choose the upper sign. We recall that s(:) was an
analytic function of r when s()e A, the domain containing the real axis within
which the integral in (I, 2.7) was analytic in z. On the other hand, t(x) is not neces-
sarily analytic throughout the corresponding domain A], for (2.11) may be un-
bounded therein. To be precise, if U’(xo) + iV’(xo) 0 then, in general, t(x) is
not an analytic function of x near t(x)= Xo. Such points x Xo exist in the
present problem; they are saddle points of (x) and are among the points at which
(2.8) is singular. If we choose the lower sign in (2.11), we see that t(x) is not analytic
near t(x) 0; s is also singular for x o.

Thus the essential difference brought about by the change of parameter is
the introduction of saddle points x Xo into the exponent of the integral for a,
and a possible singularity in v when its argument x is such that t(x) Xo or t(x)

fro; the saddle points correspond to singularities in the arclength representation
(2.8) of C. Because U(x), V(x) and xb cos xx are entire functions of x, we conclude
that all singularities of v(x), for Im x finite, will be found among the x for which
t(x) Xo or t(x) fro; we shall soon see that there are no such x.

We assume that Ro >> 1 so that the argument of the logarithm in (2.10) does
not vanish in a sufficiently wide strip containing the real x-axis. The saddle points
of (x) are independent of Ro (and coincident with those for Ro 0); in the strip
0 Rex =< a, there are saddle points at x -iXo, 1/2a + iXo and a- iXo,
with Xo (> 0) determined by (2.4).

It may be verified that there is no x that satisfies the equation

[U(t(x))- V(x)] 2 -- [V(t(x))- V(x)]2-- 0

when t(x) + iXo (mod a) or t(x) 1/2a + iXo (mod a) other than the trivial
solution x t(x). In the light of the above remarks, we conclude that v(x) is an
entire function.

To determine which saddle points are relevant, we examine the curves Im
(= 2)= const, through each and the level curves Re Z, ( a)= const. These
depend on 0o which, for reasons of symmetry, we are able to confine to the interval
[0, n]. Because Ro >> l, we find that the steepest paths through x iXo and
in a sufficiently wide strip containing the real axis are

(2.12)

here 2 is defined by (2.3),

(2.13)

sin (x6 + 0o) 2 sin 0o;

cos tcxx cosh KX2 + X2,

(2.14) 6 =- b sin tcxl sinh//X2 -- X1,
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with x xl + ix2. The steepest paths through x a iXo are merely the trans-
lation of (2.12) through a distance a, while those through x 1/2a + iXo are

(2.15) e sin (6 + 0o) (1/2) sin 0o.
The level curves satisfy

(2.16) e2’ + R 2Roe cos (t6 + 0o) const.

or, for Ro >> 1,

(2.17) e cos (t6 + 0o)= const.

It is not difficult to show that the logarithmic branch points of are deter-
mined by

(2.18) e Ro, + 0o 2mzr, m 0, -+-1, ___2,"’.

These play no essential role in the subsequent analysis.
By comparing 1(- iXo) and l(1/2a + iXo), and by examining the form of the

steepest paths and level curves as 0o varies, we arrive at the following conclusions.
(i) The saddle point at x 1/2a + iXo is not relevant.

(ii) The saddle points at x iXo and x -a- iXo are not relevant if
Ro cos 0o > 1/22, the geometrical significance of which will become apparent later.
In these circumstances, it is possible to deform the contour in (2.7) into one of
finite length on which

(2.19) l(x) =< log (Ro + )

for every e > 0; for e 0 the contour is infinite in length, and no such contour
exists for any e < 0. See Fig. la.

(iii) If Ro cos 0o < 1/22, it is not possible to deform the contour in (2.7) into
one on which (2.19) obtains. In this case the saddle points at x iXo and
x a iXo are relevant, and

(2.20) (-iXo)> log Ro.

As is apparent from Fig. lb, the optimal deformation is into a contour linking
the two saddle points and lying wholly within the domain in which

(2.21) l(x) < (- iXo).

Consequently we obtain the following bounds for a,"

(2.22) a, O[(Ro + e)"l, Ro cos 0o > 1/22,

for every , > 0, and

(2.23) a, O(exp n[(- iXo) + ]), Ro cos 0o < 1/22.

By using (2.10), we may rewrite (2.23) as

(2.24) a, O(]2- Ro ei]" e"), e>0, Rocos0o <1/22,

which is the analogue of (I, 3.7).
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2

FIG. la. Qualitativeform of level curves relevant to evaluation of (2.7) when Ro cos 0o > 1/22"
log(Ro + 5) (5 > 0)" ----1 log Ro" 1 log(Ro + 5) (e < 0). In the shaded domain,
->_ log(Ro + 5)(5 > 0).

We may now repeat the arguments of I, 4 and find that @ has two isolated
singularities. Equation (2.22) determines a singularity at the origin

(2.25) u v 0,

while (2.24) corresponds to a singularity at

(2.26) u 2, v 0;

in the z-plane, (2.26) determines an infinity of isolated singularities at

x=na, n 0, ___1, _+2,...,
(2.27)

y bcosh tcXo Xo,

while (2.25) corresponds to y oe. The points (2.27) lie in y < b if tcb < 0.448.
The significance of the conditions Ro cos 0o 1/22 in (ii) and (iii) above is

now apparent. When Ro cos 0o > -}2, @ is harmonic outside the circle centered on
(Ro, 0o) which passes through u v 0; when Ro cos 0o < 1/22, is harmonic
outside the circle centered on (Ro, 0o) which passes through u 2, v 0. In each
case, the radius of the circle is minimal.

The result expressed by (2.25) and (2.26) is an improvement upon that given
earlier. In [1], it was merely established that all singularities of q lay in the disc
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//

FG. lb. Qualitative jbrm f relevant configuration when R cos 0o < 2"
initial arcs of paths of steepest descent. In the shaded domain, (- iXo).

a-iXo

(-iXo)"

Iwl < e -Kb provided that 2 < e-b; here we have removed this restriction on 2
and have shown that there are two singularities which we have located explicitly.

We have already mentioned that the transformation (2.8) is singular when x
coincides with a saddle point; we thus see that half of these singularities in the
arclength representation of C give rise to a singularity in at the point determined
by (I, 4.5).

3. The elliptical boundary. As a second example, we take C to be an ellipse
with semiaxes a and b (a > b). The origin is at its center, and the loci lie on the
u-axis. In this case, as in 2, W(s) possesses singularities in the finite plane; we
shall see that these correspond to singularities of at the loci of C.

A point on the ellipse is specified by

(3.1) u(s) a cos t, v(s) b sin t,

Here t(s), with

(3.2)

O<_t<_2n.

S a (1 e2 cos2 0) 1/2 dO,

e denoting the eccentricity. Then ds/dt, vanishes when cos -+_ 1/e (e < 1) and W
is singular when its argument s takes the corresponding values.
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Here it is convenient to use t, rather than s, as the complex parameter. Then
(s) --. (t), and there exists the possibility that possesses saddle points. If W(s)
---, ff’(t), it is apparent from (3.1) that 1 is an entire function.

Under the transformation (3.2), let/(s) v(t). Because v(t) satisfies an equa-
tion similar to (2.6), we can continue v away from the real axis in the manner
described in I, 3.2. Hence we examine the root loci, which here are solutions
(other than x (mod 2re)) of

(3.3) a cos +_ ib sin a cos x +_ ib sin x, 0 Re =< 2re.

It is easy to see that all remaining roots are of the form

and of these

x _+ 2icosh-l(1/e) + 2nrc, n 0, _+1, +2,...,

(3.4) x __+ 2i cosh-1 (l/e) + 2rc

lie in 0 < Re x < 2re.
Let us assume that the prescribed boundary values qS(t) are the values of an

entire function qS. Because if" is entire, and because dx/dt 4= 0 or o in (3.4), we
may apply the results summarized near the end of I, 3.2.2 to conclude that v is
an entire function. (The analysis of I, 3.2 assumed that arclength was the para-
meter, but is valid here also.)

The coefficient a, is given by

v’(t) e"") dt(3.5) a,
2 n

and

(3.6)

(3.7)

(t) log (a cos + ib sin Ro ei).

The saddle points of (and of if’) are the roots t of tan ib/a, so

tm cosh-(1/e) + rnrt rn O, +_ 1, +_2,

The corresponding points in the s-plane form part of the set of singularities of W
which we mentioned subsequently to (3.2); this illustrates again the correspon-
dence between certain singularities in the s-plane and saddle points in the plane
of a different parameter.

There are three saddle points and two logarithmic branch points of in
0 __< Re __< 2re. Let us assume that 0 < 0o < re. If Ro >> 1, the branch points are
located in the t-plane approximately at 0o-/log [2Ro/(a + b)] and 2re- 0o
+/log [2Ro/(a b)]. It is now not difficult to determine qualitatively the form
of the steepest paths; they are illustrated in Fig. 2. Because Re (t)= -oe at
the branch points, we see that the paths of steepest descent pass through them;
the arrows indicate the directions in which Re (t) decreases.

Evidently the integration contour may be deformed to coincide with paths of
steepest descent. Furthermore,

Re (t) 1/2 log [(ae Ro cos 00)2 - Ro2 sin2 0o]
(3.8)

Re (t)
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and

(3.9) Re (tl) 1/2 log [(ae + Ro cos 00)2 + Rg sin2 0o].

Consequently, the dominant saddle point is at t’ if 0 < 0o < 1/2, while
and t dominate when 1/2 < 0o < .

|Oo-i lOgob

/
/

FIG. 2. Paths of steepest descent (solid curves) and steepest ascent (broken curves) through saddle points
in t( + it2)-plane when C is an ellipse. Arrows indicate direction in which Re (t) decreases.

From this we can find the order of magnitude of a,, the minimal radius
and the envelope of the minimal circles as 0o varies. As we have shown in I, 4,
the saddle point at t’ corresponds to a point singularity of at w a cos t’
+ ib sin t’, that is, at w ae + iO. The saddle points at t, & corres-
pond to a singularity at w ae + iO. Thus, as 0o ranges from 0 to 1/2c (and, by
symmetry, from -1/2z to 0), the focus (- ae, 0) is enveloped in part while the focus
(ae, 0) is partially enveloped when 0o ranges from 1/2c to -rc. The convex hull of
singularities is the interfocal segment of v 0.

For simplicity, we have assumed to be an entire function. If we permit q5 to
possess singularities in the finite plane, then these will be reflected in singularities
of .

4. Concluding remarks. In Parts I and II of the present work we have deve-
loped and applied a procedure for locating the convex hull of singularities of a
two-dimensional harmonic function which is harmonic outside an analytic
curve C. On C, satisfies a Dirichlet-type boundary condition. Rather than
introduce the familiar complex potential, we have employed techniques which
hold promise of applicability in higher dimensions as well as to solutions of more
general equations, such as the Helmholtz equation; it is hoped to carry out these
extensions at a later date.
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The key to the method is the representation of as the potential of a double
layer on C, a type of representation which is not inherently limited either to two
dimensions or to harmonic functions. The double layer density # and the potential
may be regarded as transforms of one another, connected by integral operators.

Thus our work has much in common with theory developed by Bergman 2]
and, more recently, by Gilbert 3]. However, the present approach seems better
suited to the treatment of boundary value problems.

The connection between the present approach and an analysis based on the
extension of the solution into the domain of complex values of the independent
variables (as described in [4, Chap. 16]) is more tenuous than its relationship to
the integral operator methods. Although it leads to the results in an apparently
devious manner, our analysis possesses a conceptual advantage in that it involves
only functions of a single complex variable. On the other hand, in two dimensions
it may be of less generality than the theory developed in [4].
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SOME ISOPERIMETRIC INEQUALITIES
FOR HARMONIC FUNCTIONS

L. E. PAYNE

1. Introduction. In this paper we present a new isoperimetric lower bound
for the first nonzero eigenvalue P2 in the Stekloff problem I133 for a bounded
convex domain D in R2. Such an inequality is of interest in itself and is also useful
for determining a priori error bounds in the Neumann problem for second order
elliptic equations (see [3).

The first isoperimetric inequality for P2 to appear in the literature was that
due to Weinstock 151, i.e.,

(1.1) P2 <- 2n/L,

where L is the length of cD. Lower bounds of various types (generally somewhat
complicated) have been computed by Bramble and Payne [2], Kuttler and Sigillito
[9], 10], 11 ], and Bandle ]. Other results are due to Troesch 14] and to Hersch
and Payne 5]. In this note we show that for convex domains,

(1.2) P2 Kmin,

where Kmi denotes the minimum curvature of c3D. We obtain, in fact, the two-
sided bound

(1.3) Kmax /)2 Kmin.
In 3 we consider the eigenvalue problem characterized by

h2 ds
(1.4) v inf

Ah=0 inD D h2 dx

for a convex domain D with Lipschitz boundary cD. We establish the inequality

(1.5) V >__ 2Kmi
We shall henceforth refer to V as the first Dirichlet eigenvalue.

2. The Stekioff problem. The first nonzero Stekloff eigenvalue P2 is character-
ized as follows:

Igrad 412 dx
inf b HI(D).(2.1) 2 ,,qSds :0 D 4)2 ds
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It can be shown that if c0D, is a Lipschitz boundary then the minimizing function H
exists and satisfies

AH 0 in D,

cH
(2.2) cn p2H 0 on cOD,

Hds=O.

Here ?/cn denotes the outward normal derivative on cD.
Let us assume for the moment that cD C. Then the differential equation

will be satisfied on the boundary. We now set

(2.3) v ]grad H] 2.

Clearly v is subharmonic in D and hence v takes its maximum value at a point P
of cD. But by Hopf’s second principle [8] either

(2.4) v -= const, in D

or

(2.5)
n(V
-(P) > 0.

Since the tangential derivative of v must vanish at P we thus have the following
two conditions at P (assuming v const, in D):

(2.6a) 2 --n On2 +- s/-n-n K > 0,

(2.6b) 2 -n
Here (2.6a) is obtained by rewriting (2.5) and K denotes the curvature at P. The
differential equation in normal coordinates is given by

(2.7)
t32H H 2H
c3n2 t-K-n +--s2 =0 at P.

Inserting the expression for 2H/cOn2 from (2.7) into (2.6) we obtain

(2.8)
H c [cH cOH 92H

K[grad HI 2 > 0.

Let us assume for the moment that cH/cOs 4:0 at P. Then (2.6b) implies

2H
(2.9) (P) Pz-q--(P).s2

Insertion of (2.9) into (2.8) and use of the boundary condition in (2.2) lead to

(2.10) (P2 K)lgrad HI 2 > 0



which implies

(2.11) p2 > K(P)>= Kmi
Thus if 8D C, v const, in D, and OH(P)/& 4: O, the desired result has

been obtained, if 8H(P)/Ss 0, we use the fact that at P

82V/8S2 0(2.12)

to obtain

82H
(2.13) pZz H-8-T2 +

at P. Also in this case (2.8) becomes

632H
(2.14) H--S2- + Kp2H2 < O.

Multiplying (2.14) by p22 and adding to (2.13) we have

(2.15) $2
q- pH q- p(K p2)H2 < 0

which again implies (2.11). We must now investigate the consequence of v const.
If H is harmonic and the square of its gradient is constant, then H must be a

linear function of x and y, i.e.,

(2.16) H ax + by + c,

The boundary conditions give

8H
8n PzH =- an,, + bny-

(2.17)
(ax + by+ c) ds=O.

D

If we now set

p2(ax + by + c) 0 on 8D.

(2.19) n P2( + c) 0 in 8D,

( + c) ds O,
D

which is clearly satisfied only for the circle (let y f(x) describe an arc of 8D
and use (2.19)) in which case c 0 if the origin is taken at the center of the circle.
But for the circle we know that

(2.20) Pc-- K-- Kmi
Thus we have proved that if 8D C, p2 >= Kmi We remark now that if 8D is not
in C we may approximate it by C curves, take the limit, and observe that the

a, b, c, arbitrary constants.

(2.18) { ax + by,

then (2.17) becomes
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result remains valid for any Lipschitz boundary. (Note if 8D is convex, then at a
corner K tends to + so that Kmi would not occur there. On the other hand,
if the boundary has any straight-line segments, the inequality just states the
obvious fact that P2 > 0. Also the result would be of no interest though true if the
domain were nonconvex.)

We now show that

(2.21) P2 Kmax.
To do this we observe that from Weinstock’s inequality (1.1) and the Gauss-Bonnet
formula it follows that

(2.22) p2L <= 27t f K ds <= KmaxL
D

We have thus established the following theorem.
THEOREM 1. If D is a simply connected bounded domain in R2 with Lipschitz

boundary 8D, then the first nonzero Stekloff eigenvalue P2 satisfies (1.3) with the
equality signs holding if and only if the domain is in the interior of a circle.

The lower bound is of course of no interest unless 8D is convex.

3. The Dirichlet eigenvalue problem. In this section we wish to establish (1.5).
It can be shown (see, e.g., Fichera [4]) that if the boundary 8D is sufficiently smooth,
the eigenvalue V satisfies the following system:

A2B 0 in D,

(3.1) B=0 onSD,

#B

AB-Vln-n =0 on 80,

and that the minimizing function hi of (1.4) and B are related through the identity

(3.2) hi AB.

(See also Bramble and Payne [2], Hersch and Payne 6].)
Let us again assume for the moment that 8D e C. Then clearly (3.1) holds.

But Miranda 12] has shown that the quantity

(3.3) W Igrad BI 2 BAB

assumes its maximum value on the boundary. This follows from the fact that

l&Sxil -(AB)2
i,j=

(3.4)
cB c2B/2 cB/
ax2 -y21 +4 #x#y >__0.

Thus at the point P1 on 8D where 14’ assumes its maximum value we have (if
W const, in D)

(3.5) c W/Sn > O.



358 L.E. PAYNE

Since B vanishes on t3D this expression may be written

c3B O2B cB
(3.6) 2On c3n2 tn

AB > 0 at PI.

However, at P1

(3.7)
O2B Kc3B c3B

I,:)

Inserting these expressions into (3.6), we obtain

(3.8) (vl

This clearly implies

(3.9)

2K)

v > 2K(P) 2Kmin.

If W const, in D, it follows that

cB/2(3.10) W= n const, on cD.

This in turn implies by (3.1) that AB is constant on D and hence that B is
proportional to the torsion function in D. Thus it follows that if W =_ const, in D,

AB k in D,

(3.11) B 0 on cD,

cB kA
on c3D,

On L

where A denotes the area of D and L the length of its perimeter.
Now if W const., then at every point of c3B it follows from the arguments

of (3.5) through (3.8) with the inequality replaced by an equality sign that either

(3.12) c3B/c3n 0

or

(3.13) v 2K const.

Clearly the condition (3.12) implies B 0 and hence we would be led to the
inadmissible trivial solution. Since the only closed domain for which K const.
is the circle, it then follows that the only smooth domain for which the equality
sign in (1.5) can hold is the interior of a circle.

Again if 3D C, we may approximate cD by Coo curves and take the limit.
We thus obtain the following theorem.

THEOREM 2. If D is a bounded two-dimensional domain with convex Lipschitz
boundary 3D, then the first Dirichlet eigenvalue vl satisfies (1.5) with equality ifand
only if D is the interior of a circle.
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ON A LAPLACE INTEGRAL INVOLVING LOGARITHMS*

R. WONG

In a recent paper, A. Erd61yi [1] has given a proof of the following result.
The function

(1) M(z, 2, #) x- (log t)"e -zt dr,

where t is real, c > 1, 2 > 0, z > 0, has the generalized asymptotic expansion

(2) M(z, 2,/) / F’)(2)z-X(-logz)U-"; {z-X(logz)u-"}
n=0 H

as z 0+, the meaning of (2) being

as z 0+, for every fixed integer N 0.
The purpose of this note is to give an alternative proof and also to extend the

result to complex values of 2, g and z, restricted by Re 2 > 0 and z S(A). Here
S(A) is the sector

A being an arbitrary positive number.
To illustrate our procedure, we first consider a special case. The integral

o - (log t)e-t dt,

where m is a nonnegative integer and Re 2 > O, converges for Re z > O. If z is real
and z 1, the substitution u zt gives

fo fo log:)x- (log t)e- dt z-x(-log z) ux- 1
log

e du.

Using the binomial expansion, we have

(4) x- (log t)e- dt F(")(2)z-x(-log z)-".
n=0

By analytic continuation, (4)continues to hold when z is complex and z e S(A).
If Re2 > 0andRe> -1, then

(5) x- X(log t)Ue-t dt O(1) as z 0 in S(A),
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for any fixed c 1. Therefore, for any nonnegative integer m, we have, from (4),

(6) M(z, 2, m) F(’(2)z x(- log z) + O(1)

as z --, 0 in S(A); and consequently, for every integer N in 0 _< N __< m,

(7) M(z, 2, m) ,=o mn F")(2)z-(- log z) + o(z- Z(log z) )

as z 0 in S(A), since the O-term in (6) can be included in the o-term in (7).
This establishes (3) in case when p is a nonnegative integer.

Although the proof of the general case is more involved, it follows essentially
the same pattern. We assume throughout that

(8) c > 1, Re 2 > 0, # arbitrary, z S(A).

We require the following three lemmas.
LEMMA 1. For every fixed 6 in 0 < 6 < 1, there exists a fixed p > 0 such that

if a a(z)= [z[ - then

(9) tx-(logt)"e- dt O(z-X+O(logz)") as z 0 in S(A).

Proof. Let e Re2, fl Rep and x Rez. Since e-x __< 1 and for any
> 0 there is an M M(r/) such that (log t) <__ Mr" for __> c, the integral in (9)

is dominated by

M t,+,- dt <a+".
-+r

Furthermore, a Iz[ - so that

M +"- dt < M Jz x

t -[- / [Zr/3- X(1 )1
Since Re 2 > 0 and r/is arbitrary, there exists a fixed p > 0 such that- X(log t)"e -t dt O(z- + o) 0 inas z S(A).

The conclusion of the lemma now follows.
LEMMA 2. If b--b(z)--Iz1-2/’, where 0 l, then there exists some

fixed e 0 such that

(10) x- 1(log t)Ue -t dt O(z- exp (-elzl- 1)) as z - 0 in S(A).

Proof Again we write e Re 2 and fl Re #. For any z e S(A), we have
[e-t[ __< e -’llt for some e’ > 0. Furthermore, for all __> c, (log t) <= Mt for some
M > 0. Therefore, the integral in (10) is dominated by

(11) M te -’lzlt dt MIz-X- ue-’Udu.
Izl
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Moreover, u =< K exp (e’u/2) so that the last integral is in its turn dominated by

2K
K e-’"/2 du -;-exp lzl-i

This, together with (11), proves Lemma 2.
LEMMA 3. With a a(z) and b b(z) defined as above, we have,for any integer

n >=.0,

(12) ux- 1(log u)"e du F(’(2) + o((log z)-)

as z 0 in S(A),for every integer N > O.
Proof Using the argument of Lemma 2, it is easy to show that

(13) fb u;- (log u)"e du O(exp (- lzl6- ))

as z 0 in S(A), where 0 arg z. Furthermore, the proof of Lemma 1 can be
used to give

(14) ux- (log u)"e-" du O(z)

as z 0 in S(A), for some fixed p > 0. Since the O-term in (13) may be included in
that of (14), we obtain

ux- (log u)e du ux- (log u)e du + O(z) F((2) + O(z)
0

as z - 0 in S(A), for some fixed p > 0, thus establishing Lemma 3.
With the aid of these three preliminary results, we are now in a position to

state and prove our principal result.
THEOREM. For anyfixed complex numbers 2 and la with Re 2 > 0,

(15) M(z’2’la)"z-(-lgz)[.=o /F")(2)(-lgz)-";n {(lgz)-"}1
as z 0 in S(A). The result holds uniformly in the approach of z O.

Proof Set

M(z, 2, ) x- (log t)"e- dt I(z) + I(z) + I(z),

where the integrals I, I, Ia correspond respectively to the intervals. (c, a), (a, b),
(b, ). Here a Iz - and b Iz- + for some fixed in 0 < < 1. Estimates
of I and Ia are given in Lemmas 1 and 2.

Consider the integral I(z). Replacement of zt by u gives

e du.I2(z) z-(-log z)u uz- 1
log z
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On the path of integration, [z[ 1- <__ [u[ <= [z[- + and hence

log u

log z 1--61

for some fixed 0 < 6 < 1. Therefore, for every fixed integer N _>_ 0,

log u
1

log z ,=o2 (-1)" (log z)"
(log u)N+ 1)+ O
(log z)N +

as Izl 0. Since the integral

u’- (log u) + e-" dul

exists and is uniformly bounded as z 0 in S(A), one must have

I2(z) z-X(-log z)u (-log z)-" uX-l(logu)"e-"du + O((log z)-u-1

as z 0 in S(A). It now follows from Lemma 3 that

I2(z)=z-(--lgz)UIo,, F(")(2)(-log z)-" + o((log z)-U)]
as z 0 in S(A). Furthermore, by Lemmas and 2 the same is true of M(z, 2,
Therefore, for every fixed integer N >= 0,

z, i +

as z 0 in S(A).
Although we have not said anything about the uniformity of our results,

they are indeed quite independent of the approach of z 0 in the sector S(A).
This completes the proof of our theorem.

Remark 1. In view of (5), we have from (15) that if Re 2 > 0 and Re >
then

;o z- (log t)Ue -’ dt z- (-log z)u F()(2)( log z)-; {(log z)-}

(16)
as z 0 in S(A). It is interesting to note that this result (16) is also valid when

Izl . A detailed proof is given in [2].
Remark 2. In the case when p is a nonnegative integer, the series (16) terminates

and therefore converges. In all other cases it diverges. To show this, we remark
that the power series

F(2 + z)=

has 121 as its radius of convergence. Hence, by Cauchy-Hadamard’s formula,

lim sup
1In 1
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It now follows from Stirling’s formula that, for any fixed value of log z,

F(")(2) F(n #) 1 1/,

lim sup > 1,
,-,oo n! F(-#) (log z)"

and in consequence the expansion (16) diverges.
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THE REAL ZEROS OF STRUVE’S FUNCTION*

J. STEINIGI

1. Introduction. Struve’s function Hv(z) of complex order v and complex
argument z is defined for all v, and for all z with n < arg z =< n, by the expansion

1)n(z/2 + 20 +1

(1) Hv(z) ,o F(n + 3/2)F(v + n 7 3/2)"

(2)

For Re(v) > -1/2, it has the representation

2(z/Z)V fHv(z)
F(1/2)F(v + 1/2)

(1 t2) 1/2 sin (zt) dt

[14, 10.4, (1)], which is akin to Poisson’s integral 14, 3.3, (2)] for Jr(z), the Bessel
function of the first kind, of order v" if Re(v) > -1/2,

2(z/2)
(3) Jr(z)

F(1/2)F(v + 1/2)
t2) 1/2 cos (z0

Struve’s function l-lv(z is a particular solution of the nonhomogeneous differential
equation

2 d2y zz 4(z/2)v+
(4) z + z + (z2 vZ)Y

V(1/Z)V(v + 1/2)
14, 10.4, (10)]. Since the associated homogeneous equation is Bessel’s equation,
the general solution of (4) may be written as J(z) + (z) + H(z), where (z)
is the Bessel function of the second kind, of order v, and , are arbitrary complex
constants.

For large ]z], we have the asymptotic expansion

iI F(n+l/2) (1() H(z) Y(z)+-
F(v + 1/2- n) z

v-2n-1

valid for all v, which is obtained from the identity

(z/2)v- fo
exp (i//) /./2) 1/2

(6) Hv(z) Y(z)
F(1/2)F(v 1/2)

e-" + du,

where -re/2 </3 < 7r/2 and -r/2 +/ < arg z < re/2 +/ (see 14, 10.41, (4)]).
Several conclusions about the behavior of Hv(x) for real v and for x _>_ 0 can

be drawn from (1), (5) and (6). Its behavior as x 0+ may be inferred from (1).
If v + 3/2 is not zero or a negative integer, then

2(x/2)v +
(7) Hv(x)

F(1/2)F(v + 3/2)
if v+ 3/2= -n,n=0,1,2,’-’,then

x0+;

(-1)"+1(x/2)"+3/
Hv(x) x 0 +.r(n + 5/2)
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Consequently, Hv(0+) 0 if v > -1, or if v -n 3/2, n 0, 1,2,"" and
H_ 1(0+) 2/7[. Otherwise, Hv(0+) is infinite, and the sign of H(x) near the
origin is that of F(v + 3/2).

Since Y(x) 0 as x -, + oe, it follows from (5) that as x + oe, H(x) + oe
if v > 1, whereas H(x) --, 0 if v < 1, and Hi(x) --, 2/7[.

If v -n + 1/2, n- 1, 2,-.-, then (4) reduces to Bessel’s equation, and
(6) shows that

(8) H_,+ 1/2(X) Y_,+ 1/2(X) (-- 1)"- 1j,_ 1/2(X) n 1, 2,"..

If v =< 1, and v - -n + 1/2, n 1,2,..., it follows from (6) that for x > 0,
F(v + 1/2)[Hv(x) Y(x)] is a positive, monotone decreasing function of x.

It is easily verified with (1) that H(z) satisfies the recurrence formulas

(9)

and

d
{zH(z)) zVH_l(Z)

dz

d
{z_ H(z)}

1
(10)

dz 2F(1/2)F(v + 3/2)- z-H+ l(Z)

[14, 10.4]. It follows from (8) and (10) that Hv(z) can be expressed in finite form
in terms of elementary functions when 2v is an odd integer, since the same is true
of J(z) (see[14, 3.4]). For instance,

H- 1/2(z)
2 )1/2 sin z, H1/z(Z)

2 1/2

(1 cos z).

Obviously, H1/z(X has an infinity of zeros, but no changes of sign. Some informa-
tion concerning the sign of H(x) for real v- 1/2 can be deduced from (5). As
x-H(x) is an odd function of x, we restrict ourselves to x > 0. Since

2 1/2

Y(x) xx [sin (x 1/2vT[ 1/47[) + O(1/x)]

as x --, + oe, the dominant term on the right-hand side of (5) is

(2) 1/2 (X/2)-1
sin (x 21-v7[ 1/47[) or

F(1/Z)F(v + 1/2)’
according as v < 21- or v > 1/2. Therefore, Hv(x) has an infinity of changes of sign if
v < 1/2, but is certainly positive for sufficiently large x if v > 1/2 (see [14, 10.45]).
In fact, more is true" when v > 1/2, H(x) > 0 for all x > 0. Watson gives two
proofs of this property of H(x) (see[14, 10.45, 13.47, (9)]), which is also easily
deduced from (2) on observing that for v > 21-, (1 t2) 1/2 is a positive, decreasing
function of in 0 < < 1.

Little else seems to be known about the real zeros of Struve’s function for
v < 21-. It appears to have escaped notice that a general theorem of P61ya’s [10]

;oon the zeros of a class of entire functions of the form f(t)cos (zt)dt, or
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f(t)sin (zt)dr, when applied to (2) and (3), implies that if -1/2 < v < 1/2 and if
o

2, are real numbers, not both zero, then the zeros of 2z-VJr(z) -/z-VH(z) are
all real and simple. Moreover, in this range of v, the positive zeros of H(x) are
interlaced with those of J(x), and lie one each in the intervals (krc, (k + 1)r),
k 1, 2,".. In other words ifj,r and hv,r denote the rth positive zero of J(x) and
of H(x), respectively, then, for -1/2 < v < 1/2,

(11) jv,2-I < (2r- 1)re < hv,2_ <L,2v < 2rrc < hv,2 <Jv,2r+l, r= 1,2,.-..

P61ya’s proof uses Hurwitz’s theorem on the zeros of the uniform limit of a
sequence of analytic functions [8, 1.1] and the Enestr6m-Kakeya theorem for
polynomials [8, 7.30].

In this paper we shall establish certain properties of the zeros of H(x) which
are suggested by P61ya’s results or by familiar properties of solutions of Bessel’s
equation. We shall show that for v < 1/2, the positive zeros of H(x) are simple,
and separate those of Yv(x) in pairs, if v 4: n + 1/2, n 1, 2, that the positive
zeros of J(x) are interlaced with those of Hv(x) and that the positive zeros of
H_ l(x) alternate with those of H(x). Furthermore, if 2,/ are real, and 2/ 4: 0,
then all positive zeros of 2J(x) #H(x) are simple, with the possible exception
ofthefirst one. This zero is simple if vl < 1/2, orif-n =< v =< n + 1/2, n 1,2, "-.

For each other v < -1/2, there is a unique choice of 2/ for which the first positive
zero of 2Jr(x) /tHv(x) is of multiplicity 2.

We begin by proving these results for Iv.I < 1/2 in 3, and then in 4 extend
them to smaller values ofv by induction arguments. For Ivl < 1/2 we obtain the follow-
ing chain of inequalities, which subsumes (11)"

Yv,2r-1 < Jv,2r-1 < Y,2v < hv,2r-1 =< 2jv,r < jv,2r < 2rr < hv,2r < Yv,2r+I,

r 1, 2,... ;here y, denotes the rth positive zero of Y(x).
Our method of proof is different from P61ya’s. In the range Ivl < 1/2, we appeal

to a theorem of ours on the zeros of certain fractional integrals (Theorem A) and
to a comparison theorem for nonhomogeneous linear second order differential
equations (Theorem B). To extend our results to smaller values of v, we apply
G. D. Birkhoff’s separation theorem (Theorem C) to a third order homogeneous
linear differential equation which is obtained from (4) by a standard device
1, 1.7]. In 5, we indicate another approach to the main results of 3, which rests
on the inequality

>o, > o, -1/2 < < 1/2.dx

It should be noted that our method, which avoids the use of the complex
variable, does not yield the result, implicit in P61ya’s theorem, that H(z) has
only real zeros for -1/2 < v < 1/2.

The second example on p. 363 of [10] is 1/2nHo(z).



368 . STEINIG

2. Preliminaries. In 3 we shall apply a result of ours on fractional integrals
11], which we state as

THEOREM A. Suppose that g is real-valued, and is continuous on every finite
interval (a, A), where a is fixed, and that g is not identically zero in any interval
(A, ). Let 0 < # < 1, and let

gu(x) ) g(t)(t x)U-X dt, x>=a,

the integral being supposed convergent at the upper limit. Ifgu attains its maximum
and its minimum on [a, ] at x l,x2 respectively, where a <= a <= xl < x2 < ,
then g has an odd number ofchanges ofsign in (x l, x2], unless it has infinitely many.
A similar result holds ifa <= x2 < x 1.

In applying Theorem A, we shall require
LEMMA 1. If V > --1/2, the successive relative maxima of x-v/z[Jv(x1/2)[ as

x increasesfrom 0 to ,form a decreasing sequence.
Proof Apply the Sonine-P61ya theorem [13, 7.31] to the differential equa-

tion (xv+ly’)’ + 1/4xVy 0, which has x-v/2jv(xl/2 as a particular solution [14,
4.31, (19)-(20)].

The next result is a comparison theorem for two linear differential equations
of the second order, one of which may be nonhomogeneous.

THEOREM B. Let fl, f2 and F be continuous on (a, b) and let fl >-_ f2 and F >= 0
throughout this interval. Let u and u2 be nontrivial solutions of the differential
equations u + flu1 0 and u’ + fzu2 F. If x’ and x" are consecutive zeros of
u2 in (a, b), if Uz(X) > 0 for x’ < x < x", and if either f f2 or F 0 on (x’, x"),
then u changes sign in (x’, x"). The same conclusion holdsfor x’ a, ifuz(a + O) O,
on condition that

(12) lim {Ulb/ b/i/,/2} 0.
xa+O

An analogous result holds ifF <__ 0 throughout (a, b) and u2(x) < Ofor x’ < x < x".
Proof Use the identity

[u u2 u u2]’,’ u uz(f f2) dx + u1F dx

and proceed as in the proof of Sturm’s comparison theorem.2

With Theorem B, we can prove
LEMMA 2. If V< 1/2, but v 4: -n + 1/2, n= 1,2,..., and if x’ and x" are

consecutive positive zeros of H(x), such that F(v + 1/2-)H(x) > 0 for x’ < x < x",
then Y(x) has an even number of zeros (at least two)in (x’, x"). And if-1/2 < v < 1/2,
Yv(x) has an even number 2) of zeros in (0, h,).

Proof The substitution y x-/2u in Bessel’s equation and in (4) shows that
/,/I(X)-- xl/ZY(x)anduz(x)= xl/ZH(x) are solutions ofxZu + (x2 v + 1/4)ul 0
and .2. 21-vxvx u2 + (x2 v + 1/4)u2 -/2/(F(1/2)F(v + 1/2)). Then, by Theorem B,
<(x) vanishes at least once in (x’, x"). But F(v + 1/2)[H(x)- Y(x)] > 0, by (6);

If F 0, Theorem B reduces to a form of Sturm’s theorem given by Szeg6 [13, 1.82].
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hence Y(x) must have an even number of zeros in (x’, x"). For Ivl < , Hv(0) 0,
and F(v + 1/2)Hv(x) > 0 for 0 < x < h,l, by (7). Here (12) is satisfied, not by
u(x) xa/2y(x), but by u(x)= x/2j(x); it follows that j, < h,l. Since3

y, < j,a for v > -1/2, we can conclude as above.
In 4, we shall need the following separation theorem of G. D. Birkhoff

[2], [12, Theorem 4.41 ].
THEOREM C (G. D. Birkhoff). Let ul, u2, u3 be linearly independent solutions

of the differential equation u’" + a(x)u" + a2(x)u’ + a3(x)u O, where a, is a real-
valued, continuous function of class C3-n(a, b), n 1, 2, 3. Let

Z1 U2U3 U2U3, Z2 U3UI UUl, Z3 UlU2 UlU2

If (i, j, k) is any permutation of (1, 2, 3), then between any two consecutive zeros of
ui (or of zi) in (a, b), the number of zeros of uj plus the number of zeros of zk is odd,
multiple zeros being counted according to their multiplicity.

Remark 2.1. A zero of Zk which is not a zero of ui, k, is simple. Indeed, if

Zk UiUj UiUj and Zk UiUj Ui Uj both vanished at x0, and if u(xo) va O, then
we would have uuji u’/ui 0 at Xo. But then the Wronskian of ul, u2, u3 would
vanish at Xo, which is impossible, since these solutions are linearly independent.

Later, Birkhoff’s theorem will be combined with
LEMMA 3 (see [1, {}3.5]). /f v 4= n + 1/2, n 1, 2,..., then Jr(x), Y(x) and

Hv(x) are linearly independent solutions of the differential equation

(13) z3y + (2 v)z2y + [z3 v(Y + 1)z]y’ + E(1 Y)z2 q- y2(y _1_ 1)]y 0.

From results of Watson [14, {} 15.33] and the fact that the zeros of J(x) and
Y(x) interlace [14, 15.24] we deduce

LEMMA 4. If--1/2 < V < 1/2, the positive zeros of J(x) lie in the intervals
(mrc + 1/4rc + 1/2vrc, mrc + -rc + 1/4vrc), m O, 1, 2,’", one to each interval. The
positive zeros of Y(x) lie one each in the intervals (mrc + 1/4rc + 1/2vrc, mz + -z + 1/4vrc),
m 0,1,2, "...

3. The results for -1/2 < v < 1/2. We begin by establishing
PROPOSITION 1. For Ivl < 1/2 and x > O, the changes of sign of H(x) occur

singly in the intervals (mrc, (m + 1)re), m 1, 2, ....
Proof. By (2), Hv(x) b(x) f(t) sin (xt) dt, where f(t) (1 t) / and

4)(x) 2(-}x)V(F(1/2)F(v + 1/2)). For v > -1/2 and x > 0, qSv(x)> 0; for Ivl < 1/2 and
0 <= < 1,fv(t) is a continuous, positive, strictly increasing function of t. Obviously,
H(x) > 0 for 0 < x =< re. Furthermore, Hv((2m + 1)re) > 0, m 1, 2, ..., as can
be seen by expressing the corresponding integral as a sum of integrals over half-
periods of sin ((2m + 1)=t). This sum has terms of alternating sign and increasing

For > 0, see [14, 15.3, (10)]. For -1/2 < =< 0, note that Jr(x)--+ +oo, Yv(x)-, -oo, as
x 0+. Then, since J(x)Y’(x)- J’(x)Yv(x) > 0 (see [14, 3.63, (1)]), we have Y(J,I) > 0, whence
Y,I <J,l. Similar reasoning shows that jv, < y,x for -n < =<- n + 1/2, and Y,I <J, for
-n-1/2< v<= -n,n= 1,2,""
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absolute value. Hence, it has the sign of its last term, which is positive, since the
number of terms is odd. The same argument will show that Hv(2mrc)< 0,
m 1, 2, .... Therefore, since Hv C(0, o), it has an odd number of changes
of sign in each of the intervals I,, (mrc, (m + 1)re), m 1, 2, .-.. In fact, it has
exactly one, for otherwise, by Lemma 2, Y(x) would have two zeros in I,,, in
contradiction with Lemma 4.

With this result, we can prove
PROPOSITION 2. For --1/2 < v < 1/2, the positive zeros ofH(x) are simple.
Proof Since H is a solution of (4), its positive zeros are of multiplicity at

most 2. As the right-hand side of (4) is positive for real, positive z and -1/2 < v < 1/2,
H(x) would have to be positive in the neighborhood of a double zero. Thus if
H(x) had a double zero in some interval I,, [mrc, (m + 1)rt], rn > it would
have two zeros in I,, by Proposition 1, and it would be positive between them.
But then, by Lemma 2, Yv(x) would also have two zeros in I,, in contradiction with
Lemma 4.

Propositions 1 and 2 and Lemma 4 lead to
PROPOSITION 3. For ]v] < 1/2 and x >= O, the zeros ofH(x) alternate in pairs with

those of Y(x), with two zeros of Y(x) in each interval bounded by consecutive zeros

of H(x), on which H(x) > 0.
Proof If ]v] < 1/2, H(x) > 0 for 0 < x < hv, i, by (7). Hence, by Proposition 2,

H(x) > 0 on the intervals (h,zr,hv,zr + 1),r >= 0(hv,o 0), and Hv(x) =< 0 elsewhere.
Since H(x) Y(x) > 0 for Ivl < 1/2, Y(x) # 0 for hv,zr_ <= X <--_ hv,zr. By Lemma 2,
the intervals (0, h,l) and (h,2r, hv,zr+ 1) each contain an even number of zeros of
Y(x). But by Proposition 1, h,zr+l hv,2r < 27. And by Lemma 4, Y(x)cannot
have 4 zeros in an interval of length 2c.

From Theorem A, Proposition 1 and Lemma 1, we deduce
PROPOSITION 4. If Iv] < 1/2, each half-open interval (j,,j,+ 1] bounded by

consecutive positive zeros of J(x) contains exactly two zeros of Hv(2x). And there
is exactly one zero ofH(2x) in (0,j,l].

Proof We apply Theorem A to Meijer’s [9, p. 141] fractional integral

1
xU/2 3 TI 1/2(14) F_ /4H1/2_u(x1/2)(x y)U-1 dx /2(2y)U- J1/2-u 1)12_yl/2

y>0,0<p< 1.
By Lemma 1, the successive relative maxima of the right-hand side of (14)

form a decreasing sequence if/z < 1. Also, the stationary values of x- J(x), x > O,
are.the positive zeros of Jr+ l(X), of which there is precisely one between two
consecutive positive zeros of J(x) (see [14, 15.22]). For v > 1, the first positive
zero of J(x) is nearer the origin than that of J+ l(x), by a theorem of B6cher’s
[3, Theorem IX].

It now follows from Theorem A that each of the intervals (0, L, 1], (L,.,L+ ,]
and (j+ 1,r, jr,,+ 1], r >= 1, contains an odd number of zeros of H(2x). Thus each
interval (j,, J,r + 1] contains an even number => 2) of zeros of H(2x). But if one of
these intervals contained four zeros of Hv(2x), its length would exceed zt, by
Proposition 1. This is impossible, by Lemma 4. Similarly, (0,j,l] contains exactly
one zero of H(2x).
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We are now in a position to prove
PROPOSITION 5. If IVl < 1/2, there is exactly one zero of Jr(x) between two

consecutive positive zeros of Hv(x), and exactly one in the interval (0, h,a).
Proof From Propositions 1, 3 and 4 and Lemma 4 we infer that for r 1, 2,’-’,

Yv,zr-1 < Y,2r < hv,zr-1 < 2jv, < 27r < h,2 < Yv,zr+ < Yv,2r+ 2"

The zeros of J(x) and Yv(x) are interlaced, and J,a > Y,a, whence
< L,2,-a < Y,2,. It is easily deduced from Lemma 4 that 2jv, < L,2r < 27tr.
Hence, for Ivl < 1/2 and r 1, 2,..., we have

(15) Yv,zr-1 < J,er-1 < Y,2r < hv,zr-1 <= 2jv,r < Jv,zr < 2tr < hv,zr < Yv,zr+l.

Lemma 4 and (15) give the following refinement of Proposition 1.
COROLLARY 3.1. If IVl < 1/2, the positive zeros of H(x) lie in the intervals

(2mTt 1/47t + 1/2vrc, 2mrc 1/47 + 1/2vTt) and (2mrc, 2mTt + -rc + 1/4vrc), one to each
interval (m 1,2, ).

4. Results for v < 1/2. A simple induction argument, based on Lemma 2, yields
the following extensions of Propositions 2 and 3.

THEOREM 1. For v < 1/2, the positive zeros of Hv(x) are simple.
THEOREM 2. For v < 1/2, v v n + 1/2, n 1, 2,..., and x >- O, the zeros of

Hv(x) alternate in pairs with those of Y(x), two zeros of Y(x) lying in each interval
bounded by consecutive zeros of H(x), on which F(v + 1/2)Hv(x) > 0.

Proof The case Ivl < 1/2 of both theorems is disposed of by Propositions 2 and 3.
For v n + 1/2, n 1, 2,..., Theorem 1 asserts a familiar property of Yv(x)
(see[14, 15.21]).

We shall complete the proof by showing that the validity of either of
Theorems 1 and 2 for some v < -1/2, v4= n + 1/2, is implied by the validity of
both for v + 1.

First, we observe that as H is a solution of (4), we would have F(v + 1/2)H(x)
> 0 in a neighborhood of a double zero. Therefore, h,a is simple if v < -1/2, for
then F(v + 1/2)H(x) < 0 on (0, by, a), by (7). And if by,,, r > 1, were a double zero,
(hv,_ 1, h,r+ 1) would contain four zeros of Yv(x), by Lemma 2, hence three zeros
of Y+ a(x) (see [14, 15.22]), and therefore, by ihe induction hypothesis, two zeros

ofH+ l(X). But then, in virtue of Rolle’s theorem, applied to (9), Hv would change
sign in (hv,-1, h,+ 1), which is absurd.

Second, Y(x) 4:0 if F(v + 1/2)n(x) < 0, since F(v + 1/2)[n(x) Yv(x)] > 0.
Accordingly, let h’, h" be positive zeros of H(x), such that F(v + 1/2)H(x) > 0 for
h’ < x < h". By Lemma 2, Y(x) has an even number of zeros in (h’, h"). If it had
four, (h’,h") would contain three zeros of Y+ a(x), hence two of H+ a(x), by the
induction hypothesis. But again, this is impossible, for it would imply that H(x)
changes sign in (h’, h").

This completes the proof of Theorems 1 and 2.
It follows at once from this proof that for v =< 1/2,

(16) hv,2r- =< Yv,zr- < Yv,2r <= hv,zr, r 1, 2,

with equality if and only if v n / 1/2, n 1, 2,....
We now give a common proof for the following two results.
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THEOREM 3. If v < 1/2, the positive zeros of Hv(x) and of Jv(x) separate one
another.

THEOREM 4. l.f v < 1/2, then J(x) H’(x) J’(x) H(x) 4:0 .for x >__ jv,1, and also

for 0 < x < J,l, iflvl < 1/2.
Proof We first show that the validity of Theorem 4, for a given v < 1/2,

v 4: n + 1/2, implies that of Theorem 3 for v 1.
Since j_ 1,1 < Y- 1,2, we infer from (16) that j_ 1,1 < by_ 1,2 hence we have

only to show that each interval (j_ 1,r,J-1,r+ 1) contains exactly one zero of
H_ l(x). From (9) and the cognate relation for J(x) (see[14, 3.2]) we get

(17) Jv(x)H’(x)- J’(x)H(x)= J(x)H_ l(X)- Jr-l(x)H(x)

Thus our hypothesis on v implies that Jv(x)H_l(x)- J_l(x)H(x):/: 0 for
x >= J-1,1, since jr_ 1,1 > J,l if v < 0, by B6cher’s theorem [3, Theorem IX].
It is now clear that H_ l(x) and J_ l(x) have no common zero. Moreover, since
the positive zeros of J(x) are simple and alternate with those of Jr_ l(x), the con-
tinuity and nonvanishing of J(x)H_l(X)- J_l(x)H(x)for x => jr-l,1 imply
that H_ l(x) has an odd number of zeros between two consecutive positive zeros
of J_ l(x). But it cannot have three, for then, by Theorem 2, Y_ l(X) would have
two zeros between two consecutive zeros of J_ l(x), which is impossible.

Next, we show that the validity of Theorem 3 for some v < 1/2, v 4: n + 21-,
implies that of Theorem 4 for the same v. We apply Theorem C to (13) and deduce
that in any interval (j,, jv,+ 1), H(x) and J(x)H’(x) J’(x)Hv(x) have together
an odd number of zeros, if each is counted according to its multiplicity. With our
hypothesis on v, Theorem and Remark 2.1, this implies that J(x)H’(x)-
J’(x)H(x) has an even number of zeros, all simple, in (jv,,j,+ 1). But if it had
two zeros there, we could apply Theorem C again" between two consecutive
zeros of J(x)H’(x) J’(x)Hv(x), the number of zeros of J(x) plus the number
of zeros of Jv(x)Y’(x)- J’v(x)Y(x) is odd. Now J(x):/: 0 in (J,r,Jv,+ 1); and
Jv(x) Y(x)- J’v(x)Y(x) never vanishes, since it is the Wronskian of two linearly
independent solutions of Bessel’s equation. Finally, J(x) and J(x)H’(x)-
J’v(x)Hv(x) have no common zero, since all zeros of J(x) are simple. Hence
Jv(x)H’(x) J’v(x)H(x) :/: 0 for x __> J,l. And if Ivl < 1/2, it is easily verified with (7)
and (17) that J(x)H’(x)- J’v(x)H(x)> 0 both at J,l and in some sufficiently
small interval (0,

It now follows by induction from Proposition 5 that Theorems 3 and 4 hold
for IV+hi <21-,n=0,1,2,’’’.Andforv= -n+ 21-,n= 1,2,...,thesetheorems
assert familiar properties of solutions of Bessel’s equation. This completes our
proof.

From (16) and Theorem 3 we deduce that for n 1/2 < v N n, n 1, 2, ...,
(18) hv,2r-1 < Yv,2r-1 < Jv,2v-1 < Y,er < hv,2r < jv,2r < hv,2r+ 1,

r 1, 2, --., since Yv,1 < jr,1 in this case. Similarly, for -n < v < n + 1/2, we
have

(19) Jv,2r-1 < hv,zr-1 < Yv,Zr-1 < Jv,2r < Yv,2r < hv,2r < Jv,2r+ 1"
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With this remark, we can complete Theorem 4 as follows.
THEORIM 4’. If IV < 1/2, or/f--n --< v n + 1/2, n 1,2, ..., then Jv(x)H’(x)

J’(x)H(x) > 0 for x > O. If -n 1/2 < v < n, then Jv(x)H’(x)- J’(x)H(x)
> 0 for x >= h,l, and this function has exactly one zero, which is simple, in

(O,h,).
Proof. For v -n + 1/2, the theorem asserts a familiar property of the

Wronskian of J(x) and Y(x) (see [14, 3.63, (1)]).
From (7) and the corresponding relation for J(x), we can determine the sign

of l-l’(h,), and of J’(j,). By combining this information with (15), (18) and (19),
it is not difficult to see that at x h,l, J(x)H’(x) J’(x)l-l(x) > 0 for all v < 1/2.

Furthermore, it follows from (17), using (7), that as x 0/, J(x)H’(x)
J’v(x)H(x) (1/2x)2/(r(1/2)r(v + )I’(v + )), if v :/: n 1/2, v 4: n (n 1, 2,...),

and that if v n (n 1, 2, ...), this function is 2(- 1)/(F(1/2)F(1 v)F(v + 1/2)).
Hence, J(x)H’(x) J’(x)H(x) < 0 near x 0 if and only if -n 1/2 < v < n,
n 1, 2, .... The theorem then follows, if we remember from the proof ofTheorem
4 that J(x)H’(x) J’(x)H(x) can have at most one (simple) zero.

In analogy to B6cher’s theorem, we have
PROPOSITION 6. If IVl < 1/2, the smallest positive zero of H_ I(X) is nearer the

origin than that ofH(x). The situation is reversed if v <= -1/2.
Proof The case v n + 1/2, n 1, 2, ..., is covered by B6cher’s theorem

[3, Theorem IX], which implies that y_ 1,1 < Y,I if v > 0, and y_ 1,1 > Y,I if
v<0.

If Iv[ < 21-, it follows from (7), (9) and Rolle’s theorem that H_ l(X) changes
sign in (0, h,l). Hence h_ 1,1 < h,l in this case.

For v < 1/2, v - n + 1/2, we use (10) and Rolle’s theorem. Together with
(7), they imply that F(v + 1/2)H(x)- g(x) has at least one zero in (0, h-1,1),
where g(x)= (1/2x) l/F(1/2). Now g(x) > 0 for x > 0, and F(v + 1/2)H(x) < 0 on
(0, h,l)when v < -1/2, v 4: -n + 1/2, by (7). Hence, h,l < h_ 1,1.

We use Proposition 6 and Theorem 4’ to establish the following analogue of
a familiar property of Bessel functions.

THEOREM 5. For v < 1/2, the positive zeros of H(x) and H_ l(x) separate each
other.

Proof First, we note that H(x) and Hv_ l(x) have no common zero, since this
would be a double zero of H(x), by (9).

Next, since J(x)H_ l(x)- J-l(x)H(x) :/: 0 for x _>_ h,l, and since the
positive zeros of J(x) and H(x) are simple and interlaced, there is an odd number
of zeros of H_ l(x) between two consecutive positive zeros of H(x). On the other
hand, Theorem 4’ and Proposition 6 ensure that J(x)H_ l(x) J- l(x)H(x) 4:0
for x >= h_ 1,1 and v < 1/2;it follows that H(x) hasan odd number ofzeros between
two consecutive positive zeros of H_ l(x), and the theorem is proved.

We consider now functions 2Jv(z) -/H(z) for real, positive z and for v. < 1/2,
where 2,/z are real and 2# 4: 0. Since 2p-1J(z) H(z) is a solution of (4), the
positive zeros of such a function are of multiplicity at most 2. The case Iv[ < 1/2 of
the following theorem is implicit in a theorem of P61ya’s [10].

THEOREM 6. Let 2, l be real and 21 :/: O. Let x > O, and v < 1/2. Then 2J(x)
#H(x) has only simple zeros if Ivl < 1/2, or if -n <= v <= n + 1/2, n 1,2,....
Otherwise, 2J(x) -/H(x) has at most one double zero, say Xo, situated in (0, h,).
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In fact, Xo is the zero of Jv(x)H’v(x)- J’v(x)H(x) whose existence is asserted in
Theorem 4’, and 2Jr(x) #H(x) has a double zero at Xo if and only if

2 H(xo)
J(Xo)

Proof At Xo, 2J(x)- #H(x) has a double zero if and only if 2Jv(xo)-
#H(xo) 2J’(Xo) #H’(Xo) 0. As this is possible with 2# 4:0 if and only if
J(xo)H’v(Xo) J’(xo)H(xo) 0, the conclusion ofTheorem 6 follows immediately
from Theorem 4’.

Remark 4.1. The proof of Theorems 3 and 4 can easily be adapted to show
that ifcg(x) is a real solution of Bessel’s equation whose positive zeros are interlaced
with those of Hv(x) for some v < 1/2, then the zeros of cg_,(x) and Hv_,(x) are
interlaced for n 1, 2, ....

5. Another approach for ]vl < 1/2. We shall briefly indicate how Propositions 2
and 5 could be proved without appealing to our Lemma 1, or to P61ya’s general
theorem.

We have the indefinite integral [1, (3.72)]

(20) 2"-1F(z1-)r(v + 1/2)x[Jv(x)H’(x)- J’(x)H(x)]

if v > -1/2, we may choose 0 as lower limit of integration, since J(x) O(x) as
x 0 +. As the right-hand side of (20) vanishes at x 0 if v > -1/2, we have

+ 2x-)[J()H;(()- J;(()H(()],dx

0, v > . Hence, in order to prove Propositions 2 and 5, it would suffice
to show that

(21) xJ(x) dx > O, > O, vl < .
To establish (21), one can appeal to results of R. G. Cooke and E. Makai.

Cooke has shown [4, in particular pp. 178-185], [5] that for v > -1,

J(x) dx r-- 1,2,..-,

wherej,o 0 and the otherj,r are the positive zeros ofJr(x), arranged in increasing
order. Since x, v < 0, is a positive, monotonically decreasing function on (0, m),

it follows that fo xJ(x) dx>Ofor >0and -1/2<v=<0. For0<v<1/2one

can use the fact that xVjv(x) is a solution of the differential equation (x -2y,), +
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xl-2vy 0 (see[14, 4.31, (19)-(20)]). By an argument similar to Makai’s4 [7],
this can be shown to imply that for 0 < v < 1/2,

;ji,,,- f
jv,r

xVjv(x) dx > xVJ(x) dx r 1,2, "..

It follows that xJ(x) dx > 0 for > 0 and 0 < v < 1/2, so that (21) holds as

stated.
Although this approach does not yield inequality (15), it can be combined

with Remark 4.1 to obtain further solutions of Bessel’s equation whose zeros
interlace with those of H(x).
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PERTURBATIONS IN FULLY NONLINEAR SYSTEMS*

L. E. MAY"

1. Introduction. In this paper a system of nonlinear differential equations is
considered subject to a small perturbation. In the principal case the unperturbed
system is assumed to possess a solution x(t) which is bounded over the entire real
line. Using assumptions which essentially concern the behavior of the linear
variational equation of the unperturbed system, we show that the perturbed
system possesses a solution which is "close" to x(t) over the entire real line.

Our work is motivated strongly by knowledge of perturbed linear systems.
We use a variant of the classical variation of constants formula introduced by
Alekseev [1]. This leads us to consider an improper nonlinear integral equation,
and it is not clear that a solution of the integral equation is also a solution of the
perturbed differential equation. In the perturbed linear case this difficulty does not
arise because the unknown does not appear in the kernel function, and the only
problem is to show that the integral equation has a solution. In the fully nonlinear
case it appears to be necessary to introduce additional hypotheses to insure that
any solution of the integral equation is also a solution of the differential equation.
In 5], Marlin and Struble are led to consider a related problem, and the techniques
used here are similar to those in that paper.

Consideration is given to the case when the unperturbed system is periodic.
The solutions of the perturbed system are also discussed on a half-line. When the
unperturbed system is autonomous, uniqueness is considered and one theorem is
given which applies to the case when the solution x(t) is almost periodic.

2. Preliminary considerations. Consider the two systems of differential
equations

(1) x’ f(t, x),

(2) y’ f(t, y) + fig(t, y).

We assume that fand g are continuous n-functions defined on I x fL where I is
either a half-line or the entire real line R and f is an open connected subset of Rn.
In (2), fl denotes a scalar parameter. We further suppose thatfx(t, x) (cgf/c3x)(t, x)
exists and is continuous on I x f. The solutions of (1) with initial values in f) are
then locally unique. (See, for example, [4].) Let to I, Xo . The solution x(t)
of (1) which satisfies X(to)= Xo is denoted by x(t, to, Xo). We also assume that
solutions of (2) with initial values in fl exist and are locally unique, and we denote
them in a similar way. The principal matrix solution (cx/cXo)(t, to, Xo) of

dZ
dt

fat, x(t, to, Xo))Z

Received by the editors January 8, 1970.
]" Department of Mathematics, Carleton University, Ottawa, Ontario, Canada. This work was

supported by the U.S. Army Research Office, Durham, North Carolina. This paper is based on the
author’s doctoral thesis prepared under the direction of Professor R. A. Struble, North Carolina
State University at Raleigh.

376



PERTURBATIONS IN FULLY NONLINEAR SYSTEMS 377

is denoted by Q(t, to, Xo) and satisfies Q(to, to, Xo)= I. Alekseev [1] has proved
the following generalization of the classical variation of constants formula which
relates the solutions of (1) and (2). (The proof can also be found in [3].)

TI-IEORFM 1. Let to I and Xo . Then, for all I for which x(t, to, Xo) f
and y(t, to, Xo) f, we have

y(t, to, Xo) x(t, to, Xo) + fl Q(t, s, y(s, to, Xo))g(s, y(s, to, Xo)) ds.

Let D be a bounded convex subregion of f such that the closure of D is
contained in f. Henceforth, throughout this work x(t) denotes a fixed bounded
solution of (1) or R which lies in D and which has no limit points on the boundary
of D. Then there exists d > 0 such that

{Xo’]Xo x(t)l <= d for some e R}
_

D.

Let cg denote the set of all continuous n-functions defined on R, and let

={ec. y-x __<}.

(In the above, and throughout this work, vertical bars denote any appropriate
vector or matrix norms, and double vertical bars denote the appropriate sup
norm.) We suppose that (1) may be written as a pair of uncoupled equations

(3) X fl(t, X1)

(4) xl fz(t, x2),

where fl is a k-function and f2 an (n- k)-function. Throughout this work the
subscript 1 refers to a k-vector and 2 to an (n k)-vector (or, in the case of matrices,
to a k x k matrix and (n k) x (n k) matrix, respectively). We assume that, for
arbitrary to e R and z e D, the solutions Xl(t, to, zl) and Xz(t to, Z2) of (3) and
(4) exist and are defined on a right half-line {t e R "t >__ to} and a left half-line

{ (Yl ffor{teR’t <= to}, respectively. We assume that x(t, to, zl)fl Yl"
Y2

} { (Yl efLfrsmeYl} frsome Y2 for _>_ to, and that x2(t, to, z2)e f2 Y2"
Y2

__< to. Thus the solutions Q(t, to, z) and Q2(t, to, z2) of the corresponding linear
variational equations exist in the same circumstances. The Alekseev formula and
also the work for the linear case in [4, p. 330, et seq.] suggest that, under appro-
priate hypotheses, a solution y of the integral equation,

(5)
y(t) x(t)- f, Q,(t,s,y(s)) )0

g(s, y(s)) ds

+ fl Q2(t, s, Yz(S))
g(s, y(s)) ds,

will also satisfy (2). (The partitioned matrices in (5) are, of course, of order n x n.)
A variant of the Alekseev formula, similar to the above, appears first to have been
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used by Brauer [3]. However a more comprehensive study of this type of formula
has been undertaken in [5]. We may also consider solutions of (2) defined on a
half-line {t’t >__ }. In this case we are led to consider the improper integral
equation

(6)

Ql(t, s, y,(s)) o
o o g(s, y(s)) ds

0 0
0 Q2(t, s, y2(s))

g(s, y(s)) ds,

where > 0, and where if(t) is a bounded solution of (1) defined on {t’t >= }.
In the next section we show that, under an appropriate hypothesis, (5)

possesses a solution y e To this end we consider the metric function on cg
defined for y, z cg by

p(y, z)= sup minimax ly(t) z(t)l, 1/T.
T>0 {.Itl<=T

It is easily seen that the pair (c, p) is a complete metric space. Furthermore, if
> 0, we have p(y,z) <= if and only if ]y(t) z(t)] <__ for all t [-1/, 1/].

Convergence in (, p) is thus easily seen to be uniform convergence on compact
subsets of R. Using the Ascoli-Arzela theorem, we can easily see that the following
is a characterization of relative compactness in (, p).

(C) A set K in (c, p) is relatively compact if for each finite interval I and
> 0 there exist M > 0 and b > 0 such that

for all e I and y K, and

ly(t)l M

[y(tl)- y(t2)[ a

for all y e K and all l, 2 G I with [t t2] % .
The metric space ((g, p) is discussed for the one-dimensional case in [7, pp.

512-513].
Schauder’s Theorem 2 [8] clearly holds in (cg, p). The proofgiven by Nemyckii

[6] of Mazur’s lemma in Banach spaces is easily modified to show that the lemma
holds in (cg, p). It then follows that the theorem given below, Schauder’s Theorem
3, holds in (off, p).

THEOREM 2. Let H be a closed convex subset of(W, p) and let - be a continuous
map of H into itself Furthermore suppose -H is relatively compact. Then there
exists Xo H such that -Xo Xo.

3. Existence of solutions of the improper integral equations. The following
hypothesis is basic and is used to show that (5) has a solution and is later used in
showing that any solution y 5 of (5) satisfies (2).
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(H1) There exist functions JI(T, t) and J2(T, t) defined for T > and T __< t,
respectively, with the following properties"

(i) IQ(t,s, yx(s))gl(s, y(s))] ds <= J(T, t) for T > t,

and

[Qz(t, s, yz(s))gz(s, y(s))l ds <= Jz(T, t)

and for all y e

(ii) lim J(T, t) 0 and lim Jz(T, t) O,
T- T

uniformly for in compact subsets of R.
(iii) There exists a constant J such that

J(t, t) <= J and Jz(t, t) <- J

for T<

for all R.
THEOIEM 3. Let (HI) be satisfied. Then for all fl with ]fl[ sufficiently small, (5)

possesses a solution y
Proof For simplicity of proof, we assume that f(t, x) j(t, x) and we omit

the subscript 1 in this proof. We regard 5 as a subset of (c(, p) and define a mapping
Y- of y 5 by

-y(t) x(t) Q(t, s, y(s))g(s, y(s)) ds.(7)

We apply Theorem 2 to show the existence of a fixed point of .
Let y .. Then, by (H 1),

so that --5
__

5 if Ifll =< d/J. Hereafter, we assume fi =< d/J.
Using criterion (C), we now show that -9 is p-relatively compact. Let

I [a, b] be any interval and let e > 0. If y then

I-yll Ilxll + d,

whence the functions of JSg are uniformly bounded. Let t, 2 I and consider

(8)

I-y(ta)- -y(t2)l Ix(t l)- x(t2)l + Q(t, s, y(s))g(s, y(s)) ds

Q(t2, s, y(s))g(s, y(s)) ds

Since x is continuous, it is uniformly so on compact sets and thus there exists

61 > 0 such that Ix(tl) x(t2)l < e/4 whenever tl, t2 I with It t21 < Ol.
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Then, using (H1), we have for any T > i,

(9)

Q(tl, s, y(s))g(s, y(s)) ds Q(t2, s, y(s))g(s, y(s)) ds
t2

<= Ifll{J(T, tl) + J(T, t2)

T

+ j I[Q(tl, s, y(s)) Q(t2, s, y(s))]g(s, y(s))[ ds
tl

/ IQ(t2, s, y(s))g(s, y(s)) ds

By virtue of (HI) we may fix T so that for all tl,t2 el we have (d/J)(J(T,
/ J(T, t2) =< e/4. The function IQ(t, s, x)g(s, x)l is continuous on the compact set
I x [a, T] x D and thus is uniformly continuous on this set. Thus we may find

2 > 0 such that the integrand of the first integral of the right-hand side of (9) is
less than Je/(4d(T- a)), whenever tl, t2 I with Itl t21 < b2. Now let C be a
bound for the continuous function IQ(t, s, x)g(s, x)[ on the compact set I x [a, T]
x D and let 63 Je/(4dC). Then it is clear that the final integral on the right-hand
side of (9) is less than e/4, whenever l, t2 I with It1 tz[ < 63.

Let 6 min {61, b2,63}. From (8) and (9) and the discussion in the above
paragraph, we see that if y 5 then

whenever tl, 2 I with It t2[ < 6. Since the functions of- are uniformly
bounded it follows from (C) that -9 is p-relatively compact.

We show that - is a p-continuous map of . Let y, z e 5 and let e > 0, and
consider, for e [- l/e, 1/el,

I-y(t)- -z(t)[ Il Q(t, s, y(s))g(s, y(s)) O(t, s, z(s))g(s, z(s)) ds

Using (HI), we fix T >__ 1/e such that J(T, t) < Je/(4d) for all [- l/e, 1/el. Then

I-y(t)- -z(t)] <_
r

Q(t, s, y(s))g(s, y(s)) Q(t, s, z(s))g(s, z(s)) ds

Since Q(t, s, x)g(s, x) is uniformly continuous on compact sets we can find
such that

[Q(t, s, v)g(s, v) Q(t, s, u)g(s, u)l <= 2d(T + l/e)’

whenever v,uO with Iv-u] <6" and t[-1/e, 1/e] and t<s[-1/e,T].
Now let 6’ > 0 be such that ly(s) z(s)l < 6" for s e [-i/e, T], whenever p(y, z)
< 6’. Then if p(y, z) < 6’, we have

I-y(t)- -z(t)[

for all [- l/e, 1/el. That is, p(J-y, -z) <= e, whenever p(y, z) < 6’. Thus - is a
p-continuous map of 5(.
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It is not difficult to see that 5 is p-closed and convex. We therefore see from
the above and from Theorem 2 that - possesses a fixed point y 5 for all fl with
Ifll sufficiently small.

The theorem is therefore proved.
For the periodic case the following theorem holds.
THEOREM 4. If(H) holds and iff(t, x), g(t, x) and x(t) are periodic in ofcommon

period P, then for all fl with Ifll sufficiently small, there exists a solution y 5 of
(5) which has period P.

Proof Let

5* {y ," y(t) y(t + P) for all R}.

Clearly 5* is p-closed and convex. We therefore see, from the proof of Theorem 3,
that it is only necessary to prove that 3--5*

_
*. We again assume, for con-

venience, thatf(t, x) fl(t, x 1). Let z D, to R and consider the solution x(t, to, z)
of (1). We have, using the periodicity off,

dx
--(t + P, to + P,z)= f(t + P,x(t + P, to + P,z))

f(t, x(t + P, to + P, z)).

Thus x(t, to, z) and x(t + P, to + P, z) satisfy one and the same differential equation
and have the same value for to. Since the solutions of (1) are unique, we have
x(t, to,Z)= x(t + P, to + P,z) and therefore Q(t, to,Z)= Q(t + P, to + P,z). Using
this fact and also using the periodicity off, g and x, we have, if y e -*,

y(t + P)= x(t + P)- fl Q(t + P, s, y(s))g(s, y(s)) ds
+P

x(t)- fl Q(t + P, s + P, y(s + P))g(s + P, y(s + P))ds

x(t) fl Q(t, s, y(s))g(s, y(s))ds

Thus .Y-5e*
_
5* for 1/31 sufficiently small, and the theorem is proved.

We now suppose that the right-hand members of (1) and (2) are defined on a
set/4 x f where/4 is the half-line {t e R" => e}. We let + be the set ofcontinuous
n-functions defined on/4, and for y e+ we let YlI supt>_ly(t)l. Let ,(t) be
a bounded solution of (1) which is defined on/4 and has values in D and no limit
points on the boundary of D. Let 5+ {y e cg+ Ily 11 _-< d}, where d > 0 is
defined in the same way as in 2. For each z D and to H we suppose that
ffl(t, to, zl) and ff2(t, to, z2) are defined for to > >_ cz and => to => e, respectively.
Thus Ql(t, to,Z2) and Q2(t, to,Z2) are defined in the same circumstances. We
introduce the following hypothesis.
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(HI’) There exists a function J(T, t) satisfying the conditions given in (H1)
whenever T > :z, and there exists a constant K such that

IQ2(t, s, zz(s))g2(s, z(s))l ds <= K

for all z 5+ and __> .
The following theorem is then proved in a similar way to Theorem 3.
THEOREM 5. Let (HT) be satisfied. Then for all fl with ]fl sufficiently small, (6)

possesses a solution y +.
We may similarly define a class 5 of.functions and obtain a similar theorem

for a left half-line _< e.
If (H 1) is satisfied, then it is easily seen that (H’) is satisfied, where is any real

number. In the linear, constant coefficient case the bounded solution x(t) 0 is
unique and there is an (n k)-parameter family of solutions (t) bounded on the
right. We now investigate conditions under which this behavior persists in the
nonlinear case and consider a version of Theorem 5 as applied to this situation.

Since Ql(t, r, zl) and Q2(t, r, z2) are continuous for z e D and T => and
T < t, respectively, we may define bounding functions

for T _>_ t, and

M,(T, t) sup IQ,(t, T,
zD

M2(T, t) sup IQz(t, T, z2)]
zD

for T < t. (The functions M and M2 are continuous in their domains.) We have
the following lemma.

LEMMA. Let y, z . Then

for T >= t, and

for T >__ t.

Proof Let

Ixl(t, T, yl)- x(t, T, Zl)[ MI(T, t)lYl Zll

Ix2(t, T, Y2)- x2(t, T, z2)[ < M2(T, t)lY2 z2l

X

X2
for some X2}.

Then D is convex. We have, for T => t,

Ql(t, T,w)dw x(t, T, Zl) x(t, T, yl),

where the line integral may be taken along any ray in D1 which connects Y and Z l.

The first inequality is immediate from the above equation.
The second inequality is proved in a similar way.
Let us now suppose that, for each fixed t, limr_ooM(T,t)= 0 and

limr_,_ooM2(T, t) 0. From the lemma we easily see that x(t) is the only solution
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of (1) in 5. For, let x*(t) be another bounded solution of (1) in 5. Then, for ar-
bitrary t’, we have, for T =< t’ < T,

Xl(t’ T, Xl(T)) x(t’, T, xT(T))
x*(t’)]

x2(t’, T, x2(- T)) x(t’, T, x(- T))(0)
<- MI(T, t’)lx(T) x(T)l + M2(- T, t’)ix2(- T) x(- T)I.

Thus, since x, x* 5, we have
]x(t’) x*(t’)] <__ d(Mx(T, t’) + M2(- T, t’)).

Letting T - oo, we obtain x(t’) x*(t’), and since t’ is arbitrary, it follows that
x is the only solution of(l) in

Now suppose that, for fixed , supt>_m2(0, t)= B2 is finite. Let a2 D2

{a.(aal)Dforsomeal}andconsiderthesolution(t)=(xl(t) /of(l).
XXz(t,,a2)!

Then
lYe(t)- x(t)] ]x2(t, 0, a2)- x2(t)]

Ix2(t, 0, a2) x2(t, 0,

=< M2(o, t)la2- x2(o)[,

where we use the lemma. We therefore have

I:(t)- x(t)] <= B2la2 x2()l.

Therefore, for all a2 which satisfy la2 x2() d/B2 3, we have ff ]. Thus
there is an (n k)-parameter of solutions of (1) which lies in .

THEOREM 6. Let befixed and suppose (H) holds and that suptM2(a t) B2

is finite. Let and 6 be defined as above. Then, if a2 satisfies [a2 x2(a)l 6/2,
there exists flo > 0 (independent of a2) such that if [ill flo, then (6) possesses a
solution y(") 6 S]

Proof Consider the mapping of y 6 defined by

y(t) (t) fl
Ql(t’s’ y(s)) 00)0

g(s, y(s)) ds

+ fl Q2(t, s, y2(s))
g(s, y(s)) ds.

Arguing as above, and using (H), we have

[y(t)- x(t)] d/2 + fl (J + K)

for a. Thus , if [fl[ d/(2(J + K)) rio. Arguing as in Theorem
3, we see that has a fixed point yO) for all fl which satisfy ]fl] flo and for all
a2 which satisfy ]a2 x2()] 6/2.

4. Equivalence of the improper integral equations an the pertrbe ifferential
equation. We first consider the equivalence of (2) and (5).

THEOREM 7. Let y6 satisfy (2) and assume that for each fixed t,
limrM(Z t) 0 and limw_ M2(Z t) 0. Then y satisfies (5).
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y(t) + fl j
Proof Fix and let T be such that -T __< =< T. Consider

r Ql(t,s,yl(s)) ) f’ 0 0

o g(s, y(s)) ds
0 9(t s y(s))

g(s, y(s)) ds

) )T (t S yl(S))
dS dsy(O +

o (, s, y(s))

xx(t, T, yl(T))
x2(t, T, Y2(- T))]

Arguing as for the inequality (10), we see that

lim

and therefore y satisfies (5).

Xl(t T, yl(T))
x2(t T, Y2(- T))

To show that a solution y e 5 of (5) satisfies (2) it appears necessary to
introduce a somewhat more involved hypothesis.

Let K(t) sup {Ifx(t, x)l" x e } and let L(t) be a Lipschitz "constant" for fx
relative to ; i.e., for all x, y we have [f(t, x)- f(t, y)[ _<_ L(t)[x- Yl. We
note that K(t) is also a bound and L(t) a Lipschitz constant for 8fl/8x2 and 8fz/SX2.
We introduce the following hypothesis.

(H2) There exists a function N(t) such that the following integrals exist and
satisfy

s, N(t)]Ql(t, ZI(S))] ds

and

IQ2(t, s, z2(s))]-< N(t)ds

for all R and z 5. Further, there exist positive constants 21,22,/ and v such
that the following conditions are satisfied"

(i) MI(T, t)J2(T, T) <= 21
if T > t, and

M2(T, t)J2(T, T) <_ 22
ifT<t.

(ii) For each fixed t,

lim MI(T, t)Jl(T, T) 0
T

and

lim M2(T, t)J2(r, T) O.
T-

(iii) N(t)L(t) <= # for all e R.
(iv) (Jl(t, t) + J2(t, t))(K(t) + L(t)) <- v for all R.
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THEOREM 8. Suppose hypotheses (HI) and (H2) hold. Then there exists flo > 0
such that if y 5 is a solution of(5), with Ifll < flo, then y is also a solution of(2).

Proof For simplicity of proof we again assume that f(t, x) f(t, xl) and we
omit the subscript 1 in the proof.

By the lemma in 3, since y 5 and since (HI) holds, we have

(11)
Ix(t, T, y(T))- x(t)l -< M(T, t)ly(T)- x(T)l- Ifl[M(T, t)J(T, T)

if T >__ t. Applying (H2) (i) we obtain

Ix(t, T, y(T)) x(t)l 5 Ifll,

if T >= t. Therefore, if Ifll -< d/2, we see that x(t, T, y(T)) D, if T => t. Thus, for
each fixed t, fx(t, x(t, s, y(s))) is bounded for s t. From this and from (H 1) we see
that the derivative

(12) y’(t) f(t, x(t)) + fig(t, y(t)) fl f,(t, x(t, s, y(s)))Q(t, s, y(s))g(s, y(s))ds

exists, since the improper integral in the equation is uniformly convergent for
in compact sets. From (11) and (H2) (ii) we have

1 urthermore, since

dx
ds

we see that

x(t) lim x(t, T, y(T)).
T-

--(t, s, y(s)) Q(t, s, y(s))[y’(s) f(s, y(s))],

y(t)- x(t)= lim [y(t)- x(t, T, y(T))]
T-

Thus, using (11), we obtain

(13)

where

T dx
-lim (t s y(s)) ds

Q(t, s, y(s))[y’(s) f(s, y(s))] ds.

Q(t, s, y(s))w(s) o,

w(s) fig(s, y(s)) + f(s, y(s)) y’(s).

Now (12) may also be written in the form

w(t) f(t, y(t)) f(t, x(t))

+ fl [f(t, x(t, s, y(s))) fx(t, x(t))]Q(t, s, y(s))g(s, y(s)) ds

+ flfx(t, x(t)) Q(t, s, y(s))g(s, y(s)) ds,
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whence using the fact that fx is Lipschitzian, the mean value theorem, (11), (H
(H2) (i) and (H2) (iv), it follows that w is bounded. From

(t, x(t, s, y(s))) f(t, x(t, s, y(s)))Q(t, s, y(s))[y’(s) f(s, y(s))],

we easily obtain, using (12),

(14) w(t) f(t, x(t, s, y(s)))Q(t, s, y(s))w(s) ds.

If we multiply (13) on the left byfx(t, x(t)) and combine the result with (14), we have

w(t) [f(t, x(t, s, y(s))) f(t, x(t))]Q(t, s, y(s))w(s) ds.

Using the fact that fx is Lipschitzian, we see that it follows from the lemma in 3
and from (H1) and (H2) (i) that

[w(t)[ <= 2L(t)ifl[ IQ(t, s, y(s))w(s)]ds

RL(t)llN(t)Ilwll,

Thus, using (H2) (iii), we conclude that w satisfies the inequality

Clearly this implies that Ilwll 0, if Ifll < 1/(2/0. Thus, combining this with the
previous restriction on fl, we see that for 1/31 < min {d/2, 1/(2#)}, the theorem
follows from the definition of w.

COROLLARY 1. Let the differential equation

x’ f(t, x)

possess a solution x(t) which is bounded for all t. Let g be a function for which
hypotheses (H1) and (H2) are satisfied. Then,for all fl with ]fl] sufficiently small, the
differential equation

y’ f(t, y) + fig(t, y)

also possesses a bounded solution.
Proof See Theorems 3 and 8.
When working on a half-line it is again easy to obtain a theorem similar to

Theorem 7. The following hypothesis enables us to prove a theorem similar to
Theorem 8.

(H) There exists a function N(t) such that the following integral exists and
satisfies

Loo IQa(t, s, z(s))l ds <_ N(t)
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for all z 5+ and __> e, for some fixed e. Furthermore, there exist constants
2",/t* and v* such that the following conditions are satisfied"

(i) MI(T, t)J(T, T) <= 2" for all T >= => e.
(ii) For each fixed >= e, limr-,oo MI(T, t)J(T, T) O.
(iii) N(t)L(t) < #* for all >= e.

(iv) J l(t, t)(K(t) + L(t)) <_ v* for all >
THEOREM 9. Suppose (H) and (H) hold. Then there exists o > 0 such that if

y 5+ is a solution of(6) with Ifll < flo, then y is also a solution of (2).
Proof The proof is essentially a combination of the proofs of Theorems 1

and 8. We can in fact show that 130 min {d/2*, 1/(2"#*)} suffices.
COROLLARY 2. Let (1) possess a solution (t) which is bounded for all >=

Let g be a function for which hypotheses (H) and (H) are satisfied. Then for all
with [fl[ sufficiently small, (2) also possesses a solution which is boundedfor all >=

Proof See Theorems 5 and 9.
COROLLARY 3. Let (H) and (H2) hold and assume sup,>_ Ml(a, t)= BI and

supt_< M2(x t)- B2 are finite. Then, for every fixed , (1) possesses at least an
(n- k)-dimensional (k-dimensional)family of solutions bounded on the right (left)
of and, for all ]fl] sufficiently small, (2) possesses at least an (n k)-dimensional
(k-dimensional) family of solutions bounded on the right (left) of .

Proof The families of solutions associated with (1) exist by the discussion
preceding Theorem 6.

Since (H) and (H2) are satisfied so are (HI’) and (H) for any fixed a. By
Theorem 6, for all ]3 sufficiently small, there exists at least an (n k)-parameter
family of solutions + of (6) which are bounded for >_ a. (We note that we are,
in fact, considering a family of equations like (6).) By Theorem 9, each y W+
satisfies (2), where 13 satisfies [fl[ < flo (where flo is independent of y +). We
may similarly assert the existence of at least a k-parameter family of solutions
of (2) bounded for =< . Thus, for [fl[ sufficiently small, both families + and

+ exist, and the corollary is proved.

5. The atonomos ease. Throughout this section we assume that (1) is
autonomous"

(1’) x’= f(x).

Then we have x(t, to, Xo) x(t to, O, Xo), and we write x(t, to, Xo) x(t to, Xo)
and similarly we write Q(t, to, Xo) Q(t to, Xo), M(T, t) Ml(t T) and
M2(T, t) M2(t T).

Let us suppose that for x D, f(x), fx(X) and g(t, x) are Lipschitzian in x with
Lipschitz constant M and that g is bounded by M. We assume that there exists
a constant N such that

and

IQl(t- s, zx(s)) ds IQl(-U,Z(U + t))l du N

fo102(t- s, z2(s))lds IQ2(-u, z2(u + t)) du N
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for all z Sincef(x) is Lipschitzian in x, the solution Xl(t to, Yl) is Lipschitzian
in Y l, although the Lipschitz constant may well be time dependent. Thus, since

fx is Lipschitzian in x, the right-hand member of the matrix equation,
dZ c3fl (t to yl))Z
dt -xi (X

is Lipschitzian in Y l. Hence the solution Q l(t to, y l) of this equation is Lip-
schitzian in Yl with Lipschitz constant 21(t to), say. Similarly Qz(t o, y2) is
Lipschitzian in Y2 with Lipschitz constant/2(t- to), say. We also assume that

max ,l(t- s)ds; 22(t- s)ds max 21(-u)du; )c2(-u)du

=C

is finite. Furthermore, we suppose that limu__ Ml(u)= 0 lim,_, M2(u).
(Then, by the discussion in 3, x(t) is the only solution in 5 of (1). Also
B1 sup,<o Ml(u) and B2 sup,>o Mz(U are finite.)

It is easy to see that if (H1) and the above conditions hold, then (H2) holds.
The following theorem is strongly motivated by [4, Theorem 4.1].

THEOREM 10. Let (H1) and the above assumptions hold. Then for any there
exists a continuous real (n k)-dimensional manifold /ff + (and a continuous real k-
dimensional manifold /ff- such that any solution y of(2) with y() + (y() /[-

satisfies y 5+ (y 5). Moreover any solution y of (2) near x(a) but not on +

(-) at cannot satisfy y + (y 5).
Proof Let e be fixed. Let 6 be defined as in 3. Consider the space of all

n-functions y(a2, t) which are continuous on E {az’la2 x2(a)l < 3/2} x {t"
=> a}. For two such functions y, z we define

fi(y, z) sup ly(a2, t) z(a2, t)[.
(a2,t)E

Let be the space of all continuous n-functions on E which satisfy fi(x, y) <= d.
Then (, fi) is a complete metric space. For y e , let

(15)

-y(az,t)_=
Xl(t) ftX2(t 0, a2) Ql(t-s,yx(a2,S))o o0)g(s y(a2’s))ds’

0 0
0 Q2(t s, y2(a2, s))

g(s, y(a2, s)) ds.

We apply the Banach fixed-point theorem to show that - has a unique fixed
point in for Ifll sufficiently small.

Let y ’ and consider

I-y(a2, t)- x(t)l
0

x(t- , a)- x(t)

IQa(t s, yl(a2,s))gl(s, y(a2,s))l ds

[2(t s, y2(a2, s))g2(s, y(a2, s))l ds.
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Now, for fixed a2, y(a2, t)F+ Therefore using (H1) (which implies (HI’)), we
have

I-y(a2, t)- x(t)l Ix2(t- , a2)- x2(t- , x2())l + 21fllJ
< Bzla2 x2()l-t- 2IHIJ

<= d/2 + 2 lJ,

where we have used the lemma of 3 and the fact that 3 d/B2. Thus fi(-y, x) =< d,
if Ifll _-< d/(4J). Since -y is continuous on E we see that- _

for Ifll sufficiently
small.

Now let y, z and consider

I-y(a2, t) -z(a2, t)l I/1 Q(t s, y(a2, s))g(s, y(a2, s))

Ql(t s, zx(a2, s))g(s, z(a2, s)) ds

+ Ifll Q2(t s, y2(a2, s))g2(s y(a2 s))

Q2(t s, z2(a2, s))g2(s z(a2, s)) ds

Consider the first integral above. It is less than or equal to

Ql(t s, yl(a2, s)) [’l(S, y(a2, s)) -l(S, z(a2, s))] ds

+ [Q(t s, y(a2, s)) Q(t s, z(a2, s))]ga(s, z(a2, s)) ds
(16)

<= NM(y, z) + M(y, z) 2(t s) ds

<_ M(N + C)fi(y, z),

where we use the hypotheses of this section. Similarly, the second integral is
dominated by the same quantity. Thus

oY-y(a2, t) -z(a2, t) N 2]flIM(N + C)fi(y, z),

and therefore
fi(-y, -z) <= 2lfl M(N + C)fi(y, z).

Thus, for all fl with Ifll sufficiently small, we see that .Y- is a contractual map of .
Thus, by the Banach fixed-point theorem, (15) possesses a unique fixed point
g(a2, t)= g e for all small I/1. Clearly g(a2, t) is continuous in a2 (uniformly
in t). Since (H1) and the conditions given in this section hold, then (H2) holds.
By Theorem 9, for each a2, .(a2, t) is a solution of the differential equation (2),
provided I/1 is sufficiently small (but independent of a2). Furthermore (a2, t) is
the unique solution of (2) satisfying y 5+ and y2(a)= a2 (with la2- x2(cz)l
=< /2). For, by an argument similar to that of Theorem 7, any solution of (2),
satisfying these conditions, is a fixed point of (15) and is therefore unique for
small I/1.
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Let Y/= .i(0, a2) for 1, 2. Then (for all I/3 sufficiently small)

gl O(a2)= x 1(00- fl oo Ql(0 s, 1(s, az))gx(s, .(s, a2)) ds

and

The equation Y1 O(Y2) then clearly defines, for [Y2 x2(00 __--< 6/2, a continuous
(n- k)-dimensional initial manifold//+ such that if y is a solution of (2), and
y(00 e ./ +, then y e 5,+. Furthermore, any solution y 9+ of (2) with [a2
<= 6/2 is a fixed point of (15), where we take a2 y2(00, and it follows that
y() +.

We may similarly show the existence of an initial manifold - as stated in
the theorem.

By Theorem 3, (5) and hence (2) possesses a solution ye Using the
hypotheses of the above theorem we may apply the Banach fixed-point theorem
to show that this solution is unique. Hence there is only one solution of (2) which
is in both 5+ and

In the autonomous case we have the following theorem concerning almost
periodic solutions over the entire real line.

THEOREM 11. Let (1) be autonomous and suppose (H1) and the hypotheses of
this section hold. Suppose also that x(t) and g(t, x) are almost periodic (the latter
uniformly so with respect to x for x e ). Then for all fl with fll sufficiently small,
the unique solution y of(2) is almost periodic.

Proof For simplicity we assume thatf(x) f(x) and we omit the subscript
in this proof. Let z be any real number; we have

y(t + z)-- y(t) <__ Ix(t + z)-- x(t)l

Q(t + z s, y(s))g(s, y(s)) ds oo Q(t s, y(s))g(s, y(s)) ds

<__ [x(t + )- x(t)l

Q(t- s, y(s + z))g(s + z, y(s + )) Q(t- s, y(s))g(s + z, y(s)) ds

Q(t s, y(s))[g(s + z, y(s)) g(s, y(s))] ds

=< sup ]x(t + z)- x(t)l + IfllN(M + C)sup ly(t + z)- y(t)l
teR teR

sup Ig(t + z, y(t)) g(t, y(t))],
teR
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where we have used an inequality similar to (16) and have used the hypotheses of
this section. We therefore have

[-1 -I/3IN(M + C)] sup ly(t + )- y(t)l _-< sup Ix(t + )- x(t)l
teR tR

/ I/l sup Ig(t + :, y(t)) g(t, y(t))l.
teR

It follows that y is almost periodic (since x and g are) provided/3 is further restricted
to satisfy -IIN(M + C) > O.
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THE ASYMPTOTIC APPROXIMATION OF CERTAIN INTEGRALS*

FRANK STENGER"

1. Introduction and summary. This paper investigates the use of quadratures
for obtaining asymptotic approximations of certain definite integrals. The results
of this paper were first announced in [7].

Letfbe a function bounded on the real line R and letfbe smooth ("smooth"
will be made more precise in later sections) in a neighborhood of the origin on R.

Let K L I(R), i.e., .t IK(t)l dt < ; let m and n be positive integers and let

> 0. The integrals have the form

(1.1) I(f, 2) fi 2K(2t)f(t) dt

and the approximations take the form

(1.2) Q,(L 2) Z %f(t/2),

where

(1.3) I(L 2) Qn(L 2) + e,(L 2).

The expression (1.2) is obtained by applying a quadrature rule to the integral
(1.1). It is assumed that I( 2) Q,(f 2) for f(t) 1, t,-.., t"-.

Alternatively, let us consider

(1.4)

where

,1 fJ(O)
T,(f, 2) j2jj=0

(1.5) laj + fn tJK(t) dt,

and let us define

(1.6) r/n(f, 2) I(f, 2) Tn(f, 2).

The approximation (1.3) is often better than (1.4). Obviously, if one uses (1.3),
one need not know derivatives offat 0; one need only be able to evaluatefin
a neighborhood of 0. Also, bounds on e, are often easier to obtain than bounds
on r/,. In addition, we present examples for which le,I is much smaller than Ir/,I,
although this is not true in general. For example, with M suptnlf"(t)l, it is

shown that I(f, 2) 2e- x(t) dt f(1/2) + e(f, 2), where le(f, 2)1 -< M/(22).
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As a one-term approximation, f(1/2) is better (asymptotically, as 2 oo) than
the well-known Laplace approximation f(0) for which I(f, 2) f(0) + r/. Here
rl M1/2 where M1 is a constant. (Note that the approximation f(0) is a special
case of either (1.3) or (1.4).)

We establish the following result concerning the approximation of I(f, 2) by
Qn(f, )

Let > 0, let n, r be positive integers such that n =< r and let K(t)t LI(R).
Let cot(f; N;s)= O(s) as s 0 (s > 0), where er(f; N;s) (defined in (4.8))
denotes the rth modulus of continuity offin a neighborhood N of the origin.
Then en(j; 2) is O(2-n), O(2 log 2) or O(2-) as 2 oo when n < , n
or n > respectively.
These bounds cannot be improved with regard to order.
Asymptotic approximations in terms of diminishing mesh length have been

used before; see, e.g., Franklin and Friedman [6] where a form of a convergent
expansion is given. Error bounds have also been obtained by some authors. A
set of references concerning these is contained in a recent paper of Olver [3]. In
[3 Olver finds error bounds for the Laplace approximation.

2. Asymptotic approximation with error bounds. At the outset we state two
lemmas which we shall use in obtaining error bounds.

LEMMA 2.1. Let [c, d be a closed and bounded interval on R, and let a polynomial
P(x) ofdegree n in x be bounded by L on [c, d]. Ifx is on R but not on c, d], then

(2.1) F212x c dl.]IP(x)l -<_ L]. d .
Proof The proof is found in Timan [2, p. 88].
LEMMA 2.2. Let x > 0, and for arbitrary real let I() denote the integral

(2.2) I() le-t dt.

Iffl> Oandifp -[1 ill, then

(2.3) I(fl) ( p)px11- P- e-x
=o (/

where O. Here

ifk=O.

Proof Substituting a fl in (2.2) and integrating by parts, we obtain

(2.5) I(fl) Xfl-le-x + (fl 1)I(fl 1).

By repeated use of (2.5) we obtain (2.3) with

xp+ 1-13eXI(fl p 1).(2.6) (fl p 1),+1
Now =< 0 since x > 0 implies that I(a) > 0 for every real a, and by hypothesis
O<=p<fl<=p+l.
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2.1. Quadrature rules. Let us outline briefly some methods of constructing
quadrature formulas (1.2). Let tl, t2, ..., tm be any m distinct points on R, and
let #1,/t2, -.., #, be defined by (1.5). If n =< m, then the system of n linear equa-
tions

(2.7) Z Wjt-1
,L/k, k 1,2,-.., n,

j=l

can be used to determine the m numbers W. If K(t) >= 0 on R and if the points tj
are chosen to be the m zeros of a polynomial Pro(t) of degree m in which belongs
to the sequence of polynomials orthogonal over R with respect to the weight
function K(t), then the numbers W determined from (2.7) with n m are non-

negative and satisfy j=l Wt =/k for k 1, 2, ..., 2m. This choice of points
tj and weights W is known as Gaussian quadrature; the reader should consult
Davis and Rabinowitz [8] for further details.

2.2. Integrals over [0, col. Let e, a > 0 and let C,2m)[0, a] denote the class of
functions with bounded 2mth derivative on [0, a]. Let {L}-o denote the sequence
of Laguerre polynomials orthogonal over (0, oe) with respect to the weight function

le-t. Here each L(t) is of degree k in t, scaled so that it is monic. Let {tj}jm=
denote the m zeros of L(t) and let {Wj}jm= denote the corresponding Gaussian
integration weights. We prove the following theorem.

c2")Fa a] and 2 > max (t/a), thenTHEOREM 2.3. Iff .,

(2.8) 2t e- tf(t) dt Wf(tj/2) + 1 .qt_ ’2,
j=l

where

(2.9)

where N

(2.10)

_c)k u+2-2- (a2/2)j
j=o (e- N)j

M2m sup f(2m)(t)l
te(O,a)

M sup If(t)l,
te(O,a)

a2m
O)m (2m)---. M2m.

Furthermore, ij’a then 2 O.
Proof The left side of (2.8) may be written in the form

(2.11) F()0 U- le-tf(t/2)dr.
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If a oo, the application of Gauss-Laguerre quadrature with error to (2.11)
immediately yields (2.9) with e2 0.

For the remainder of the proof we shall assume that a < oo.
It is known (see, e.g., Davis [1, p. 37]) that the Hermite interpolant polynomial

of degree 2m in (whose coefficients may be functions of 2) which is defined by

also satisfies

(2.13) f P2m-1(t) (2m)!/],ZmLn(t)2.
Here ((0, a) if te(0, a2). Since m-point Gaussian integration is exact for

-t 2polynomials of degree 2m- and since (see [8, p. 96]) ta-le L,,(t) dt
m!F(m + ),

F(2)- Wsf < m!F(m + ) t-
= (2m)22. <O,a)SUp If(2)(01 + e tlPzm_ l(t)l dr.

(2.14)

If 2 maxj (tffa), then in the interval [0, a2] we clearly have ]L(t)] N (a2)m,
since by the hypothesis of the theorem each zero of L(t) is in [0, a2]. Hence in
[0, a2], [Pzm- x(t)[ N M + m, where Om is given in (2.10). Upon applying Lemma
2.1 to the integral on the right of (2.14) we obtain

(2.15)

where

e-’lP2m_ (t)l dt <= (M + Oom)H ,2m,

(2.16) H(x, 2m, ) le-t(t x)2m- dt.
2x

Setting t- x y, we have

(2.17) H(x, 2m, ) e + y2m+- 2e-y dy.

Now if > 0 and N is defined by N -[1 z], then (d/dt)N+ l(1 + t) 0,
and therefore Taylor’s formula with remainder yields

N

(2.18) (1 + t)a-1 =< E (--1)k(1 O)kt > 0
k=O

By Lemma 2.2,we also have
N+2m-2-k

-N-1e(2.19) y2m + 2 e y dy <= ( N)v + 2m- 2 xa E
j=0

X

(- N)2"
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Upon combining (2.18), (2.19) and substituting into (2.15) we get

(2.20) f,
a2

ae-’lP2,- 1(01 dt <__ (2,

where (2 is the quantity on the right of (2.9).
This completes the proof.
For example, if m 1, we have

f F(a + 1)f,,(()2t e-xtf(t) dt F(a)f(a/2) + e, e
222

for some ( ((2)e (0, oe). This should be compared with the well-known Laplace
approximation

2t e-Xf(t)dt F(a)f(0) + q, r/ c/2,

where c is a constant.
In the case when m =< 2, the numbers W and tk in (2.7) can be explicitly

expressed"
Form= 1, tl=a,

Wl-- 1-().

For rn 2, l, 2 + X//a + 1,

W F(a)(t2 1)/(t2 tl), W2 r(()- w
These results can be obtained by application of the procedure described in 2.1,
together with L(t) a, Lz(t) 2 2(a + 1)t + ( + 1) (see [1,p. 367]).

2.3. Integrals over [-o, o]. Let a, b > 0, and let C(,2"[-a, b] denote the
class offunctions whose 2ruth derivative is bounded on [- a, b]. For k 0, 1, 2,. ,
let Hk(t) denote the Hermite polynomial of degree k in normalized so that its
coefficient of k is unity. The polynomials Hk(t are orthogonal over (-oe, oe)

--twith respect to the weight function e Let {tj}j= denote the m zeros of Hm(t
and let {Wj}jm= denote the corresponding Gaussian integration weights.

C(z")r b] and let 2 > maxjltl/r, where rTHEOREM 2.4. Letf e ., L-- a, min (a, b).
Then

(2.21)

where

(2.22)

2e- Z:’:f(t) dt Wf(tj/2) + ,1 + ,2 .ql_ ,3,
j=l

I11 M(/2r2) 1/2e-ar2

le2 < m!
22m(2tn)! /2rn

2 ml (),2r2)J+ corn)e- z:(2/r)2"- l(m
j=o J!
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and where

(2.23)

M= sup If(t)l,
t(-a,b)

m2m sup l/2")(t)l,
t( a,b)

r2rn
W --m2""(2m)!

Furthermore, if a b , then/31 =/33 O.
Proof The proof is similar to that of Theorem 2.3 and is omitted.

3. Examples and comparison of quadrature and termwise integration.
3.1. Let us start with the well-known expansion

(3.1) fo 2e-, 2tn-

/ k=0 /k
/

where it is readily shown that

(3.2) Iql =< (2m)!//],2m.

Asymptotically the bound on the right of (3.2) is the best bound possible. By
applying Gaussian quadrature, we obtain

(3.3) F(2) Wk
k= 1 + tk/2

+ /3m,

where

(3.4) leml < (m !)2/22".

Using Stirling’s formula, we find that the bound on the right of (3.2) is roughly
22"+ 1/2/(7zm) 1/2 times as large as that on the right of (3.5). For example, with
m 1, (3.3) yields

2
F(2)

1 + 2 + /31’ 1/311 22"

This result may also be interpreted as follows" If, in order to achieve an error

=< 6, it is necessary to take 2 > 2o(6) in (3.2), then (roughly, i.e., using an estimate
based on Stirling’s formula) (3.4) yields an error =< 6 for all 2 such that 2 > 1/22o(6).

3.2. An application of Gauss-Hermite quadrature with error to the integral
form of the solution of the heat equation problem

ut Uxx, x e R, > O,
(3.5)

ul,=o g(x), x e R,

yields the following corollary.
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(2rn)COROLLARY 3.1. Let g C, (R) and let W and tk be defined as in Theorem 2.4.
Then the function u u(x, t) which solves the problem (3.5) is given for all x R
and >__ 0 by

u(x, t) , e

(3.6)
(4t)m 2()

" 2m(2m)

Z w g(x- t v t)+

The formula (3.6) thus provides a good method of computing the solution to
(3.5) in the case when is small.

3.3. An asymptotic approximation of the integral

YR 2(cosh(3.7) eKo(2) - e dx

together with an error bound for an approximation was obtained in [3]. It was
shown in 3] that

fO 2 [(1/2)k-]2((3.8) eXKo(2) e-’Pp- 1/2(2 -t-- p)-’/2 dp
=o i-)i-75 + r/’,

where

E(1/2)2"]2x//(3.9) Ir/’l
(2m) (22)2m+ /2"

If we substitute 2p in the integral in (3.8) and then apply Oauss-Laguerre
quadrature with weight e-’t-1/2 to the resulting integral, we obtain

(3.10) eXKo(2) 2 Wjl-1/2(2 nt- tj/,)-1/2 _+_ gm,
j=l

where, by use of (2.14) with (d/dt)zm(1 + t)-1/2 (1/2)2.,(1 + t)-2.,-3/2, we get

c’/2m !(1/2)2.,(1/2).,
(3.) levi -<

(2m)!(22)2.,+ 1/2

Asymptotically, the bound on the right of (3.9) is the best bound possible.
The ratio of the right of (3.9) over the right of (3.11) is equal to

22., 1/2

(rcrn)l/2E1 + O(1/rn)]

as m oo. For example, with m 1, (3.10) and (3.11) yield

e 1+ +/31

where

(3.13) 11 =< 6422.
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3.4. Comparing quadrature and termwise integration. Is the error of quadra-
ture smaller than the error of termwise integration? If we compare (1.3) and (1.4),
it is not always true that le,(f, 2)1 =< Ir/,(f, 2)1, since it is easy to illustrate examples
for which r/,(f, 2) 0 (2 fixed) and e,(f, 2) - 0. However, for 2 fixed, the question
of comparing e, and r/, is the same as the following question Is it more accurate to

evaluate I(g) I K(t)g(t)dt by termwise integration of the Taylor series expan-

sion of g about 0, i.e., to approximate I(g) by Tn(g ’=o K(t)tk dt

or to approximate I(g) by use ofa quadrature formula, I(g) Qn(g) j"__ l/Vg(tj)?
For arbitrary K and arbitrary g the question seems too difficult to answer and so
we shall restrict K and g to have special properties.

If K is nonnegative on a finite interval [- a, hi, where a, b > 0, and if K 0
outside of I-a, b], then we can take K to be a weight function and construct
Gaussian quadrature formulas. In this case, {Qn(g)}=l converges to I(g) for
every function g that is continuous on [-a, b]. (Actually a more general result is
valid; see, e.g., Davis [1, p. 353].) On the other hand there exist functions g that
are continuous and analytic on [-a,b] for which {Tn(g)},%1 diverges. For
example, if we take 0 < < min (a, b), K on [- a, b] and g ( + x2) 1, then

@ bZk+l (_ a)2 +1
T.(g) 1)

=o
& (2k t_ 1)k+

and therefore T,+ l(g) Tn(g) does not converge to zero as n . Hence T,(g)
does not converge to I(g). Hence, for all n sufficiently large, the error of Gaussian.
quadrature for this function g is less than the error of termwise integration.

Similarly, in the case when K(t) e-t if > 0, K(t) 0 if < 0, z > 0, a
class of functions g(t) for which Gaussian quadrature converges to I(g) is the class
of those functions g that are infinitely differentiable on [0, ) for which

and where

m!F(m +
(2m)!

Mzm sup g(Z’)(t)l

this follows from (2.14). For example, g sin at, 0 __< a < 2, is in this class, whereas
T,(sin ax) does not converge to/(sin ax) if a > 1. Conversely, ifg is infinitely differ-
entiable on [0, ) and if T,(g) converges, then we must have F(m + x)g(Zm)(O)/rn! - 0
as m . Additional sufficient conditions on the convergence of Q,(g) to I(g) can
be found in Davis and Rabinowitz [8, p. 97].

4. A generalization. Let W denote the class of all functions g(t) of bounded
variation on R, i.e.,

(4.1) V(g)- ; dg(t)l < ,
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and let ff denote the isomorphic class of all transforms of dg defined by

(4.2) (x) fi eix’ dg(t),

where g(t) W.
Let us list some properties of W and I which can be found in Bochner [43,

and which we shall require.
The classes W and I are rings with respect to ordinary multiplication of

Fourier transforms, i.e., if , h I, then + h if, and/ h . The corre-
sponding "product" in W is given for all f continuous and bounded on R by

If is a function which is twice differentiable on R and if 0 on R E, where
E c R is a closed and bounded interval, then , 1. Finally, if k e ff for
k 1, 2, 3, ..., and if k converges to 1 as k - v uniformly on each closed
and bounded interval on R, then the corresponding element g(t)- g(O) W
defined by (4.2)’ converges to g(t) g(O) W.

In what follows we let dgp and dh be defined by

(4.4) dgp(t) (- 1)p- dH(t k),
k=O

(4.5) dh(t) K(t) dt W dH(t tj),
j=l

where p is a positive integer,

(4.6) H(t)
( 0 if 0,

ift >= 0,

and where tj and W are chosen in (4.5) so that

(4.7) dh(t) tK(t) dt Wt 0
j=l

for k 0, 1, n 1, n >= 1. Clearly gpe W, and since K LI(R), h W.
If f is continuous on R, the pth modulus of continuity of f on an interval

(a, b) c R is defined by

(4.8) o,(f; (a, b); s) sup Afff(t)l,
t,t + rh(a,b),O <_

where

(4.9)

Given I ff we can recover g(t) g(0) W by use of

-’ e-ix’
(4.2)’ g(t) g(0) lim J_ (x)-- dx.

2re ix
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For example, if f(p) exists and is bounded on [a, b], then Cop(f; (a, b);s)= O(sp)
as s --, 0. Hence if dgp is defined by (4.4), then the quantity

(4.10)

Dg(f, s) sup
tR

is related to Cop by

sup
teR

ff(t + su) dgp(U)

k=0

(4.11) Cop(f;R;s) >= Dg(f, s).

An easy computation using (4.2) shows that

(4.12) p(X) (1 eiX)p.

Also, it may be shown by use of Peano’s theorem (for details, see Davis [1]) that
there exists a function k(t) W such that

fR fR fR(4.13) f(t) dh(t) K(t)f(t) dt I/Vf(tj) f(")(t) dk(t)
j=l

for all functionsfthat have a bounded nth derivative on R. Upon takingf(t) eg’,
we see that (4.13) yields

(4.14) (x) eit dh(t) (ix). f. eixt dk(t) (ix)n(x),

where the function e is given by

(4.5) (x) f. e’x’

Let us now prove the following theorem,
THeOreM 4.1. Let f be continuous and bounded on R, let N be a neighborhood of
O, and let K(t), t"K(t) L(R). Then

2K(2t)f(t) dt f
j=l

(4.6
Ao, f;N; + B f;N; + 2k=0

where A, B and C are nonnegative numbers.
Proof (a) Let us first assume that N R. Let us take p n in (4.12). The

function (x) (1 ei) is clearly not zero in the intervals E {x’l N Ix[ N 4}.
Let O be a twice differentiable function defined on R such that 0 if ]x[ N 1 and
0 0 if Ixl 2. Then O(x/2)- O(x)= 0 for x e R-E. Hence the function fi,
defined by fi(x)= [O(x/2)- O(x)]/,(x) if x e E, and fi(x)= 0 if x e R E, is a
twice differentiable function on R which vanishes on R- E. Therefore if,
and

(4.17) O(x/2)- O(x)= p,,,(x)t(x)

for all x R.
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Now for all x e R,

(4.18) L [O(x/2+ )- O(x/2)] O(x/2s+ 1)_ (X) 1 O(X)
k=O

as s oe. By (4.1’7) it follows therefore that

(4.19) O(x) + L ,,(x/2)fi(x/2) -’ 1
k=O

ass .
Now if #x(x) is defined by 81(x) x"O(x)/,,,(x), if Ixl _-< 2, and 81(x) 0,

iflxl > 2, then 81(x) is a twice differentiable function on R which vanishes iflxl => 2.
Therefore 81 e 1, and the function 8(x) (X)Sa(X) 1, where (x) is defined in
(4.14) and (4.15). Our construction shows that the identity

(4.20) 8(x),(x) (x)O(x)
is valid for all x R.

Upon multiplying (4.19) by (x) and using (4.20), we get

(4.21) 8(x),(x) + L t(x/2k)p,,(X/2k) (X)
k=0

We observe that the left side of (4.21) converges uniformly to (x) on each
closed and bounded interval on R. Thus if we combine (4.2)’, (4.3) and (4.10) in
(4.21), we get

(4.22) (t) dh(2t) <= V(a)oo,(f R; 1/2) + V(/z)

where a(t) a(0) and t(t) p(0) are defined by (4.2)’ using 8 and/ respectively
on the right-hand side.

We now observe that the left side of (4.22) is equal to the left side of (4.16) and
set A V(a), B V(/t) and C 0. This completes the proof for the case when
N=R.

(b) For the case when N 4: R, we set N (nl,rt2) and S (Sl,S2), where
nl < sl < 0 < s2 < n2. Let u __> 0 be an infinitely differentiable function bounded
by 1 on R such that u on S, u 0 on R N. Then the functionfl ufsatisfies
o9,(fl ;R; 1/2) og,(f; N; 1/2), fl fon S, and fl 0 on R N. Hence

(4.23)

where

ff(t) dh(2t) f(t) dh(2t) + fR If(t) f(t)] dh(2t)
-S

fRfl(t)dh(2t) + Cl fR]t" dh(2t)

(4.24) C sup It-f(t).
tR- S



ASYMPTOTIC APPROXIMATION OF INTEGRALS 403

Hence

(4.25)

where

fcf(t) dh(2t) + C/2",

(4.26) C C J It "l dh(t)l.

We now observe that the first term on the right of (4.25) is bounded by the
right of (4.16), with C 0. This completes the proof of Theorem 4.1.

Remark 4.2. The assumption t"K(t)6 L(R) is required only if N :/: R; if

N R, we merely require K eLa(R) and the existence of .t t-K(t)dt for

k 2,3, ,n.
Remark 4.3. The term 2K(2t)dt in (1.1) may be replaced by dk(2t), provided

that k W and, also, provided that _I t-dk(t)exists for s 1,2, ..., n. The

results would then be somewhat more general, although the proofs would remain
essentially the same.

Remark 4.4. The technique of proof of Theorem 4.4 is in some ways similar
(though more elementary) to that used by Shapiro [5] to establish a more general
result.

COROLLARY 4.5. Let the assumptions of Theorem 4.1 be satisfied. If r > n and

ifco(f N; 1/2) O(2-) as 2 , > O, then

0(2-") if n <

(4.27) 2K(2t)f(t) dt Wf(tff2) O(2 log 2) /f n e,
s=

O(2 -) /f n > .
These bounds cannot be improved with regard to order.

Proof. It is shown in [2, p. 107] that if r > n and co(f; N; 1/2)= O(2-),
then

O(2-") if n < ,
(4.28) co,(f; N; 1/2) O(2 log 2) if n ,

O(2-) if n > .
If we substitute co,(f; N; 1/2) < D/2" into (4.16), we find that the left of (4.26) is
bounded by

(4.29) AD/2" + BD 2-"/2" + C/2"= 0(2-").
k=0

The proofs for the other two cases in (4.27) are similar and we omit them.
In order to show that the bounds in (4.27) cannot be improved with regard

to order, we note first by the examples of the previous section that the first bound
on the right of (4.27) can be achieved. Next, we take K(t) 1 if 0 <__ <= 1, K(t) 0
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otherwise, and f(t)= log(1/t). It is easily verified then, that col(f;R; 1/2)
c(1/2)log 2, where c - 0 is a constant and cot(f; R; 1/2)= O(1/2), r _>_ 2. If

take 2/3, W 1, m in (4.5), then .I tk- dh(t) 0 for k n 1.we

The resulting quadrature error e satisfies e (cl/2) [log 2 + O(1/2)], where

c - 0 is a constant. However, any quadrature formula that is exact for 1 and
has an error which is O(1/2) as 2 oe.

This completes the proof.

Acknowledgments. The author is very grateful to the referee for his valuable
criticisms.
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LIE THEORY AND SOME SPECIAL SOLUTIONS OF THE
HYPERGEOMETRIC EQUATIONS*

WILLARD MILLER, JR.t
Abstract. To obtain all solutions of the differential equations of hypergeometric type as basis

functions corresponding to models of Lie algebra representations it is necessary to consider certain
reducible representations. These representations are classified and models are constructed. A number
of special aypergeometric functions arise naturally in the analysis, including the error and incomplete
gamma functions, the incomplete beta functions, Legendre functions of the second kind, and some
logarithmic solutions of the hypergeometric equation.

Introduction. In [1], the author studied the functions of hypergeometric
type by obtaining them as basis functions in models of irreducible nonunitary
representations of the 4-dimensional Lie algebras N(a,b). This approach is
essentially equivalent to the factorization method of Infeld and Hull [2], [3].
However, not all solutions of the hypergeometric, confluent hypergeometric and
parabolic cylinder equations were obtained by this analysis. To obtain these
special solutions it is necessary to consider classes of reducible representations
of a(a, b).

An explanation of the technique to be used is simplest in the language of the
factorization method. Recall that a factorization of a sequence of second order
differential operators {Xm), m S {m0 + n :n 0, + 1, _+ 2,... , consists of
sequences of nonzero first order differential operators {Lm+), {L2,) and constants
{%}, m e S, such that

(0.1) L+m L2, + am =-- L+ L+ + a + =-- Xm, m f3_. S.

Then if 2 is a complex constant and the function Yt is a solution of

(0.2) X,,y,,, 2y,,,

for m l, it follows from (0.1) that YI+I L-+ lYt is a solution of (0.2) with
m + 1. If a,, 2 for all m e S, then Yt / and Yl- are not identically zero if

Yl O. Thus, if we start with one nonzero solution Yl of (0.2), we can apply the
operators L, to obtain nonzero solutions Ym for all m e S. Furthermore, ifwe choose
two linearly independent solutions Yl, Yl, then we can construct two ladders of
solutions {Ym}, {Yn} such that Ym and y, are linearly independent for all m. This
gives a basis for all solutions of (0.2) with m e S.

However, if a J for some e S, then the eigenvalue equation becomes

(0.3) L-Lyt O,

and we can find a solution Yt by solving the first order equation L- Yt 0. Applying
the {Lm+ operators to Yt we get a ladder of solutions {ym},m l, + 1, + 2,...
(bounded below). However, we do not get a basis of solutions for (0.2), m + n,
n => 0, nor do we get any solutions with m n, n > 0. Similar remarks hold
for ladders of solutions bounded above.
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In this paper we extend our ladder of solutions by requiring y_ L-y 0
and interpreting (0.3) as the expression L/+y_ 0. Thus we solve one first order
equation to get nonzero y_ and another first order equation to get Yl. Then
applying the operators {L, we get a complete ladder of solutions {y,,}, m e S.

To obtain a second ladder of solutions independent of the first we solve (0.3)
by requiring Li-y- 0. (We distinguish solutions on the second ladder with
primes.) Applying the {Lm+} operators we then get solutions YI+I,YI+2,’’’.
Now require that Yl- be a nonzero solution ofthe first order equation L+y_ Yl.
It then follows that Yl- is a solution of (0.2) for m l- 1. Applying the {L7,
operators to y’t_ we get solutions y’_ 2, Yl- 3, Since y, y’ are linearly independ-
ent solutions of (0.2) for m l, it follows that Ym, Y’m are linearly independent
solutions for all m S.

Note. The above analysis is strictly correct only if there is exactly one l S
such that a 2. Ifmore than one solution of a 2, m S, exists, then the analysis
is slightly more complicated.

In this paper we shall use a Lie algebraic version of the above argument to
embed all solutions of the differential equations of hypergeometric type in ladders.
This method will automatically give recursion relations and addition theorems
for these special functions. Among the functions which appear naturally in this
algebraic analysis are the polynomials of Jacobi, Laguerre and Hermite, the error,
incomplete gamma, and incomplete beta functions, Legendre functions of the
second kind, and certain logarithmic solutions of the hypergeometric equation.

Since our method is completely algebraic, it can be used on factorizations
other than those by first order differential operators. For example, it would work
when applied to factorizations involving higher order differential operators [4],
first order difference operators [3], or first order q-difference operators [5].

1. Some reducible representations of c(0, 1). The 4-dimensional complex
Lie algebra (0, 1) with basis )+,--,3, is defined by the commutation
relations

(1.1)
[3, j+] _[_.+, [+,j-]

[t’o, +] ,j3] ,
where (_9 is the zero element of the Lie algebra. (0, 1) is the Lie algebra of the
simply connected Lie group consisting of all 4 4 matrices

CC a "
0 e b 0

(1.2) g(a, b, c, z) a, b, c, z C,
0 0

0 0 0

where the group operation is matrix multiplication. In fact,

(1.3)
g(al, bl, c, "cl)g(a2, b2, c2, "c2)

g(a + a2 + Clb2e**,bl + e*lb2,Cl + e-2,’c + "c2)
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and

exp a5 g(a, 0, 0, 0), exp b+ g(0, b, 0, 0),
(1.4)

exp cfl- g(0, 0, c, 0), exp z3 g(0, 0, 0, z).

Let p be a representation of qJ(0, 1) by linear operators on the complex vector
space Vand set J+ p(+), j3 p(3), E p(g). Then we have

(1.5)
J3’ J+] + J+’ J+’ J-] E,

[E, J+] [E, j3]___ 0,

where 0 is the zero operator and [A, B] AB BA for linear operators A, B on V.
The invariant operator

Co, J + J- j3E

commutes with J+, j3, E so that if p is irreducible we would expect Co,1 and E to
be multiples of the identity operator I on V. The spectrum S of j3 is defined to be
the set of eigenvalues of j3 on V. The multiplicity of the eigenvalue 2 S is the
dimension of the eigenspace V,

We shall classify all representations p of aJ(0, 1) satisfying the following
properties"

(A) There is a countable basis for V consisting of eigenvectors of j3. Each
eigenvalue has multiplicity one.

(B) If W, W2 are disjoint subspaces of V such that p()W = W for all
zaJ(0, 1)and W q W2 V, then either W V, W2 or W2 V,

Note that condition (B) requires only that p be indecomposable, not necessarily
irreducible.

An algebraic analysis similar to that given in 1, Chap. 2] yields the following
possibilities for p.

THEOREM 1. Every representation p of if(0, 1) satisfying conditions (A), (B)
and for which E 0 is isomorphic to a representation in the following list"

(i) The representations R(co, mo, #) de,fined .for all co, mo, # C such that
#0,0__< Remo < l, and co+too is not an integer, S= {too + n’n= 0,_+l,
+2, ...}.

(ii) The representation To,,u defined for all co, la C such that la :/: O, S {- co

+ n’n 0,-1, 2, ...}.
(iii) The representations T’o,,u definedfor all co, lu C such that :/: O, S -co

+ n’n 0, +_1, +_2,...}.
For each of the cases (i)-(iii) there is a basis of V consisting of vectors f,,,

rn S, such that

J3fm mf,,, Ef,,= #f,,,

(1.6) J+f #f,+ 1, J- (m + co)L_ 1,

C0,1fm (J + J- EJ3)f
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(On the right-hand side of these expressions we assume fm 0 if m S.)
(iv) The representation $ ,,,u defined for all co, l,t C such that # =/= O, S { co

1-n:n=0,1,2,...}.
(v) The representation $’o,,u defined for all co, (2 such that =/= O, S {-co

+ n:n- O, +_1, +2, ...).
For each of the cases (iv) and (v) there is a basis of V consisting of vectors

f,,, m S, such that

j3f,, mf,,, Ef,, #f,,,

(1.7) J+f,, (m -Jr- (D -t- 1)fro+ 1, J-f, lafm+ 1,

Co, lf (J+J- EJ3)fm #cofm"
Classes (i), (ii) and (iv) contain irreducible representations which were studied

in [1 ]. However, classes (iii) and (v) contain reducible representations. In particular,
if we restrict ]’o,, to the subspace generated by the basis vectors f,, with m -co

+ n, n 0, 1, 2,..., we get a representation isomorphic to To,,u. Similarly, if
we restrict +o,u to the subspace generated by the f,, with m -co- 1- n,
n 0, 1, 2, ..., we get a representation isomorphic to + o,u" We shall construct
models of the representations T,u and +,,u in which the J-operators are differential
operators in one and two complex variables.

First we construct a model of ]’o,u in the form of differential operators acting
on a space of functions of one complex variable z. Namely, we let V be the space
of all finite linear combinations of the functions h,(z) z", n O, +_ 1, +_2,...,
and define the J-operators on V by

d d
(1.8) j3 _co + Zd__, J+ z, J-

dz
E-- .

The basis vectors f,, are defined by f,,(z) h,(z) z", m -co + n, n an integer.
Then

Jf, -co + Z-d (-co + n)z mf,,

(1.9)
d

z" -1 (co _+_ m)fm_J+f, tz
"+1 ktf,+l, J-f zz nz"

for all m S and we have a realization of T,u. Just as in [1, Chap. 4] we can use
our model to induce a local multiplier representation of the Lie group G(0, 1)
and can compute the matrix elements of the group representation. A simple com-
putation shows that the local multiplier representation is defined by operators
B(g), g e G(0, 1), acting on the space of all functions f(z) analytic in a deleted
neighborhood of z 0:

(1.10) [B(g)f](z) exp [(bz + a)- co]f(ez + ec).

Here the group element g is parametrized as in (1.2).
In the usual way [1], the matrix elements Bk(g) of the operators B(g) are

defined by
+oo

(1.11) [B(g)hk](z) B,(g)h,(z), k 0, _+ 1, _+ 2, ...,
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where h,,(z) z". Thus,

(1.12) exp [#(bz + a) + (k CO)z]zk(1 + C/Z)k Bk(g)z, ]C/Zl < 1.

The representation property B(gxg2)= B(gx)B(gz),g,g2 G(O, 1), leads to the
addition theorem

+m

(1.13) B(gg) Btj(g)Bj(g2), 1, k 0, 1, 2,....

Comparing coefficients of z on both sides of (1.12) we find

(1.14) B(g) exp [a + (k- o)v]c-L-)(-bc),
where the L)(z) are generalized Laguerre functions [6]. Substituting (1.14) into

(1.12) and simplifying we obtain the generating function

(1.15) e zt(1 + t) (k-tLj J)(z), tll, k0,1,2,....
j=

A careful examination of (1.15) shows that Lk-t)(z) in (1.14) is (a) a Laguerre
polynomial if k, 0, (b) identically zero if k 0, < 0 and (c) a nonzero Laguerre
function, not a polynomial, if k < 0. If we write Btk(g) Ptk(g) for k, O, Big(g

Ftk(g) for k < 0, 0, and Btk(g Htk(g for k < 0, < 0, then we can write
the matrix (Btk(g)) in the form

(.6 ((

H,(g)J

The (g) are the matrix elements of the irreducible representation T,u (see Ill).
In tes of the generalized Laguerre functions, the addition theorem (1.13)
becomes

e-’(c + c)"L"[(9 + )(e + c)]
(.7)

Z (c,)J+"LJ+")[bxc’](cz)-JL- 1, n O, _+ l, _+ 2,

However, it follows easily from (1.16) that this addition theorem breaks up into
the three identities"

y (cl)J-lLJ-l)[blc,](cz)l+n-Jlj(l+n-J)[b2c2]--j
j=O

(1 18)Y (cl)-t-JL-l-J)[bc](cz)n+l+Jl.ln+l+J)[bzc2]
j=l

l0, l+nO,

/<0, /+n<0,

o (cx)J+"LJ+")[bcl](c2)-JL-)+,,[b2c2], >= O, + n < O,

where o is the left-hand side of (1.17) and all of the terms on the right-hand sides
of expressions (1.18) are nonzero.
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In a similar manner we can construct a model of $ ,,u" Let V be the space of all
finite linear combinations of the functions h,,(z) z", n 0,

_
1, ___2,.’-, and

define the J-operators on V by

d d
j3 -co- 1 Zzz, J+

dz’
J #z,

(1.19)
E--#.

The basis vectors fm are given by fm(Z)= h,,(z)= z", m -co- 1- n, n O,
+1, _+2, Then

Jafm= --co-- 1-- ZZ =(--co-- 1- n)z= mfm,

d
----z --nz"-1 (m + co + 1)fm+ 1,J+f" dz

J-fro -’lZn+l #fm-1, meS,

so we indeed have a model of $ ,,u. The local multiplier representation of G(0, 1)
induced by this model is given by the operators

[C(g)f](z) exp [#(-cz- bc + a)- (co + 1)’c]f(e-z + e-b).

The matrix elements C/k(g) are defined by

[C(g)hk](z) Clk(g)ht(z), k O, ++_ 1, +_2,...,

or

(1.20) Clk(g exp [#(a bc) (co + k + 1)r](- b)-Itk- l)(#bc).
The addition theorem obtained from these matrix elements is equivalent to (1.17)
so we omit it.

2. Models of the representations by type D’ operators. The type D’ operators

(2.1) j3 =t-, 63J+- +- +_-z Z E l,

satisfy the commutation relations (1.5) and can be used to construct models of
representations of (0, 1) in which V is a space of analytic functions of two complex
variables and z (see [1, Chap. 4]). In particular, the basis vectors fm for a model of
one of the representations classified in will take the form fro(Z, t)= gm(Z)tm,
me S. Furthermore, the equation Co,l fro Pcofm reduces to the second order
differential equation

d2 ]2Z2
(2.2)

dz2 4 - - + #(m + co) gin(z) 0.

This is the parabolic cylinder equation, and its solutions gin(Z) are parabolic
cylinder functions. In fact, the parabolic cylinder functions Dm+,(4/-z) and
D-m-,,,- l(iw/z) form a basis for the solutions of (2.2) (see [6]). (We see from this
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result that without loss of generality we can restrict ourselves to the case co 0,
/ 0, since this can always be achieved by an appropriate change of variables.)
In [1] the functions D,,(z) and D_,,_ l(iz), for m not an integer, were obtained as
basis vectors f,,(z, t) g,,(z)t" of type D’ models of the representations R(0, m0, 1).
We now proceed to give a group theoretic construction and interpretation of a
basis of solutions for (2.2) when # 1, co 0 and m is an integer.

First we use the type D’ operators to construct a model of To.l- The equation
J-fo 0 implies go(z)= c exp (-z2/4), c e C. Let us set c 1. Then using the
recurrence relation J/f,, f,,/ and mathematical induction we can verify the
result

(2.3) g,,(z) exp (Z2/4 exp (-- Z2/2), m 0, 1,2,

or

(2.4) g,,(z) (- 1)"D,,(z) (- 1)" exp (- z2/4)2 -m/zH,.(x/z), m O, 1,2,...,

where the H,(z) are Hermite polynomials [6]. We still have to compute the g,,(z)
for m a negative integer. The expression J +f_ fo becomes

Z
g’_ ,(z) g_ ,(z) exp (- z2/4)

with the general solution

g- l(z) c exp (z2/4) + exp (z2/4) exp (- w2/2) dw

=cexp(z2/4)-exp(z2/4)Erfc(-).
Here,

Erfc (z) exp (- w2) dt

is the error function [6]. Though the above integral definition makes sense only
for larg wl < re/4 as w --, oo, Erfc (z) is actually an entire function of z. For definite-
ness we set c 0. Then

(2.5) g_ l(z) / exp (z2/4) Erfc (z(v/)) D_ l(Z).

Applying the recurrence formula J-f, mfm- and using mathematical
induction we can easily derive the results

g,,(z)=(-1)"D,,(z)=-N/ exp (-z2/4)n! d-Tz"d" Iexp (Z2/2) Erfc ()lz
{2.6)

{- 1)"+1 exp (z2)2" fz (t -n! z)" exp (- t2/2) dt

m= -n- 1, n= 0,1,2,....



412 WILLARD MILLER, JR.

Thus the functions gin(Z)= (--1)mDm(Z), m 0, 1, ___2,..., yield a model for
the reducible representation T,I. In terms of this model, relations (1.6) read

(2.7) -z + Din(z) mDm- (z),

d2 z2

dz2 4
t- - + ml Om(z) O, m O, +_ 1, 4-2,....

The multiplier representation induced by the type D’ operators is

(2.8)
[T_(g)f](z, t) exp I- tZb24 ztb2 Xt- t- 2C2 bc

2 4 2
-a

f(z + bt- ct- et)

where g e G(0, 1) (see [1, Chap. 4]). Thus,

(2.9) [_T(g)f](z, t) y Bl(g)fl(z, t), k O, + 1, +_ 2,...,

where the matrix elements Btk(g) are given by (1.14). In terms of special functions
this relation is

(2.10)

exp
b2 zb zc 2 bc

4 2 2 4 2
Dk(Z + b- c)

C)-ll(Lm--+l)[l, bc)Dk + l(Z) k 0 _+ 1 _+ 2

(Recall that Lk-l)(z) =--- 0 if k => 0, < 0.) Some special cases of (2.10) are

exp --- + Dk(Z b)=
(b)l

l= ---" Dk+l(2)’

(2.11) exp(+z-)Dk(z+c)= /=0(kl)clDk-l(Z)if k=0,1,2,...,
(- ) o(kl)exp +- Dk(Z -t- C)-- ClDk_ I(Z)

l=

if k= -1,-2,...

The first of these equations in the case k 0 yields the generating function

exp
4 2 - zb Dl(Z).

/=0

Now we use the type D’ operators to construct a model of$ ),. Setting
fm(z,t) hm(z)t we find J+f_ 0 or h_l(z)= c exp(z2/4). Setting c 1 and
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using the recurrence relation J-f. f,._ we obtain

d"
h_._l(z) exp (- zZ/4)-z exp (z2/2)

i"D,(iz),

The relation J-fo f- leads to

with the solution

h’o(Z) + ho(z) exp (z2/4)

(2.12)

n-- 0,1,2,...

ho(z) c exp (- z2/4) + exp (- z2/4) exp (w2/2) dw

c exp (- z2/4) + exp (- z2/4) Erfc i-2
Again we choose c 0 and obtain

ho(z) i./ exp (- z2/4) Erfc iD_ x(iz).

Finally the recurrence formula J +f,, (m + 1)f,, + yields

h_,_ (z) (i)"D,(iz), n 1, 2, 3,...

Thus,

(2.13) hm(z) (i) iD-m- (iz), m O, +__ 1, +__ 2,....

It follows from our analysis that hm(7 (- 1)mDm(z and hm(z) (i) 1D_ (iz)
both satisfy the same differential equation, namely, the parabolic cylinder equation
(2.2) with o9 0, # 1. Furthermore, by the remarks following (0.2) in the Intro-
duction, Dm(z and D_m_l(iz must be linearly independent for all integers m.
We have succeeded in embedding two linearly independent solutions of the
parabolic cylinder equation for integer m in models of representations of c5(0, 1).
The addition theorems and generating functions for the hm(z are essentially the
same as those for the gin(Z), SO we omit their derivation.

Remark. We already know from special function theory that Dm(z and
D_ l(iZ) are linearly independent solutions of the parabolic cylinder equation.
However, it is instructive to see that this result can be obtained directly from Lie
algebraic techniques.

3. Models of the representations by type C’ operators. The type C’ operators

ct’ zz -zz- t+q
(3.1)

E /, q,# C,

also satisfy the commutation relations (1.5) and can be used to construct models
of representations of c(0, 1) in which V is a space of analytic functions of and z
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(see [1]). If we set fm(Z, t) gm(Z)tm, then the equation Co,l fro #cofm reduces to

(3.2) Zz2 + (m + q z)zz + q g,,(z)= 0.

(It is easy to show that there is no loss of generality if we set co 0, # and we
have done this in (3.2).) This is the confluent hypergeometric equation with
linearly independent solutions 1F1(- q; m q + 1 z) and zq-’lFl(- m; q m
+ z) when m q is not an integer. In [1, Chap. 4] all solutions of (3.2) for which
m is not an integer were obtained as basis vectors of type C’ models of R(0, m0, 1).
We now show that type C’ models of ]’;,1 and ;,1 will give a complete set of
solutions for integer m.

To get a model for ]’;,1 we first examine the relation J-fo 0. This implies
g0(z) czq. We set c and use the recurrence relation J/f,, fm+l to obtain

(3.3) gm(2) eZldzl (zqe -z) m!zq-mL-m)(z), m O, 1,2,....

To compute g,,(z) for negative m consider the expression J +f_ fo or

with the general solution

g’_ ,(z)- g_ ,(z)= z

where

g- (z) e e- wwq dw + ce,

e e- Wwq dw eZF(q + 1, z) q(- q, q z),

F(a, z) is the incomplete gamma function and q(a, c; z) is a confluent hyper-
geometric function [6]. We choose the solution such that c 0 and use the recur-
rence formula J-f mf_ to obtain

(3.4)

g(z)
(-1)"+1

n z +,, + [z-- eF(q + 1 z)]Uz"
(-1)mee(-q,m- q + 1;z), m= --n- 1, n= 0,1,2,....

It follows from the definition of the q-functions that a basis for T{),I is provided
by the functions

(3.5) gin(Z)--- (--1)mkIJ( q, m- q + 1;z), m O, + 1, + 2,....

Indeed, relations (1.6) become

(ff--- 1 W(-q,m- q + 1;z)= -W(-q,m- q + 2;z),

d
(3.6) Zzz + m- q q(-q, m- q + 1;z)= mW(-q,m- q;z),
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+(m+ 1-q-Z)zz+q (-q,m-q+ 1;z)=0,

m=0,_l,_+2,....

The multiplier representation induced by the type C’ operators is

_T(g)/](z, t)= e"-b’(1 c/t)-qf[(z + bt)(1 c/t), e(t- c)],

]c/tJ < 1, gG(0,1)

(see I1, Chap. 4]). It follows that expression (2.9) holds and we obtain the identity

e-bt(1 + e/t)-q+tP(-q, k- q + 1;(z + bt)(1 + c/t))
(3.7) , (-c)-2L.-+{)(bc)tP(-q,j + k- q + 1; z)tJ, Ic/t[ < 1,

j=

where we recall that L-+)(z) =_ 0 ifj + k < 0, k >__ 0. Various generating functions
for the Laguerre polynomials and incomplete gamma functions are special cases
of this identity.

We now use the type C’ operators to construct a model of ’o,. Set f,,(z, t)
h,,(z)t" and compute h_ x(z) from J+f_ 0. The result is h_ (z) ce and we

choose c 1. From the recurrence relation J-f,, f,,_ it follows that

d"
h,,(z) z+"+ l[eZz-q- 1]

dz
(.s)

eZ(m+ 1,m-q+l;ze-i), m=-n- 1, n=O,1,2,....

To get ho(z) we solve J-fo f-1 or zh’o(Z) qho(z) -e. The solution is

(3.9) ho(z) z eWw--1 dw + cz,
or ho(z)= (ze-i)qF(-q, ze-i) if we set c 0. The recurrence formula J+fro

(m + 1)f,,+l then yields

e d
hm(z [e-Z(-z)qF(-q, -z)]

m! clz

e=tP(m + 1,m q + 1;ze-i=),

Thus the functions

m= 0,1,2,....

(3.10) h,,(z) etP(m + 1,m q + 1;ze-i), m 0, +_1, +__2,...,

form a basis for our model. It follows from the remarks in the Introduction that
g,,(z) (-1)"(-q, m q + 1;z) and h,,(z) are linearly independent solutions
of the same confluent hypergeometric equation for each integer value of m,

4. Some reducible representations of s/(2). The 3-dimensional complex Lie
algebra s/(2) is defined by the relations

(4.1) [J3,0-+ +_0 + [0+,#-] 23.
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Here, s/(2) is the Lie algebra of the group SL(2) of all 2 2 complex matrices

(4.2) g=
c

a bd)
such that det g 1. The group operation is matrix multiplication. We can make
the identifications

(4.3)

exp af3

0 e -a/2
exp b+

1, a,b,cC.exp c- 1--Just as in 1 we let p be a representation of s/(2) by linear operators on the
vector space V and set p(+) J+, p(3) j3. The invariant operator

(4.4) Cl,O J +J- + j3j3 j3

commutes with J+, j3. Again we classify all representations p of sl(2) which satisfy
conditions (A) and (B) of {} 1. A straightforward analysis yields the following results.

THEOREM 2. Every representation p of sl(2) satisfying conditions (A), (B) is
isomorphic to a representation in the following list"

(i) The representations D(u, too) defined for complex u, mo such that mo +_ u
are not integers and 0 <= Remo < 1, S {too + n’n O, +_1, +_2,...}, D(u, mo)- D(-u- 1, mo).

(ii) The representations T,, u C, such that 2u g: O, 1, 2, ..., S { u + n"

n 0,1,2, ...}.
(iii) The representations T’,, 2u not an integer, S {-u + n" n O, +_ 1,

+_2,...}.
(iv) The representations $,, u C, 2u : 0, 1,2, ..., S {u- n’n 0, 1,

2, ...}.
(v) The representations $’, 2u not an integer, S {u- n" n O, +_1,

+_2,...}.
(vi) The representations D(2u), 2u 0,1,2,..., S {- u, u + 1,..., u 1, u}.
(vii) The representations D’(2u), 2u 0,1,2,..., S {n" n 0, +_ 1, +_ 2, ...}.
For each of these representations there is a basis { f"*} for V such that

J3fm mfm, J+fm (--u + m)fm+ 1,

(4.5) J-fro --(--U-- m)fm_l,

Cl,0fm (j+j- + j3j3 j3)f"* u(u + 1)fn, rn S.

(We make the convention that f"* 0 on the right-hand side of expressions (4.5)
ifmq S.)

(viii) The representations D +(2u), 2u 1, 0, 1, 2, ..., S {- u + n" n 0,___
1, _+ 2,...}. D +(2u) is defined by the relations

(4.6)
J3fm mfm, J+f"*- fro+l,

J-f., (u + m)(u m + 1)f.,_ 1, C 1,of., g(IA nt- 1)f.,, mS.
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(ix) The representations D-(2u), 2u 1,0, 1,2,..., S {-u + n’n 0,
+_ 1, + 2,...}, defined by

j3f" my,., J+f (u- m)(u + m + 1)fro+l,

(4.8)

J-fro J-1, Cl,ofm u(u -JI- 1),,
The representation D +-(2u), 2u O, 1, 2, ...,
-.}, defined by
J3f,. mf,,, J+f" (u + m + 1)f"+ 1,

mS.

S={-u+n’n=O,

J-f" (u m + 1)f,._ 1, Cl,of u(u + 1)f me S.

Classes (i), (ii), (iv) and (vi) contain irreducible representations and were
analyzed in [1, Chap. 5]. The remaining representations are reducible and we
shall construct models of them in this paper.

We start by constructing a model of T’u in which V is a space of functions of
one complex variable z. Let V be the space of all finite linear combinations of
h,(z) z", n 0, + 1, _+ 2, and define the J operators on V by

d d d
(4.9) J -u+Zz, J+ -2uz+z z’ J-

dz"

The choice f,.(z) z", m -u + n, is easily seen to yield a model of T’u. Expres-
sions (4.9) define a local multiplier representation of SL(2) given by

[B(g)f](z) (bz + d)Z"f bz +
where g e SL(2) is defined by (4.2). The matrix elements Bk satisfy

or

[B(g)hkJ(z) B,,(g)h,(z), k O, +_-1, ++_ 2,

(az)d2"-(1 + bz/d)2"-(1 + c/az)= 2 Blk(g)zl’

Ibz/dl < 1, Ic/azl < 1.

Thus,

B,(g) a’d2’-b-F(2u k + 1) f(-k,- 2u + l;l- k + 1;bc/(ad))

(4.10)
F(2u- 1+ 1) F(/- k + 1)

k,/= 0,_+1,_+2,

(Recall that F(a, b;c; z)/F(c) is an entire function of a, b, c and is analytic and
single-valued in the z-plane cut along the positive real axis from + to c.) Here
we interpret the ratio F(2u- k + 1)/F(2u- + 1)as

F(2u- k + 1)
F(2u- + 1)

(4.11) (2u- k)(2u- k- 1).-. (2u- + 2)(2u- + 1)

[(2u-/)(2u- l- 1). (2u- k+2)(2u- k+ 1)]-
if/> k + 1,

ifl= k,

if/<k- 1.
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The hypergeometric function defining Blk(g is a nonzero polynomial if k, 0,
a nonzero function not a polynomial if k < 0, and is identically zero if k __> 0,
< 0. This result is similar to that for the matrix elements (1.14) in 2. From (4.10)

we have the generating function

b
zk(1 + z)2u-k +-

Z

k F(2u-- k+ 1) F(-k -2u+ l’l- k+ l’b)
Z

:_ r(2u- t+ 1) F(1- k 4- 1)

Izl < 1,

The addition theorem for the matrix elements reads

(4.12) Bk(g,gj Bj(ga)Bjk(g2), l, k O, + 1, +2,

valid for g l, g2 in a suitably small neighborhood of the identity element in SL(2).
(See [1, Chap. 5] for a more detailed analysis of the domain of validity of expres-
sions like (4.12).)

A similar computation will give us the matrix elements of $’,. Namely, we
choose

d d d
(4.13) j3 u Zzz, J +

dz’
J- -2uz + z2-dz

and set f,,,(z) h,(z)= z", rn u n, n 0, _+1, +2,.... The multiplier re-
presentation determined by these operators is

[C(g)f](z) (cz + a)2"f(dz ++ g SL(2).

In the usual manner we find that the matrix elements C,k(g) are given by the
generating function

(dz)kaZ"-k(1 + cz/a)Z"-k(1 + b/dz)k= C,(g)z*,

[cz/a[ < 1, [b/dz[ < 1.

It follows that the Clk(g are obtained from the Blk(g by making the interchanges
a ,-- d, b - c.

To get a model of D’(2u) we use the differential operators (4.8) again and set
f,,(z) z", m -u + n, n 0, +_ 1, +_ 2, It follows that the matrix elements
Dtk(g of this representation are identical with the matrix elements Blk(g in (4.10),
except that now 2u is a nonnegative integer. The matrix elements are zero if k is
in the interval [0, 2u] and is not in this interval; otherwise they are nonzero.

The representations D + (2u), D- (2u), D + (2u) have no models in one complex
variable; the simplest models require two complex variables. Nevertheless, it is
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not difficult to determine the matrix elements by a purely formal computation.
The existence of an analytic basis for the two complex variable models will justify
the formal computation [1, Chap. 2]. Thus, we formally exponentiate the Lie
algebra representations in classes (viii), (ix) and (x) to local Lie group representa-
tions by operators _T(g) and define matrix elements T/k(g) by

(4.14) _T(g)f_,+k y’, T(g)f_,+t, k 0, +_1, +2,..-

Note that we have written m -u + k for m S. Comparing relations (4.6)-(4.8)
with (4.5) we see that our desired matrix elements can be obtained from the Btk(g)
of (4.10) by a simple formal change of basis. Thus, for the representation D+(2u)
we have

akdZ,_b,_F(-k, -2u + l;l- k + 1;bc/(ad)).(4.15) T(g)

The matrix elements are zero if k >= 0, < 0 or k >= 2u + I, 0 <_ _<_ 2u; otherwise
they are nonzero.

The matrix elements for D-(2u) are

(4.16) T(g) atd2u- ( c)- F( 1, 2u + k; k + bc/(ad))
r(k- + )

They are zero if k =< 2u, > 2u or k < 1, 0 =< =< 2u; otherwise they are nonzero.
The matrix elements for D + -(2u) are

ad2,_(c)k_F(2u- k + 1)F(-1,-2u + k;k- + 1;bc/(ad))
(4.17) (g)

F(2u-l+ 1) F(k-l+ 1)

where the ratio of gamma functions is interpreted as in (4.11). The T(g) are zero if
k > 2u + 1, < 2u or k __< 1, _>_ 0; otherwise they are nonzero.

Each of the families of matrix elements (4.15)-(4.17) satisfies the addition
theorem

Tt(glg2) Tj(g,)T(g2), l, k 0, + 1, +2,...,

for all g l, g2 SL(2).

5. Models of the representations by type B operators. The type B operators

J/=z+tN-z
-1 ,]3

6

satisfy the commutation relations of s/(2). We shall construct models of representa-
tions of sl(2) such that the basis vectors take the form fro(Z, t)= gm(Z)tm, m S.
Then the equation C,ofm U(U + 1)fro becomes the equation

d2 d ](5.2) z2 Z2z2 z + zm gin(z)= u(u + 1)gm(Z).
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Expression (5.2) is equivalent to the confluent hypergeometric equation.
In fact, for u not an integer, (5.2) has the two linearly independent solutions
Z-"lFl(-u m" -2u" z) and z +" F(u m + 1"2 + 2u" z) In [1] we were able
to embed all solutions of (5.2), for which u + m were not integers, as basis vectors
in models of the representations D(u, too). We shall now construct all solutions of
(5.2) in the cases where at least one of u + m is an integer.

We start by using the type B operators to construct a model of T’. (Since this
procedure should be familiar to the reader by now, we shall eliminate some of the
details of the construction.) The relation J-f-u 0 implies g_(z) cz -u. We
set c 1 and use the relation J+f,, (m U)fm+ to go up the ladder of solutions.
The result is

g-u+,(z) Z-UlFa(-n; -2u; z), n 0, 1,2,

The relation J+f-,-1 =-(2u + 1)f_, yields, by choosing the integration
constant appropriately,

g_,_a(z) -(2u + 1)eZz"+ V(-2u 1,z) Z-UlFl(1; -2u; z),

where v(a, z) is the incomplete gamma function [6]. We can now use the relation
J-f, -(m + U)fm- to move down the ladder and verify that in general

(5.3) g,,(z) z-"F(-m u; -2u; z), m=-u+n, n=0,+l,+_2,....

The type B operators define a local multiplier representation

[T_(g)f](z, t)= ebzt/{a+bt)f[ zt at + c-]
(at + c)(d + bt)’-d

[c/atl < 1, Ibt/dl < 1,

g SL(2). It follows that the functions (5.3) satisfy the identities

ebzt/(d + bt)

(5.4)

2

1 + 1F1 k; 2u;
(at + c)(bt + d)

ad- t(bt)t- k r(2u k + 1)
-_ F(2u- + 1)

F(-k,-2u + 1;1- k + 1; bc/(ad))
F(/- k + )

where d (1 + bc)/a, Ic/atl < 1, Ibt/dl < 1.

aFI(1; -2u; z),

k 0,__+1, +2,...

An exactly similar computation applied to the representation +’, yields the
basis functions

hm(z) z-"Fa(- m u; 2u; z)

z-"el F1(m u 2u; z), m=u-n, n 0,1,2,...
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Note that (5.2) depends on u only in the form u(u + 1). Thus, it follows that the
representations T’u and +’-u-1 have the same spectra, and their eigenfunctions
gin(Z), hm(z) satisfy the same differential equations as long as 2u is not an integer.
Thus, by the remarks in the Introduction,

(5.6) z-"lF(-m-u;-2u;z), z"+lFl(u-m+ 1;2u+2;z)

are linearly independent solutions of (5.2) if m -u + n, n 0, _+ 1, _+2,-..,
and 2u is not an integer. Similarly, comparing T’-,-x and +’, we find that the
functions (5.6) are linearly independent solutions of (5.2) if m u n, n 0,
+ 1, +_ 2, ..., and 2u is not an integer. Due to the fact that (5.2) depends on u(u + 1)
this leaves us with only the cases 2u 1, 0, 1, to consider.

The reader can verify that the representation D + (2u) yields a model with basis
functions

(5.7)
gin(Z) (-- 1)mz-"U?(- m u, 2u z),

n 0, _+l, _2,

In particular,

g_,_(z) (-1)-"-leZz"+IF(-2u 1,z), g,(z) (- 1)’z-"eW(2u + 1,z).

Similarly, D-(2u) yields a model with basis functions

g,,(z) (- 1)mez(m u, 2u; e-i’z),

m -u + n, n=0,+_1,+_2,....

According to the remarks in the Introduction the functions (5.7), (5.8) furnish
linearly independent solutions of (5.2) when 2u -1, 0, 1, 2,... and u + m is
an integer.

The representation D / -(2u) admits the basis functions

(5.9)
g,,(z) z"+ lFx(u m + ;2 + 2u; z),

rn= -u+ n, n= 0, +_l, +_2,..- 2u=0,1,2,-...

However, there are no models of D’(2u) and D(2u) for type B operators.

6. Models of the representations by type A operators. The type A operators

J+=tz+t =t,
(6.1)

J- =t-1 z 1-Z-z-t+qz
also satisfy the commutation relations of s/(2). We construct models of representa-
tions of s/(2) such that the basis vectors becomefro(z, t) gm(Z)t and the eigenvalue
equation C,of u(u + 1)f, becomes

(6.2) zZ(1 Z)z2 z2(m- q + 1) + mqz g,,(z)= u(u + 1)gm(z).
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This equation is equivalent to the hypergeometric equation, and for 2u not an
integer it has the linearly independent solutions z-UF(m u, u q 2u; z)
and z"+lF(m + u + 1, u q + 1;2 + 2u;z). In [1, Chap. 5] models of D(u, mo)
were used to construct all solutions of (5.2) such that u -+_ m were not integers.
We shall now find all solutions when this condition is violated.

To construct a model of T’, using type A operators we solve the relation
J-f_, 0to get g_,(z) cz-"(1 z)q+". Setting c 1 and using J +fro (m u)f,,+
we obtain

(6.3)
g.,(z) z-"F(m u, u q; 2u; z)

z-"(1 z)q-’F(-u- m,-u + q;-2u; z)

form= -u+n,n--0,1 2, The equation J+f_ -(2u+ 1)f_ yieldsu-1

(6.4) If ]g-,- l(z) (2u + 1)z" + w- 2,- 2(1 w) +" dw + c

z-"F(-2u 1, -u q; -2u; z)

if the constant c is chosen appropriately. (Note that for 0 =< z __< 1,

B(x, y, z) w, 1(1 w)r- dw, Re x > 0, Rey > 0,

is the incomplete beta function [6].) Finally, the relation J-f,, -(m + u)f,,_
yields the basis functions (6.3) for all m S.

A similar computation applied to the representation +’, gives basis functions

(6.5)
hm(2 z-"V(m- u, -u q; -2u;z),

n 0, __+1, +2,

Since the differential equation (6.2) depends only on u(u + 1), it follows that
T’, and +’-,-1 have the same spectra and that the eigenfunctions g,,(z), h,,(z) satisfy
the same equation (6.2) as long as 2u is not an integer. By the remarks in the
Introduction,

(6.6) z-"F(m-u,-u-q;-2u;z), z"+lF(m+u+ 1,u-q+ 1;2u+2;z)

are linearly independent solutions of (6.2) if m u is an integer and 2u is not an
integer. Also, comparing T’-,-1 and $’, we can show that the functions (6.6) are
linearly independent solutions of (6.2) if m + u is an integer and 2u is not an integer.
We are now left with only the cases 2u 1, 0, 1, to consider.

To construct models of D’(2u), 2u 0, 1, 2, ..., we must satisfy both J+f, 0
and J-f_, O. Thus, gu(Z)= clz-", g_,(z)= CzZ-"(1 z)q+u. It is easy to show
that this is possible only if q takes one of the values -u, -u + 1, -.., u 1, u,
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in which case a basis for the model is

(6.7)

--q (m u),(- u q),
g(z) z"

o (- 2u),,n

(1 z)q-m " (-u- m),(q- U),z,
o (- 2u),,n!

2u=0,1,2,..., m+uaninteger.

To find a model ofD + -(2u) we must construct a basis which satisfies J +f_
zu+ l u-10 and J-fu+ 0. Thus, g-u- (z) c1 gu+ l(Z) c2zu+ x(1 z)-This time it turns out that a basis exists for all q C"

g,,,(z) zu+ 1F(m + u + 1, u- q + 1;2 + 2u; z),
(6.8)

2u= -1,0,1,..-, m+uaninteger.

It follows that for q -u, -u + 1, ..., + u, 2u 0, 1, 2, ..., the functions (6.7)
and (6.8) are linearly independent solutions of (6.2).

The requirements J+f, O, J+f-,-1 0 define a model of D-(2u). Then
g,(z) caz-", g-,-a(z)= c2z"+a, ca,c2 :/: O. Setting ca 1 and using J-fu+l

f, we find

,[ (q-u)"(-2u-1)"z"(1 z)-"-z-g.+ l(Z)
2u +----- o 2u),n

(6.9)
,:/:2u+

+
2u +

(-1)(2u + 1)z"+ln z

Note that q 4= -u,-u + 1,..., u- 1, u for models of D-(2u). Otherwise we
would obtain a model of D’(2u). We could now use the relation J+fm --(m
+ u + 1)(m U)fm+l to compute g,+,(z) for n 2, 3, -.., but as the expressions
are somewhat complicated this will not be done here. The general theory of
ladder operators guarantees that none of these function will be identically zero.
Now we apply the relation J-fro fm- to go down the ladder of solutions from
m u to m -u. The result is

(6.10) gin(Z) (-- 1)m-"r(u m + 1)z-"
(m u),,( u q),,z

o (-- 2u),,n

m- u,u l, -u.

The relation J-f_, f_,_ gives

zU+g-,- l(Z) (2u) !(-u-

in agreement with our earlier result with c2 =-(2u)!(-u- q)2,+a. Finally,
going down the ladder again we obtain

F(u rn + 1)( z"+aF(m + u + u-q+ l’2 + 2u’z)U q)zu+ ....g,(z)
2u +

t6.)
m= u- n, n= 1,2,-...
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These basis functions and the basis functions for D + -(2u) are linearly independent
solutions of (6.2) for m => -u but dependent for m < -u. In the special case
2u 1, the above expressions have to be slightly modified.

To construct a model forD+(2u) we make use of the relations J-f_, J-f,+
0. Thus h_,(z) clz-"(1 z)q+", h,+ 1(z) c2Zu+ 1(1 z)q-"- 1. We set Cl

and apply J +f_ f-, to get

h_._ (z) z-" Y (- q u).z" q + u
).+ z.+

.=o n!(n-2u- 1)
+

2u+ 1
(- llnz.

n:/:2u+

The functions h_,_,(z), n 1,2,..., can then be computed by applying J-
recursively. Applying J + successively to f_, we get

nt-

hm(z)= F(u+rn+ 1)(1- z)q-"
(- u- m),(- u + q),z,

o (- 2u),n

m --u,--u -k- 1,..., u-- 1,u.

Then it follows that J+fu--fu+l, where c2 -(2u)!(q- u)2,. Finally, we find
that

(q u)2F(u + rn + 1)z"+ 1(1 z)-"h,,(z)
2u +
F(u-rn+ 1,u +q+ 1;2+2u;z)

for m u + 1, u + 2, Again the results must be slightly modified for 2u 1.
The basis vectors gin(Z) of D-(2U) and hm(z) of O+(2u) are linearly independent
solutions of (6.2) for all m S. This completes our construction of solutions of
(6.2).

As a final example we consider a transformation of the type A operators which
leads directly to the Legendre and Gegenbauer functions"

(6.12) J+ +1 (z2 1)--ZZ -+- zt- + to35.
These operators were used in [1, Chap. 5] to construct addition theorems and
recursion relations for Gegenbauer polynomials. Here, we use them to construct
a model of D+( 1). The relation J-fl/2 0 gives gl/Z(Z) C. Setting c and
going up the ladder of solutions we find

(6.13) g,+ 1/2(z) Pn(Z), n O, 1,2,...,

where the P,(z) are Legendre polynomials. The relation J+f_ 1/2 f1/2 yields

"g- 1/(z) In + c.
+

Setting c 0 we find that g_ /(z) -Q0(z), where Q(z) is a Legendre function
of the second kind. Now proceeding down the ladder of solutions we obtain

(6.14) g-1/2-,(z) Q,(z), n O, 1,2,....



LIE THEORY 425

The recurrence relations (4.6) become

[(Z2- 1)d + z(n+dz 1)] g"+l/2(z)=(n+l)g"+3/2(z)’
(6.15) (z2 1)zz nz g.+ 1/2(z) -ng,_ 1/2(z),

(z 1)-z + 2Z-z n(n + 1) g+ /a(z)= O,

n= 0,_+1,_+2,..-.

Since this last equation depends only on n(n + 1), it follows that P,(z) and Q,(z)
satisfy the same differential equation. In fact, P,(z) and Q,(z) are linearly independ-
ent. We have not proved this here, but it could easily be shown by constructing
a model of D-(- 1) and comparing it with the present model. A number of impor-
tant generating functions for the Legendre functions can be obtained from the
multiplier representation associated with D+( 1), but this will be left to the
reader. We note in conclusion that an analysis similar to the above suffices to
construct all of the Legendre functions of the first and second kinds.
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A UNITARY TRANSFORM RELATED TO SOME INTEGRAL
EQUATIONS*

KUSUM SONIC

and

Summary. The integral equations

d Jo[2x/k(x t)]f(t)dtF(x) 7

d
JoE2w/k(t x)]g(t)dt

are usually considered separately, and their solutions

and

d loE2x//x t)]F(t)dt

d Io[2w/k x)]G(t)dtg(x) Ux
respectively are regarded unique. These solutions in general are not square integrable. We prove that
under certain conditions either one of these two integral equations gives the square integrable solution
of the other. Moreover,

d f JoE2xfk(x-t)]f(t)dt=O and
dx d f Jo[2w/k( x)]g(t) O,

have nontrivial solutions. Therefore the assumption regarding the uniqueness of the solution of the
second integral equation is not valid unless some additional conditions are specified.

It is well known that the homogeneous integral equation

may have nontrivial solutions of the type x’eEx. The nontrivial solutions given here are not of this
type.

Let f(x) be a real-valued function of the Lebesgue class L2(-oc), ct3) and let
q(00 be its Fourier transform. It is well known that the simple transformation
c/)(oO -+ ei’q(oO, h real, corresponds to a translation of the function f by h. Here we
consider a similar bounded transformation q(00 --, eih/=b(). It is of interest in the
study of the following integral equations:

()

and

F(x) (x- t)/2j[2x//k(x- t)]f(t)dt

(2) G(x) (t x)/2IE2x//k(t x)]f(t) dr.
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These were first studied by Burlak in connection with the solution of a pair
of dual integral equations occurring in diffraction theory [2]. If k is replaced by
0 k, the right-hand expression in (1) and (2), respectively, can be expressed in
terms of Sonine operators P and Q defined and used earlier by Sneddon [5, p. 21].
Burlak gave formal solutions of these integral equations using Laplace transforms.
Later Srivastav [7] obtained the solutions with the help of Sonine’s first integral.
We take a somewhat different approach. Iff is integrable in every finite interval,
(1) can be written as

F(x) F(v + 1)]-’k/2 (x t)- Jo[2w/k(t- u)]f(u)dudt.

Similarly, under suitable conditions regarding the convergence of the integral
at infinity, we may write (2) as

G(x) [r(v + 1)]-k/2 (t x) - Io[2w/k(u t)]f(u) du dr.

Thus the solutions of (1) and (2) essentially depend upon the properties of fractional
integrals and the corresponding solutions of the integral equations

(3)

and

(4)

d Jo[2x/Zk(x t)]f(t)dt

h(x) xd lo[2x/k(t x)]f(t) dt.

If we denote the Fourier transform of f(x) and g(x) by b(a) and
respectively, we formally obtain, from (3),

(5) p(a) e-ik/%b().

Obviously, (a) and b(a) have the same L2-norm. However, it is not true that
the solution f(x) of (3) belongs to L2(0 t3) whenever g(x) does [6, Theorem
To resolve this apparent inconsistency, we obtain the unitary transformation which
corresponds to (5) and determine the conditions under which it reduces to (3).
This process yields some interesting results, particularly the relationship between
integral equations (3), (4) and their solutions as given by Burlak and Srivastav.

1. Notation. L2 denotes the class of functions L2(-oo oo). A function
belongs to L2(a b), -oe < a =< b < 0, if it belongs to L2 and is zero outside
(a, b). The Fourier transform of a function f is defined and is denoted-in the
usual manner,

f(a) (2re)- 1/2 eiXf(x) dx.

The integrals are convergent in the mean square sense. Two functions are equal if
they differ at most on a set of measure zero. Finally H(x) denotes Heavisides’s
unit function; it is 1 for x > 0 and zero otherwise.
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2. Main theorem. Our main result is the following theorem.
THFOREM. Let f, g belong to L2 and let k > O. If

(6) Tf(x) x
and

(7) T*g(x)= XX

{Jo[2x//k(x- t)]H(x- t)- Jo[2x//k(a- t)]H(a- t)} f(t) dt

{Jo[2x//k(t- b)]H(t b)- Jo[2x//k(t- x)]H(t x)}g(t)dt

for some a, b real, then T and T* are unitary transformations in L2 and T* T-1
Proof. Consider the transformations

(8) sf(a) e-’/f()
and

(9) S*(a)-- eik/a(O0.

Since these transformations are unitary, there exist L2 functions #(x) and 2(x)
such that

(10) /(a) e-/’f(a)
and

(11) ,() e’k/(Z).
From (10), using the inverse Fourier transform, we have

f e- iox e- iaa

l(t) dt j_ e-i/f() d

(12) /(a)f(a) da

h(-y)f(y)dy,

where (a) is in L2 and the Fourier transform of a function h(y) is given by

_
e- iax e- iaa

h(y)
io

e-ik/e-iya d

z-{ez’+y) eZ(a+Y)}e-k/Zdz, z e-in/2o.
2hi

The line of integration in the above integral can be shifted from u 0 to
u c (c > O, z u + iv) because the integrand is bounded and analytic and
tends to zero uniformly as Izl - o in the strip 0 < u < c. Thus,

1 c+ih(y) {(1/z)eZ(X+Y)e-k/z (1/z)e(a+Y)e-k/} dz.
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This integral can be evaluated easily by using contour integration. If c, k > 0,

if
c+ioo {Jo[2x/], s > O,

(1/z)e kn dz
2rci ioo O, S <0.

For s > 0, this follows directly from the integral representation of Bessel
functions [8, p. 177], and for s < 0, we complete the contour to the right. This
gives

h(y) Jo[2x/k(x + y)]H(x + y)- Jo[2x//k(a + y)]H(a + y).

Substituting for h(y) in (12), we obtain

(13)
{Jo[2x//k(x y)]H(x y)- Jo[2x//k(a y)]H(a y)}f(y)dy

Tf(x).

Similarly from (11),

(14) 2(0 dt h,(- y)g(y) dy,

where

’- e-iax e-ib
J_ elk iya da,hi(y) - z-(e -(x+y)z e-(b+Y)Z)e -k/z dz (Z ei’/2)
2rci i

-Jo[2x/k(-x y)]H(-x y)+ Jo[2,/k(-b y)]H(-b y).

Hence substituting for hx(y) in (14), we have

2(x)
dx

(5)
T*g(x).

{Jo[2w/k(y x)]H(y- x)- Jo[2x//k(y b)]H(y b)}g(y) dy

Let and - denote the Fourier transform operator and its inverse re-
spectively. From (8), (10) and (13), - S T. Similarly from (9), (11) and (15),
-S* T*. From the fact that S and S* are unitary and the inverse of each
other, it follows that T and T* also have these properties.

This proves the theorem. An obvious conclusion is that the integral equations
dp(x) Tf(x) and O(x) T*g(x) have solutions in L2 if and only if b(x) and O(x)
are in L2. These solutions are unique and are given by f(x) T*dp(x) and g(x)

TO(x) respectively.
Now we consider integral equations which are of interest in applications"

(16) (x) xx JoE2x//k(x t)3f(t) dt
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and

(17)

(18)

and

(x) -d-xd JoE2x/k(t x)]g(t)dt.

For the sake of convenience, let

P(f, a) JoE2w/k(a t)]f(t) dt

(19) Q(g, b) JoE2x//k(t b)]g(t)dr.

IfP(f, a) and Q(g, b) exist for some a, b, Tf(x) and T*g(x) reduce to the right
side of (16) and (17) respectively. However, the square integrability off(x) and g(x)
does not guarantee the existence of P(f, a) and Q(g, b). For instance, let

h(x) Ixl-/zJ(2ll), - < x < .
By using the asymptotic expansion for the Bessel functions, it can be shown

that although h(x) is in L2 for 1/2 < ( < 1, yet P(h, a) and Q(h, a) do not exist for
any a. If the integral equation (16) has a solution f(x) in L2, then P(f, a) exists for
almost all a, (x)= Tf(x) and the solution is f(x)= T*c(x). In particular, it
follows that (i) (x) is in L2 and (ii) P(T*c, a) exists for some a. Conversely, if (i)
and (ii) are satisfied, then T*c(x) satisfies (16). If, in addition, Q(b, b) exists for
some b, the solution takes a simpler form. This is our first corollary.

COROLLARY 1. The integral equation (16) has a solution in L2 if and only
dp(x) is in L2 and P(T*dp, a) exists for some a. If Q(d?, b) also exists for some b, then
the solution is

d JoE2w/k(t x)]b(t)dr.(20) f(x) T*c(x)
dx

In a similar manner, we can prove the following corollary.
COROLLARY 2. The integral equation (17) has a solution in L2 if and only

(x) is in L2 and Q(T, b) exists for some b. If P(d/, a) also exists for some a, then the
solution is

d JoE2x//k(x t)]O(t)dt.(21) g(x) Tel(x)
dx

The L2 solutions of(16) and (17), whenever they exist, are unique. In general,
however, these integral equations also have solutions not belonging to L2. Before
we discuss this any further, we state some pertinent known results. In some of the
statements below, the variables have been changed in an obvious manner.

The solution of

(22) dp(x) -xd JoE2x//k(x t)]f(t)dt,
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given by Burlak and Srivastav, can be expressed as

d Io[2x/k(x t)]b(t)dt.(23) f(x)

Srivastav gives the solution of

(24) ,(x) xx Jo[2w/k(t- x)]g(t)dt,

as

(25)

boo,

g(x) Io[2x//k(t x)],(t)dt.

Finally, Burlak’s solution of

(26) 9(x) xx Io[2w/k(t x)]g(t) dr, b < ,
can be expressed as

g(x) -x JoE2w/k(t x)]C/(t) dr.(27)

A comparison of (16) and (22) shows that whenever b(x) is in L2(a o) and
satisfies the conditions of Corollary 1, (16) has a solution fl(x) given b.y (20) and a
solution fz(x) which is 0 for x < a and is given by (23) for x > a. In general, these
two solutions are different. For instance, let 4(x) be a step function,

{;(x)=
a < <= x < fl <
otherwise.

It can be shown that 4(x) satisfies all the conditions of Corollary 1. We omit
this verification, which is straightforward. Below, we give the solutions fl(x) and
fz(x) explicitly:

fl ( X,

x<;

fa(x) Jo[2x//k(fl-x)],
Jo[2x//k(fl- x)]- Jo[2x//k(- x)],

Io[2x//k(x )] Io[2w/k(x fi)], fl < x,

fz(x) Io[2w/k(x )], a < x < fl,

0, x<.

Obviously fl (x) and fz(x) are linearly independent. It follows that (x) fl(x)
-fz(x) satisfies (16) for 4(x) 0. With the help of asymptotic expansion for Io(z
(see [8, p. 203]), it can be easily established that, as x ---, oo,

(28) fz(x) > e2’/p-, 0 < k’ < k.
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Hence we make the following conclusion.
COROLLARY 3. If 49 =-- O, the integral equation (16) has nontrivial solutions which

approach 0 as x
One basic difference between the solutions fl(x) and fz(x) is that if qS(x) is

zero in (-, z), then so is fz(x) but not necessarily fl(x). We investigate the con-
ditions under which f(x) also would vanish in this interval. It turns out that when-
ever this happens the two solutions are identical. We now prove the following
corollary.

COROLLARY 4. If dp(x) belongs to L2(0 oo), the following statements are
equivalent"

(i) The integral equation (16) has a solution belonging to L2( o).

(ii) {Jo[2x//k(t- x)- Jo[2x]}qS(t)dt O,

d Io[2w/k(x- t)]qS(t)dt, x > z.(iii) T’ok(x)= -x
Proof. The integral

(29) {Jo[2x//k(t- a)] Jo[2x/]}(t)dt
converges for all real a. Therefore the condition that the solution f(x) T*dp(x) 0
for x < e implies that

d {Jo[2x//k(t- x)] Jo[2x/-3}(t)dt 0(30)
dx

for x < . Let 0 =< I1 < R < and let

(31) F(z) {JoE2x//k(t- z)- JoE2x/t]}dp(t)dt, z x + iy.

We shall prove that F(z) is analytic in Izl < R. By Taylor series expansion,

Z
kn/2 -n/ZJnE2t](32) Jo[Zx//k(t- z)] Jo[Zx/] ,=a ..

Since IJ,(x)l _-< min(1,1x/21") and the above series converges absolutely and
uniformly in 0 __< Izl =< R, e __< < , we have

(33) V(z)

where

and, for all n __> 1,

A, J,[2 ]t-"/2dp(t)dt,

IA.I 2 4) 2 (J.[2 J)zt-’dt

<__ d/) 2(Clk" .t_ c2),
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with c l, C2 depending upon k and only. Therefore F(z) is analytic in Iz] < R. By
(30), F’(x)= 0 for -R < x < , so that F’(z)= 0 and consequently F(z) is a
constant. But by (31), F(0) 0. Hence F(z) 0 in 0 < Izl < R. In particular,
F(x) 0 for -R < x < R. Since R is arbitrary, (ii) holds for all x. This proves that
(i) implies (ii). To prove the converse, we have only to observe that if (ii) is satisfied
for all x, then T*dp(x) 0 for x < and P(T*ck, a) exists for all a < so that by
Corollary 1, T*b is the L2 solution of (16). Thus (ii) implies (i).

Next, from (31), for x > ,
V’(x) Ux Jo[2x//k(t x)]b(t)dt

{Jo[2x//k(t- x)]H(t- x)- J02x/]}b(t)dt

Io[2x//k(x t)]b(t)dt T*qS(x).

Since F(z) is analytic, from the above relation it follows that (ii) and (iii) are
equivalent. This proves Corollary 4. In applications usually 4(x) is 0 outside a
bounded interval. Obviously, the solution T*b will also vanish outside that
interval if and only if (ii) is satisfied. However in that case 4(x) 0 a.e.

Recently we proved [6] using a different technique that the integral equation

dp(x) -x Jo[2x//k(x t)]f(t) dt

has a solution in L2(0, ) if and only if b(x) is in L2(0, o0) and its Hankel transform
o,

JoE2xt3dp(t) dt,

vanishes a.e. in (0, k). We prove here that for a 0, Corollary 4 (ii) is in fact
equivalent to this condition.

COROLLARY 5. Let dp(x) belong to L2(0 oo). Then

G(x) {Jo[2x//k(t- x)] Jo[2x/]}b(t)dt

--0,

if and only if o4(x) is zero a.e. in (0, k).
Proof. Let

=I J[2x/k(t + x)] Jo[2], > O,
2(0

0, t<0.

Since 2(t) belongs to L2(0, ), by Parseval’s relation for the Hankel transform
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[4, p. 213],

(34)
o2(U)ob(u) du

(k u)- ’/2J,[2,,/x(k u)]oC(u du.

The Hankel transform of 2(0 is obtained by first using the expansion (32). If
G(x) 0 for all x, since G(z) is analytic, so is G’(x). But from (34), for x > 0,

Jo[2Zx(k u)]oq(u)du

do[2x/]ob(k- u)H(k- u)du.

Hence G(x)= 0 for all x implies that ob(u)= 0 a.e. in (0, k). Conversely if
oq(u) 0 a.e. in (0, k), then, for all n >__ 1,

B, IF(n)] -1 (k u)"-odP(u)du

=0.
By using Parseval’s relation for the Hankel transform and the integral (see [8,
p. 373]), the B, can be written as

B, k"/zt-"/zJ,[2w/t](t) dt

=0, n>l.

Comparing this with (31) and (33), it follows that the analytic function G(z) 0
in Iz < oo and consequently G(x)= 0 for -oo < x < oo. This completes the
proof.

Now we consider integral equations (17) and (24). If b oo, (25) does not
always give a solution of (24) even though the L2 solution TO may still exist.
Furthermore, the solution of (24), when it exists, is not unique.

If g(x) and gz(X) denote the solutions given by (21) and (25) respectively,
corresponding to the step function O(x) 1 for x in (e, fl) and O(x) 0 otherwise,
then

and

g,(x)

Jo[2v/k(x /3)] Jo[24k(x

So2w/k(x 003,

x> fl,

O, X<O"

g2(x) Io[2v/k(fl- x)],

Io[2v/k(0- x)] Io[2v/k(fl- x)], XO.
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The behavior of these solutions as x oo leads to the following conclusion.
COROLLARY 6. If O(X) O, the integral equation (17) has nontrivial solutions

which tend to 0 as x oo but are unbounded as x -oo.
As usual, it is interesting to determine when the solutions of (17) vanish in

some neighborhood of _+ oo. Let O(x) satisfy the conditions of Corollary 2. Ob-
viously, the solution T(x) must be 0 in (- , z) whenever if(x) is 0 there. How-
ever, (x) may vanish in some neighborhood of + but TO(x) may not. In fact, the
situation is no different from the one discussed earlier in the case of integral
equation (16). The following corollary is similar to Corollary 4 and can be proved
in essentially the same manner.

COROLLARY 7. If d/(x) belongs to L2(-oo, fl), the following statements are
equivalent"

(i) The integral equation (17) has a solution belonging to L2(-oo, fl).

(ii) {Jo[2x//k(x t)] Jo[2x//( kt)l}O(t) dt O, - < x < .
(iii) T(x)= x Io[2w/k(t- x)]ff(t)dt, x<fl.

In particular, if O(x) belongs to L2(0 fl), the solution TO(x) vanishes outside
this interval if and only if (ii) is satisfied.

Finally, we consider the integral equation (26). If b oo, g(x) as determined
by (27) is not necessarily its solution. We note that (27) can be written as g(x)

T*(x) provided that Q(,, x) exists for some x. A necessary and sufficient
condition that this be a solution of (26) is given below.

COROLLARY 8. Let O(x) belong to L2 and let Q(#/, x) and P(T*#/, x) exist for
some x. Then (27) gives a solution of (26), b <= ce, if and only if

d
Jo[2 k(x- t)]T*O(t)dt=O - <x < c.(35)

dx

Proof The conditions on O(x) are sufficient to ensure that

g(x) T*O(x)=

if and only if

,(x) Tg(x)=
dx

J2w/k(x t)]g(t) at.

The last relation, together with (26), proves (35).
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NONLINEAR EIGENVALUE PROBLEMS FOR SOME FOURTH
ORDER EQUATIONS. I" MAXIMAL SOLUTIONS*

SEYMOUR V. PARTER"

Abstract. A constructive, nonlinear iterative method is developed for the construction of a positive
solution (u(t), 0(0) of nonlinear fourth order ordinary differential equations of the form u" 20Hi(t,
u, 0), 0" 2uH2(t, u, 0). A solution (u(t), 0(t)) is positive ifu(t) =< 0 =< 0(0. Under appropriate hypothesis,
these solutions are maximal in the sense that if (o, ) is any other solution, then u =< o and =< 0.
Thus, bounds on (u, 0) are a priori bounds on all solutions. Uniqueness is discussed. In special cases

these positive solutions may be patched together to give other solutions.

1. Introduction. This work was motivated by the paper [8] of F. Odeh and
I. Tadjbakhsh who discussed two specific nonlinear eigenvalue problems which
arise in the study of the equilibrium states of a thin rotating rod. They consider
the nonlinear system

u"=2sin0, 0<t< 1,
(1.1)

0"=2ucos0, 0< t< 1,

and the two sets of boundary conditions

(A) u’(0) 0(0) u(1) 0’(1) 0

and

(B) u’(0) 0’(0) u(1) 0(1) 0.

N. Bazley and B. Zwahlen [1] also studied equations (1.1) under the boundary
conditions (A).

These interesting papers employ a variety of methods to obtain information
about the existence of solutions when 2 > 2o, the smallest positive eigenvalue of
the linearized problem (linearized about zero). In particular, Odeh and Tadjbakhsh
prove that there always is a nontrivial solution (in both cases) when 2o < 2.
Moreover, they make the following conjecture" Let 2j denote the jth positive
eigenvalue of the linear problem at zero. If 2, < 2 2,+1, then there are (at
least) n + 1 distinct nontrivial solutions (uj(t), Oj(t)), j O, 1,..., n.

We became interested in these problems because the physical solution (u(t),
O(t)) must satisfy (see the discussion in [8, p. 83])

(1.2) 10(t)l < .
However, there is no discussion of the "size" of the solution obtained in [8]
and [1]..

In this report we formulate a general class of problems which includes equa-
tions (1.1) and study the existence and uniqueness of maximal solutions. While
we are unable to prove that all solutions of (1.1) which satisfy the boundary
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conditions (A) or (B) also satisfy (1.2), we are able to establish the existence of a
maximal, positive solution which also satisfies condition (1.2).

The general problem is formulated in 2. In 3 we remind the reader of some
basic facts about second order problems as developed in [-2] and our previous
work. Section 4 uses those results and an idea due to Picard [12, Chap. VIII (in
the second order case) to establish the existence of positive solutions. Section 5 is
devoted to the unicity of such positive solutions and their role as maximal solutions.
Because these positive solutions are maximal solutions and provide bounds on all
solutions, it is particularly relevant that our proof is a constructive proof. The
basic existence proof is based on a nonlinear iteration which may be easily adapted
to numerical computation. Finally in 6 we establish the conjecture of Odeh and
Tadjbakhsh for the boundary conditions (B).

In Part II of this work we turn to the application of fixed-point theorems to
prove the existence of other solutions. In particular, the conjecture is established
for the boundary conditions (A).

2. The general problem. Let

Lk[q] (pk(t)q’)’ c(t)qg(t), k 1,2,

be two regular Sturm-Liouville operators;that is,

c(t) c[0, ], c(t) >__ o, o <= <= ,
Pk(t)6Cx[O, 1], Pk(t) -> po > O, 0 < < 1,

for some positive constant Po-
Consider the nonlinear systems of ordinary differential equations

Ll[u] 20H(t, u, O) 2Fx(t, u, O), 0 < < l,
(2.1)

L2[0] 2uH2(t,u,O)= 2Fz(t,u,O), O< < 1,

where the functions u(t), O(t) are required to satisfy the homogeneous boundary
conditions

Ao[u] aou(O) bou’(O) O,

A[u] au(1) + bu’(1)= 0,
(2.2)

Bo[O] o0(0) floO’(O)= O,

B,[O] ,O(1) + fl,O’(1)= O,
with

(2.3)

(2.4)

Ok, ak, ilk, bk >= O, k 1,2,

ak + bk > O, Zk - k > O, ao + a > O, zo + > O.

For simplicity, we assume that the functions Hk(t, u, O) are even, i.e.,

H(t, u, O) Hk(t, lul, 10l), k 1,2.

The operators Lk[qg], k 1, 2, could equally well be two uniformly elliptic second order operators
on a smooth domain f ". However, the present treatment enables us to concentrate on the essential
ideas and not get concerned with some technical "smoothness" questions.
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With this convention we see that -2 is an eigenvalue with eigenfunction (-u, 0)
whenever 2 is an eigenvalue with eigenfunction (u, 0). Thus we may restrict our
attention to the case where 2 > 0.

DEFINITION 2.1. The problem described by (2.1), (2.2) is called normal if

H(t,u, O) > O, k 1,2,

for all [0, 1] and all real u, 0.
DEFINITION 2.2. The problem described by (2.1), (2.2) is called a cutoffproblem

if there is a finite positive constant (R) such that
(i) Hk(t, u, O) Hk(t, u, (R)), (R) =< 10[, k 1, 2,

(ii) H(t, u, 0) > 0, [0[ < (R), k 1, 2,
(iii) Ha(t, u, (R)) 0 for all I0, 1] and all u.

A pair of functions u(t), O(t) is called a solution to a cutoff problem if and only if
they satisfy equations (2.1), (2.2) and

IO(t)l < O.

Remark. The problem of Odeh and Tadjbakhsh described by (1.1) is reduced
to a cutoff problem by setting

H(t,u,O)

Hz(t, u, O)

sin 0 n

o 11--<5’
2

cosO IOI <-=2’

0, IOl >.
We assume that F(t, u, O) C except possibly at [01 (R) in the cutoff case.

We shall consider the following hypotheses on the coefficients.
HYPOTHESIS 1. The function Fl(t, u, O) is monotone nondecreasing in 0 and

F2(t, u, O) is monotone nondecreasing in u. We write

C30F(t u O) > O, --F2(t u, O) > O(2.5)
c3 ......

even though this statement may not be true at [0[ 0. Observe that these con-
ditions may be rewritten as

H(t, u, O) + O-H(t, u, O) >= O,

(2.5a)
He(t, u, O) + U-uH2(t, u, O) >= O.

HYPOTHESIS 2. There are two functions G(t, 0), G(t, u) such that

0 <= H(t, u, O) <= G(t, 0),

0 < Hz(t, u, O) <= Gz(t, u)
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for all [0, 1] and all u, 0.
HYPOTIJESIS 3. The functions Hk(t,u,O) are monotone nonincreasing in

lul, 101; that is,

(2.6) U-uHk(t,u, O) <__ O, 0 H(t, u, 0) _<_ 0, k 1,2.

However, the system (2.1), (2.2) should be genuinely "nonlinear." Hence, in
addition to (2.6) we assume if fi, 0 are positive and C is a constant with C > 1,
then

(2.6a) H(t, C, CO) < H(t, fit, 0), k 1,2.

3. Second order problems, a review. Let L[q] be a regular Sturm-Liouville
operator and consider the nonlinear boundary value problem

L[qg] =f(t, qg), O< < 1,
(3.1)

Ao[q] A l[q] 0,

where the boundary operators Aoqq, A[q] are described by (2.2), (2.3). The
function f(t, 99) is continuous in (t, q) and satisfies a Lipschitz condition in q with
Lipschitz constant 7.

DEFINITION 3.1. Let ql(t), Pz(t) C[0, 1]. We say q dominates q if

(3.2a) qgz(t) < q91(t), 0 < < 1,

(3.2b) qg(0) 992(0 q(0) < qg’(0),

(3.2c) q91(1) q2(1) q)q(1) < q(1).

If (pl(t) dominates q92(t we write

(3.3) q92 -< q.
The concept of domination2 arises in the study of second order equations

through the strong form of the maximum principle and Hopf’s lemma [23. To-
gether these principles give the following assertion" If

(3.4a) L[q] =< 0,

then

(3.4b) q(t) > min {0, qg(0), q(1)}.

Moreover, if equality (in (3.4b)) occurs at any interior point, then

(3.4c) q(t) const.

Furthermore, if q(0) > 0 and

(3.5a) 99(0) min q(t), 0 =< =< 1,

then either (3.4c) holds or

(3.5b) o’(0) > O.

We shall make essential use of this concept only in 5 where we are concerned with uniqueness.
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Similarly, if o(1) => 0 and q(t) assumes its minimum at 1, then either (3.4c)
holds or

(3.5c) o’() < 0.

These facts lead to the following basic lemma.
LEMMA 3.1. If L[q] =< 0, Ao[q] A[p] 0, then either O(t) 0 or

0 < (t).

The next lemmas collect some basic facts about solutions of the problem
(3.1) as developed in [2] and [11]. In [11] we developed the basic ideas for the
special case where

L bo=b =0.

However, using Lemma 3.1 one may easily adapt the proofs to the general case.
LNNa 3.2. Let f(t, ) be bounded for all (t, ). Suppose a(t)e C[0, 1 satisfies

L[a] f(t, a), L[a] f(t, a),
(3.6)

Ao[a] O, A[a O.

Then there is a function u(t) which is a solution of (3.1) which satisfies
(3.7) u(t) < a(t).

Moreover, z(t) is any other solution of (3.1) which satisfies
(.8a) z(t) a(t),

then

(3.8b) z(t) u(t).

This solution is uniquely determined by an iterative process. Finally, if f(t,u)
f(t, u),f(t, u) f(t, u) for all u, then the corresponding solution ux of

C[u] f,(t, u,), Ao[u,] A,[u, O,

which is determined by this process, satisfies
(3.8c) u < u.

Similarly, let b(t) C2[0, 1] satisfy

Lib] > F(t, b), Lib] f(t, b),
(.9)

Ao[b N 0, A[b] N 0.

Then, there is a function v(t) which is a solution of (3.1) which satisfies

(3.10) b(t) v(t).

Moreover, if z(t) is any solution of (5.1) which satisfies

(3.11a) b(t) z(t),
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then

(3.1 lb) v(t) <= z(t).

This solution is uniquely determined by an iterative process. Finally, if f2(t,u)
<= f(t, u),f2(t, u) f(t, u) for all u, then the corresponding solution v2(t) of

L[v2] f2(t, v2), Ao[v2] A,[v2] 0,

which is determined by this process, satisfies
(3.11c) v -< v2

Proof. Consider the iteration

L[z+ ] z+ f(t, z)

with Zo(t) a(t) or Zo(t) b(t). The argument proceeds by induction as in [11].
On the basis of this lemma we define two operations U(a), V(b) by

(3.12) U(a) u(t), V(b) v(t).

LEMMA 3.3. If f(t, q) is monotone nondecreasing in q, then (3.1) has a unique
solution.

COROLLARY 3.1. Suppose f(t, q) <= 0 and is monotone nondecreasing in q
for q >= O. Then there exists a unique nonnegative solution q(t). Similarly, suppose
f(t, q) >= 0 and is monotone nondecreasing in q for q <= O. Then there exists a
unique nonpositive solution q(t).

Proof. We consider only the first case. We observe that if there is a solution
q(t) of (3.1) it is nonnegative. Let

f f(t, o), o >__ O,
fo(t, q)

f(t,O), q <= O.

Then, q(t) is a solution of (3.1) if and only if q(t) is a solution of

L[q] fo(t, q(t)).

But, this equation has a unique solution because fo(t, q) is nondecreasing in q.
LEMMA 3.4. Suppose f(t, q) <_ O. Suppose there is a constant k > 0 such that

f(t, q) =0 fork <__ q.

Let q(t) be a solution of (3.1). Then

o <= o(t) <= k.

Proof. Suppose there is a point to 6 (0, 1) such that

O(to) > k.

Then there is an interval [p, 6] about to such that

(3.13) q(t) > k for [p, 6].

Naturally, we take [p, 6] as large as possible.
Case 1. p 0, 6 1. Then L[q] 0 and the maximum principle asserts that

q(t) 0 < k.
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Case 2. p 0, 6 < 1. Then q(6) k and qg(0) is a maximum of q(t) for
If p(t) is not constant on this interval, we have

q,’(0) < 0.

However, the boundary condition Ao[qg] 0 implies that q)(0) 0 or qo’(0), q)(0)
> 0. Since p(0) > k, we have a contradiction.

Case 3. p > 0, 6 1. In this case we see that

p’(1) > 0, p(1) => k.

But the boundary condition Aa[cp] 0 implies that

qg(1) 0 or qg’(1)q)(1) < O.

Case 4. 0 < p < 6 < 1. Then p(p) p(6)= k and

L[qg] =0, p <t <b.

The maximum principle asserts that

p(t) k, p =< =< b.

This completes the proof of the lemma.
COROLLARY 3.2. Suppose the functions H(t, u, O) satisfy the conditions (i),

(ii), (iii) of Definition 2.2 for a cutoff problem. Suppose (u(t), O(t)) is a solution of
(2.1), (2.2). Then

IO(t)l _-< (R).

4. Positive solutions. We now return to the general problem (2.1).
DEFINITION 4.1. A pair of functions (u(t), O(t)) will be called a positive solution

of (2.1) if it is a solution and also satisfies

(4.1) u -< 0 -< 0.

Note. If (u(t), O(t)) is a solution, so is (-u(t), -O(t)). Moreover, if either func-
tion, u(t) or O(t), is nonpositive (but not identically zero), the other function
dominates the zero function.

DEFINITION 4.2. A positive solution (u(t), O(t)) will be called a maximal solution
if whenever (w, ) is another nontrivial solution of (2.1), (2.2) (not necessarily
positive) then

(4.2) I(t)l < O(t), Iw(t)l lu(t)[ u(t).

Note. By the remarks above, (4.2) is equivalent to

(4.2’) (t) <= O(t), u(t) < w(t).

LEMMA 4.1. Suppose (w(t),(t)) is a nontrivial solution of (2.1), (2.2) and
(t) >__ O. Then (w, ) is a positive solution.

Proof. Apply Lemma 3.1 and the remarks above.
Consider now the problem obtained by "linearizing" (2.1) about (u, 0) (0, 0).
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We obtain

/[u] ,0/-/(, 0,0), Ao[u] A[u] O.
(4.3)

L2[0 2uH2(t, O, 0), Bo[0 B,[O] O.

Let K(s,t), K2(s,t) be the Green’s functions associated with the operators
La[u] and L210] respectively, subject to the appropriate homogeneous bound-

ary conditions (Aj[u] Bj[O] 0,j 1, 2). Then the equations (4.3) are equivalent
to

u(t) -2 K(t,x)H(x,O,O)O(x)dx,

o(x) g(x, )/-/.(y, 0,0)u(;,) dy.

On substitution, we obtain

(4.4)

with

O(t) 22 G(t, s)O(s) ds

(4.4a) G(t,s) Kz(t,x)Ka(x,s)H(s,O,O)H2(x,O,O)dx.

The kernela G(t,s) is a positive (nonnegative) kernel. Hence, the smallest
eigenvalue 2(] corresponds to an eigenfunction of constant sign (see [4], [5], [6],
[7]). Thus, we may normalize the eigenfunction (Uo(t), Oo(t)) associated with the
smallest positive eigenvalue 2o > 0 so that

(4.5) Uo "< 0-< 0o.
Moreover, if 2o < 2, we may scale (Uo(t), Oo(t)) so that (4.5) holds and

(4.6) Rk=-- 1-- 2--k(0,0)_] <0’ k= 1,2.

A straightforward calculation now shows that

Ll[uo] =< 2Fl(t, Uo, 0o),

c:[0o] >= XF:(t, Uo, 0o),

Ao[Uo] AI[uo] 0,

Bo[0o] Bl[0O] 0.
(4.7)

These inequalities, together with the mappings of Lemma 3.2, enable us to
construct an "increasing" sequence (u,(t), O,(t)).

LEMMA 4.2. Let Hypotheses and 2 hold. Suppose (u,_ l(t), 0,_ l(t)) satisfies
Ll[Un-1] <= ,Fl(t, Un- l(t), On- l(t)),

L2[O,- 1] /F2(t, Un-l(t), On- l(t)),
(4.8a)

In fact, G(t, s) is an oscillation kernel in the sense of Gantmacher-Krein [3]. However, we shall
not make use of this fact in this report.
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and

Ao[Un-1] 0, Al[bln-1] O.
(4.8b)

Bo[O._l] __< O, Bl[On-1] O.

Let u.(t) be the solution of the nonlinear equation

(4.9) L[u,] 2F(t,u,,O,_(t)), Ao[u,] A[u,] 0

determined by Lemma 3.2; that is,

(4.10) u, U(u,_).

Then, unless u,_ (t) satisfies (4.9) and u,(t) u,_ (t), we have

(4.1 la)

and

(4.11b) L2[O,_ ] _-> 2Fz(t, u,_, 0,_ ) >= 2Fz(t, u,(t), 0,_ ).

Then, we choose O,(t) as the solution of

(4.12) L2[0,] 2Fz(t, un(t), 0,), Bo[0,] B[O.] 0,

determined by Lemma 3.2; that is,

(4.13)

Then, unless 0,_ satisfies (4.12) and 0,_ (t) =- O,(t), we have

(4.14a) 0,_ -< On
and

(4.14b) La[u,] 2F(t, u,, 0,_ ) <= 2F(t, u,, 0,).

In either case,

(4.15) Un bin-l, On-1 On,

and (4.8a) and (4.8b) hold with n replaced by.n.
Proof. Hypothesis 2 permits us to apply Lemma 3.2, while (4.1 l b) and (4.14b)

follow from Hypothesis 1.
COROLLARY 4.1. Suppose 0 < 2o < 2. Then we choose (Uo(t), Oo(t)) as the

solution of the linear eigenvalue problem (4.3) associated with 2o which also satisfies
(4.5), (4.6) and (4.7). Thus we generate a sequence (u,(t), O,(t)) with

(4.16) Un(t) <--_ Un_l(t) "< 0 "< On_l(t) <= On(t).

The functions Un(t), On(t) satisfy (4.9) and (4.12) respectively. Moreover, either
Un(t =-- U l(t)or

(4.17a) Un "< Un-1"

And, either On(t) =-- On-l(t) or

(4.17b) On_ "< On.
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COROLLARY 4.2. Let Hypothesis 3 hold also. Then each of the equations (4.9)
and (4.12) has a unique solution. These are u,(t) and O,(t) respectively.

Proof. Apply Corollary 3.1.
COROLLARY 4.3. If we are dealing with a cutoff problem and wefurther "scale"

(Uo(t), Oo(t)) so that Oo(t) < tO, then

(4.18a)

and

O,(t) <__ 0, n= 1,2,....

Proof. Apply Lemma 3.4.
We obtain our next result from the same argument.
LEMMA 4.3. Let Hypotheses and 2 hold. Suppose (w,_ l(t), (I),_ l(t)) satisfies

Lx[w,_ 1] >= 2Fl(t, w,_ l(t), ,- l(t)),

Lz[n-1] <= 2Fz(t, Wn- l(t), (I)n-

(4.18b)
A[wn-1] O, Al[Wn_l] O,

Bo[tn-1] O, Bl[tn_l] O.

Let Wn(t) be the solution of the nonlinear equation

(4.19) Ll[w,] 2Fl(t, w,, (I),_l(t)), Ao[w,] Al[w,] 0

determined by Lemma 3.2; that is,

w. V(w._ ).

Then, unless w,(t) =_ Wn-l(t) and Wn-l(t) satisfies (4.19),

(4.20a) w,_ -< w.
and

(4.20b) Lz[tn-11 2Fz(t, w,, (I),_ 1).

Thus, we may choose ,(t) as the solution of
(4.21) Lz[(I)n] 2Fz(t, Wn(t), (b,), Bo[,] Bl[n] O,

determined by Lemma 3.2; that is,

u(,._l).

Then, unless (b,(t) ,_ l(t) and ,-1 satisfies (4.21),

(4.22a)

and

(4.22b)

In either case,

L Wn 2F1 (t, w,, , 1) >= 2F1 (t, w,, ,).

w,_ <= w,, (, <= (,- 1,

and (4.18a) and (4.18b) hold with n replaced by n.



NONLINEAR EIGENVALUE PROBLEMS FOR SOME FOURTH ORDER EQUATIONS 447

TI-IEOREM 4.1. Suppose 2o < 2 and Hypotheses 1 and 2 hold. Suppose (Uo(t), Oo(t))
is the eigenfunction pair of the linear eigenvalue problem (4.3) which also satisfies
(4.5), (4.6), (4.7). Suppose there exists a pair offunctions (w, (I)) such that

(4.23a) w -.< uo -.< 0 --< 0o -< (I),

(4.23b) Ll[w] >= 2Fl(t,w,), Ao[w <_ 0, Al[w] < O,

(4.23c) L2[] <= 2F2(t,w,), Bo[ >= 0, BI[] > 0.

Then, there exists a positive solution (u(t), O(t)) of (2.1), (2.2). Moreover,
either (w, ) is a solution or

(4.24) w -< u -< Uo "< 0 -< 0o "< 0 -< .
Proof. Let (u,(t), O,(t)) be the monotone sequence generated by Lemma 4.2

with (Uo, 0o) chosen as above. Let (w,, (I),) be the monotone sequence generated by
Lemma 4.3 with wo -_- w, (I)o (I). We shall prove

(4.25a) Wo < u,, 0, =< (I)o,

(4.25b) w, =< Uo, 0o _-< (I),.

Then the theorem follows from standard estimates and the Ascoli-Arzela lemma.
Indeed, each pair of sequences (u,, 0,), (w,, (I),) will converge to a solution pair
(u, 0) and (, )) respectively. Thus, there may be two solutions.

The proof follows by induction. By (4.23a) we have (4.25a), (4.25b) for n 0.
Suppose

Wo =< u,_, 0n- =< 0"
Then

Ll[un- 1] <= 2Fl(t, u,_ 1, On- 1) < 2Fl(t, Un- 1, o)"

Using Lemma 4.2 we construct Un(t) which satisfies (4.9), and using Lemma 3.2
we construct a function (t) which satisfies

LI[] 2F1(t, , (1)o), Ao[] AI[@] 0

and

Wo=W<__<=u,.

Thus, we establish (4.25a) for all n. A similar argument establishes (4.25b) and
completes the proof.

THEOREM 4.2. Let 2o < 2 and suppose Hypotheses 1 and 2 hold. Suppose we
have a cutoff problem. Then there is a maximal solution (u(t), O(t)).

Proof. Let

W max {2Fl(t, w, O); 0 =< __< 1, Iwl <
and let w(t) be the solution of

Ll[w] W >= 2Fl(t, v, O) for all v(t),

Ao[w] 0, A,[w] 0.
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Let (t) (R). Then

L2[ -c2(t)(R) _< 2F2(t, w, (R)) 0,

B0[O => 0, B[O] > 0.

Thus, the pair (w, (I)) satisfies the conditions of Theorem 4.1 and there is a positive
solution ((t), )(t)) which is the limit of (w(t), O(t)).

Let (v(t), W(t)) be any other solution. Then, because (v, W) is a solution to
the cutoff problem, we have

I’e()l __< o.(4.26)

Hence,

Therefore,
,v(, v(t), ’e(t)) __< ,F,(t, v(0, O) __< w.

w(t) __<

And, of course, (-v(t), -q(t)) is also a solution so that

(4.27) Iv(t)l w(t) Iw(t)l.

An induction based on Lemma 3.2 and Lemma 4.3 shows that

w, <= v(t), y(t) __<
The theorem follows at once.

Returning to the normal (noncutoff) problems, we seek conditions which will
guarantee the existence of a pair (w(t), o(t)) satisfying (4.23a), (4.23b) and (4.23c).
Clearly, Hypotheses and 2 are not sufficient because these conditions include
the linear case.

THEOREM 4.3. Let 20 < 2. Let Hypotheses and 2 hold. Let Kl(s, t), K2(s, t)
be the Green’s functions of LI [u], L2[0 respectively which were discussed earlier.
Suppose there are four positive constants M, Uo, (R)o, with 0 < < such that

Hk(t, O, O) > Hk(t, u(t), O(t)), k 1,2,
(4.28a)

Kj(t, s)Hj(t, u(s), O(s)) <= M, j 1,2,

(4.28b) 22 K(s,t)K2(x,S)Hl(t,u(t),O(t))H2(s,t(s),O(s))ds <_

for all functions u(x), 0(x), i(x), O(x) which satisfy

(4.28c)
U0 < lu(x)l, la(x)l,.
Oo -10(x)l, 10(x)l,

0xl,

0_<x<l.

Then there exists a pair (w, ) with w(t) <= -Uo < (90 <= d(t) which satisfies
(4.23a), (4.23b) and (4.23c). Finally, there exists a positive solution (u(t), O(t)).

Proof. Consider the inhomogeneous, nonlinear equation

LIEV 2WH(t, v Uo, W + Oo) + ,OoHl(t, 0,0),

(4.29) Lz[W 2vHz(t, v- Uo, W + 0o)- 2UoH2(t, O, 0),

Ao[v A,[v] Bo[ B,[] O.
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(4.30)

Let

We shall show that there exists a positive solution, i.e., a solution (v, q) with

v() __< 0 __< e().

gl(s) 2(90 Kx(s, t)Hl(t, O, O) dt,

(4.31)
gz(s) 2go Kz(s, t)Hz(t, O, O)dr,

Ko (2M g / Ilg21 o)/(1 ),

K1 2Ko. M + Ilg

Let S be the convex set

(4.32) S {((t), q(t)) C[0, 1];-K1 =< (t) < 0 =< W(t) =< Ko}.
Let ((t), q(t)) S and let V(t), tP(t) be the solution of the linear equations

LI[V] 2WHI(t, Uo, W + Oo) + 20oHm(t, O, 0),

(4.33) L2[q] 2VH2(t, V- Uo, W + O0)- 2UoH2(t, O, 0),

Ao[V] AI[V]-- BolT] BI[T --0.

Using the integral representations of the solution, we have

(4.34a) V(s) 2 K(s, t)(t)H(t, v(t) Uo, (t) + (R)o)dt gl(s)

and

(4.34b)

where

qJ(x) G(x, t)tP(t) dt

-+- 2 K2(x,s)H2(s V- Uo, tlff nt- Oo)gl(S ds + gz(X),

G(x, t) 22 KI(S, t)K2(x, S)Hl(t, (t) Vo, WP(t) +
(4.34c)

H2(s V(s) Vo, t[(s) -k- 0o)ds.

From (4.34a) and (4.28a) we see that

(4.35a) -K, < V(t) < O.

From (4.34b), (4.28a) and (4.28b) we see that

(4.35b) 0 < p __< zKo + 2M. ]ga + g2 Ko.
Thus, (4.33) provides a mapping of S into S. Standard estimates show that this is a
compact continuous mapping. Thus, there is a fixed point, i.e., a solution of (4.29)
which satisfies (4.30).
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Let

(4.36)

Then,

Thus,

(4.37a)

and

(4.37b)

w=v- Uo=< -Uo, (I)=T+Oo>=Oo.

Ll[W ,OHl(t, w, O) + ,(R)o[Hl(t, 0, 0) Hi(t, w, O)] + C1Uo,

L2[-(I) 2wH2(t w, ) 2Uo[H2(t 0,0) H2(t, w, )3 C20o.

LlIW 2Fl(t, w, ),

Ao[w] aoU1 0, AI[W --a1U 0

L2[O] =< 2F2(t, w, O),

Bo[O] oOo >= 0, BI[O (100 __-- 0.

The theorem now follows from Theorem 4.1.

5. Uniqueness of positive solutions, existence of maximal solutions. In this
section we strengthen the hypotheses on the functions Hk(t, u, 0), k 1, 2, and
study the unicity of the positive solution.

LEMMA 5.1. Let Hypotheses 1 and 3 hold. Then, of course, Hypothesis 2 holds
as well. Assume that

Ao<2
and assume there are two distinct positive solutions (vl, T1), (V2, kIJ2)"

Then, there are two positive solutions (u, O) and (v, T) which satisfy

(5.1)

Proof. Let (Uo(t), Oo(t)) be an eigenfunction pair of the linear eigenvalue
problem (4.3) which also satisfies (4.5), (4.6), (4.7) and

(5.2) vk "< Uo "< 0-< 0o "< Tk, k 1,2.

Since both pairs (vk, Tk) satisfy the conditions (4.23a), (4.23b), (4.23c), we may
apply Theorem 4.1 to obtain a positive solution (v, W) which satisfies

k= 1,2.

Suppose

(5.3) Vl(t v(t), tIl(t tI(t).

Then,

(5.4)
L2[kIJ] /F2(t v, kll) /F2(t v l,

Bo[T] Bl[q] 0.

By Lemma 3.2, there is a function a(t) which satisfies

(5.5a) L2[a f2(t Vl, a), Bo[a Bl[a 0,
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and either q(t) _= a(t) or

(5.5b) t’ -< a.

But, since v1(t) <= 0 and Hypothesis 3 holds, Corollary 3.1 asserts that the solution
of (5.5a) is unique. Hence,

a(t) l(t).

Thus, using (5.3), we have

A similar argument shows that

vl -< v -< 0.

On the other hand, if (5.3) does not hold, we apply the same argument to (v2, P2).
LEMMA 5.2. Suppose Hypotheses 1 and 3 hold and there are two positive solutions

of (2.1), (2.2) which satisfy (5.1). Let o be any constant such that

0<<1,

0<.

(5.6a)

(5.6b)

Then

(5.7)

Similarly, if
(5.8)

then

(5.9)

v -< u.

eo -< t,.

Proof. Using (2.6a) we see that

L[ou] 2OHa(t, u, O) < 2oOHl(t, u, 0) 2Fa(t, ou, 0).

Using (5.6b) we have

L[u] < 2Fa(t, u, W), A0[u] Al[U] O.

By Lemma 3.2, there is a function w(t) which satisfies

L[w] =/Fl(t w, kI-/), Ao[w Al[W 0,
(5.10)

wu.
However, because Hypothesis 3 holds, Corollary 3.1 implies that w(t) v(t) and
the lemma is proved in the first case. The other case follows by a similar argument.

THEOREM 5.1. Let Hypotheses and 3 hold. Let

20<2.
Then there is at most one positive solution of (2.1), (2.2).

Proof. Suppose there are two positive solutions. By Lemma 5.1, we may
assume that there are two positive solutions (u, 0), (v, ) which satisfy (5.1).
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There is a positive number. < 1 such that

(. ) 0 <__

but

(5.12) s0 q( q.

To see this we merely observe that for/ small enough,/30 < q. We may let fl
increase until either O(to)= W(to) for some interior point to, or fl0’(0)= W’(0)
or fl0’(1) W’(1).

Then, using Lemma 5.2 and (5.11), we have

v<u.
In particular, v u. By Lemma 5.2 again,

0W,

which contradicts (5.12).
Remark. The above uniqueness theorem applies to the cutoff case as well as

the normal case. The fact that 0 < < implies that we have been in the region

101 o.
THZORZM 5.2. Suppose Hypotheses aM 3 hold and

2o <2.

Suppose also that the hypotheses of Theorem 4.3 hold. Then the positive solution
constructed in Theorem 4.3 is also a maximal solution.

Proof Let (v, W) be any solution. Let

v max Iv(t)l, max I(t)l.
Let

U2 Uo + u1, 2 o + 1.
Then, following the construction of Theorem 4.3 we may construct a pair (w, O)
such that

and (4.23b), (4.23c) hold. A simple induction similar to the basic proof of Theorem
4.2 shows that the iterates (w,, O,) constructed in the proof of Theorem 4.3 satisfy

Thus the functions (w,(t), O,(t)) converge to a positive solution (fi(t), O(t)) which
also satisfies

However, there is only one positive solution and the theorem follows at once.
A very similar argument shows that the maximal solution is monotone in 2.
THEOgEM 5.3. Assume Hypotheses 1 and 3 hold, 2o < 2 and the hypotheses of

Theorem 4.3 hold. Let (u(t, 2), O(t, 2)) denote the maximal solution of (2.1), (2.2). Then

u(t, + ) u(t,2) 0(t, ) o(t, + ).
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Proof Let

max ]u(t, 2)1, kt/1 max 10(t, 2)1

U2-- Uo -1
t- Vl, l2 --lo -- tlJl.

As in Theorem 4.3 we construct a pair (w, O) so that (4.23b), (4.23c) hold and

w(t) <= u(t, 2), O(t, 2) =< O(t).

Consider (2.1) and (2.2) with 2 replaced by 2 + 6. Since

L[u(t, 2)] 2F(t, u, O) <= (2 + 6)F(t, u, 0),

L[O(t, 2)] 2V(t, u, O) >= (2 + ()F(t, u, 0),

we may use the induction of Lemma 4.2 to produce a sequence which increases,
and as in the proof of Theorem 4.1, we have

w(t) <__ u,(t) <__ u(t, ) <= O(t, ) < O,(t) <= O(t).

Thus the sequence (u,(t), O,(t)) will converge to the unique positive solution, and
the theorem is proved.

6. Other solutions, special cases. Let us now consider the very special case
where (2.1) takes the form

u" 2OHm(u, 0),
(6.1)

0" )uHz(u, O)

subject to the boundary conditions (B) (of Odeh and Tadjbakhsh) or the boundary
condition

(s)

Let

u(0) u() 0, 0(0) 0() 0.

(6.2a) P H(0,0)H2(0,0).

(6.2b) J H2(0, O)/H,(O, 0).

Consider the linear eigenvalue problem

(6.3) u" 20H,(O, 0), 0" 2uH(0, 0).

In the case of the boundary conditions (S) the eigenvalues are

(j)2
(6.4S) 2 +

while the eigenfunctions are given by (2 > 0)

uj(t) A sin njt,
(6.5S)

Oj(t) x/uj(t) x/J(A sin njt).
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In the case of the boundary conditions (B) we have

(6.4B) 2j _+

and, for 2j > 0,

(6.5B)

((2j + 1)z/2)2

2j+l
uj(t) A cos

2
rot,

Oj(t) ,,/-)uj(t) A cos
2j

2

We must also consider the differential equation (6.3) on other intervals. For
this reason we introduce the following notation. Let

(6.6) 2k(m, S)

be the kth positive eigenvalue of the differential equations (6.3) on an interval of
length m subject to the boundary conditions (S). For example, consider (6.3) on
the interval (a, a + m) subject to the boundary conditions

u(a) u(a + m) O(a) O(a + m) O.

Then, the kth positive eigenvalue is denoted by (6.6). Similarly, let

(6.7) 2k(m, B)

be the kth eigenvalue of the differential equations (6.3) on an interval of length m
subject to the boundary conditions (B). For example, 2k(m, B) denotes the kth
eigenvalue of (6.3) on the interval (a, a + m) subject to the boundary conditions

u’(a) O’(a) u(a + m) O(a + m) O.

(6.8)

A straightforward calculation shows that

2o(2m, S) 2o(m, B),

2o 2k+ I’S =2o 2k+ I’B =2(1,B), k =0,1,

These facts lead immediately to the following results.
LEMMA 6.1. Let Hypotheses and 2 be satisfied. Let

2o(m, B) < 2

and suppose that Hi(u, O)H2(u, O) gets small enough for large (u, O) that one knows
there is a positive solution (u(t,m), O(t,m)) of (6.1) subject to the boundary con-
ditions (B) on an interval of length m, say (a, a + m).
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Then there is a positive solution (U(t, m), (R)(t, m)) of (6.1) subject to the boundary
condition (S) on the interval (a, a + 2m). Moreover,

U’(a) U’(a + 2m) < 0,

(6.9) (R)’(a) (R)’(a + 2m) > 0,

u’(a + m) O’(a + m) O.

Proof Let

(6.10a)
u(2a + m- t),

U(t)
[ u(t m),

a<=t<__a+m,

a + m <= <=a + 2m,

(6.10b)
O(2a + m- t),

O(t)
O(t m),

a<=t<=a+m,
a+m< t<a+2m.

A direct computation verifies that these functions have the desired properties.
THEOREM 6.1. Let Hypotheses and 2 be satisfied. Let k >__ 0 and assume that

1 ,S) =2k(1 S)<22Ok+ 1

Suppose Hi(u, O)H2(u, O) gets small enough for large (u, O) that one may apply
Lemma 6.1 to assert the existence of the functions U(t, 1/(k + 1)), (R)(y, 1/(k + 1))
of the previous lemma.

Then there is a solution (Uk(t), Ok(t)) of (6.1) which satisfies the boundary
conditions (S). Moreover,

(6.11) Uk =O,
k+ 1 =0’

and these are the only zeros of Uk(t)Ok(t).
Proof. Let a 0 and U(t), O(t) be the functions whose existence is assumed by

Lemma 6.1. Let

(6.12)
Uk(t) (-- 1)Iu

(R)k(t) -= (- 1)(R)

1+1
<t< /=0,1,... k

k+l =k+l’k+l

<t</+l
k+ 1 k+ 1 =k+ 1’

/=O, 1,...,k.

A direct computation verifies that (Uk(t), (R)k(t)) is the desired solution.
THEOREM 6.2. Let Hypotheses 1 and 2 be satisfied. Let

(6.13) 2o 2k+l’S =2o 2k+l’B 2k(1, B) < 2.

Suppose that H(u, O)H2(u O) gets small enough for large (u, O) that we may apply
Lemma 6.1 to assert the existence of the functions U(t, 2/(2k + 1)), (R)(t, 2/(2k + 1))
of Lemma 6.1.
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Then there is a solution (Uk(t), Ok(t)) of (6.1) which satisfies the boundary con-
ditions (B). Moreover,

uk 2k + 2k +
and these are the only zeros of uk(t)Ok(t) in [0, 1].

Proof Let a 1/(2k + 1). Let

llk(t (-- 1)lg t--
2k + ’

(6.14)

0k(t (-- 1)/( 2(/+ 13
2k+l

21 + 21 + 3

2k+l =2k+l’
l= -1,0,1,2,...,k- 1,

21 + 1 21 + 3
<t<

2k+ 1 =2k+ 1’

1= -1,0,1,...,k- 1.

Once more, a direct computation verifies that these functions have the desired
features.

Remark. In the cutoff case, we are assured of the existence of the necessary
positive solutions. Thus, in particular, in the case of (1.1) subject to the boundary
condition (B), if

2 < 2 __< 2+,
there are at least k + distinct nontrivial solutions (u(t), Oj(t)),j O, 1,..., k.
The pair (uj(t), Or(t)) is characterized by the fact that each function has exactly j
interior nodal zeros and no other zeros.

Remark. This method of "patching together" positive solutions is clearly of
limited applicability. Nevertheless, it is an interesting direct consequence of this
theory of positive solutions.

7. Remarks on another iterative method. While the basic nonlinear itera-
tions described by (4.9), (4.12), or by (4.19), (4.21) have certain advantages from
a theoretical point of view, there are linear iterative methods which converge also.
These linear iterative methods have advantages from the point of view of com-
putation. We now describe one such method without proof.

Suppose (u,_ l(t), 0,_ l(t)) satisfy (4.8a) and (4.8b). Let u,(t) be the solution of
the linear equation

Ll[U,] OlU ,Fl(t, u 1, On- 1) lb/n- 1,

(7.1)
Ao[un] A [un]

where 1 is a Lipschitz constant for the function 2Fl(t, u, 0,_ 1); thatis,

(7.1a) [2Fl(t, x, 0,_ 1) 2Fl(t, y, 0,_ 1)1 < CZllX y[.

Let O,(t) be the solution of the linear equation

(7.2) Lz[On] O20n ’Fz(t, Un, On- 1) O20n- 1,
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where 2 is a Lipschitz constant for the function 2F2(t, u,, 0); that is,

(7.2a) 12Fz(t, u,,x)- 2F2(t, u,, y)[ <__ 2[x- y[.

It is now an easy matter to show that either

u._ (t) u.(t)

or

and, either

or

u,, M u

o._ (t) o.(t)

o._ ,(t) -< o.(t).

A similar linear system may be used to replace the nonlinear iteration of Lemma
4.3.
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NONLINEAR EIGENVALUE PROBLEMS FOR SOME FOURTH
ORDER EQUATIONS. II" FIXED-POINT METHODS*

SEYMOUR V. PARTER?

1. Introduction. Let

(. ) L[] ((t)’)’

be two regular Sturm-Liouville operators defined on [0, 1]; that is,

(1.2)
Pk(t) e C1[0, 1], Ck(g e C[O, 1],

p(t) >__ po > O, C(t) >= O.

Consider the nonlinear system of ordinary differential equations

Lxlu] 20Hi(t, u, 0), 0 < < 1,
(1.3)

L2[0 ,uHz(t u, 0), 0 < < 1,

where the functions u(t), O(t) are required to satisfy the boundary conditions

(1.3a)

with

Ao[u] aoU(0) boU’(0) 0,

Bo[O] =- o0(0)-/o0’(0) 0,

Axu =_ au(1) + bu’(1)= 0,

BI[O (z10(1) + 10’(1): 0,

ak,k, bk, flk => 0, k 1,2,
(1.3b) a -t- b > O, k -t- k > O, a0 -1- a > O, (Z0 nt- (Z > O.

k= 1,2,

The functions Hk(t, u, O) are even and positive, i.e.,

(1.3c) Hk(t, u, O) H(t, lul, 101) > 0, k 1,2.

In a companion paper [12] we studied such problems under a set of assump-
tions which allowed the iterative construction of a maximal, positive solution.
In this report we apply the Schauder fixed-point theorem to obtain (under ap-
propriate hypotheses) the existence of solutions having a specified number of
zeros.

This work and the work described in [12] were motivated by a problem
studied by F. Odeh and I. Tadjbakhsh [10] and N. Bazley and B. Zwahlen [1].
These authors consider the nonlinear system

u"=2sin0, 0<t < 1,
(1.4)

0"= 2ucos 0, 0 < < 1,

subject to the boundary conditions

(A) u’(0) u(1) 0, 0(0) 0’() 0,

Received by the editors January 29, 1970.

" Departments of Computer Sciences and Mathematics, University of Wisconsin, Madison,
Wisconsin 53706. This research was sponsored by the Office of Naval Research under Contract
N00014-67-A-0128-0004.
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or the boundary conditions

() u’(0) 0’(0) 0() u() 0.

Because of the physical interpretation of the function (u(t), O(t)) an important
condition which was not imposed by these earlier authors is

(1.4a) 10(t)l < rt/2.

The case of the boundary conditions (B) has been discussed in [12]. Thus one of
our major aims is to obtain "physical" solutions of (1.4) subject to the boundary
conditions (A). This result will follow from the general results obtained here
together with a simple construction based on the a priori estimates of [12].

The approach we use here is closely related to our work [11] on sublinear
Hammerstein equations and is related to the work ofPimbley [14] and Wolkowisky
[16]. Indeed, using the method of [11, Lemma 7] these results go over to problems
involving pairs of integral equations with oscillation kernels. Nevertheless, at this
time, we limit ourselves to the case of differential equations. The interested reader
would be well advised to look at the book [15] of Pimbley.

In 2 we discuss some preliminary ideas relating these problems to the theory
of oscillation kernels [4] and variational problems. In 3 we develop some basic
facts of oscillation theory for fourth order problems. Section 4 is devoted to the
basic existence theorem. In 5 we show how the results of [12] may be used to
obtain additional existence theorems. In particular, we obtain results which apply
to Problem A of Odeh and Tadjbakhsh.

2. Preliminary notions. In addition to the assumptions (1.3c), we make the
following assumptions about Hk(t, u, 0).

ASSUMPTION 1. Hk(t, u, O) C[0, 1] C-, ] C-, ], k 1, 2.
ASSUMPTION 2. 0 < a <= Hk(t, u, 0) __< b, k 1, 2, where a and b are positive

constants.
Let

(2.1) A _= {(ql(t), qz(t)) C[0, 1] C[-0, 1]; a <= q(t) __< b, k 1,2},
(2.2) B =_ {(q(t),qz(t))L2(O, 1) LZ(0,1);a __< q(t) < ba.e.,k 1,2).
For any pair (ql(t), q2(t)) B we consider the linear eigenvalue problem

L[u] 20q,(t), Ao[u]-- AI[U] --0,
(2.3)

L[O] uq(t), o[0] [0] 0.

Let K l(S, t), K2(s, t) be the Green’s functions associated with the operators -Ll[u]
and -L2[0 subject to the appropriate homogeneous boundary conditions
(Aj[u] O, Bj[O] 0). Then the equations (2.3) are equivalent to

(2.4a) u(t) -2 K(t,x)q(x)O(x)dx,

(2.4b) O(x) X K(x, y)q(y)u(y) dy.
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Upon substitution, we see that this pair of integral equations is equivalent to
either

u(t) 22 Gl(t,s)u(s)dx,
(2.5a)

61(t,s) K(t,x)q(x)K(x,s)q(s)dx

or

(2.5b)

O(t) 22 G2(t, s)O(s) ds,

G2(t,s) K2(t,X)Kl(X,s)q(s)q2(x)dx.

The kernels Kj(s, t), and therefore the kernels Gj(s, t),1 are "oscillation kernels"
in the sense of Gantmacher-Krein [4], and hence a great deal is known about
their spectrum. In particular, consider equations (2.5a) or (2.5b). The spectrum
consists of positive, simple eigenvalues

(2.6) 0<,20 <,2 < <,2 < ....
Moreover, the associated eigenfunctions qgk(t), k 0, 1, .-., satisfy the oscillation
condition; that is, in the open interval (0, 1), qgk(t) has exactly k nodal zeros and no
other zeros.

Thus, returning to our original problem, we see that the eigenvalues are
real and occur in pairs (2k,-2k). Indeed, if 2 is an eigenvalue with associated
eigenfunction (/(t), O(t)), then -2 is an eigenvalue associated with (-u(t), O(t)).
Thus we may restrict ourselves to a consideration of the positive eigenvalues

(2.7) 0 </1 < /2

If (uk(t), Ok(t)) is the eigenfunction associated with 2k, then each function uk(t) or
Ok(t) has exactly k interior nodal zeros and no other zeros.

Another useful fact about oscillation kernels which is clearly related to the
above remarks is the variation diminishing property: For f(t) C[0, 1] let Z(f)
denote the number of interior nodal zeros of f(t), let K(s, t) be an oscillation
kernel and

(2.8a)

then

q)(s) K(s, t)g/(t) dr;

(2.8b) Z(q) __< Z(O).

The theory developed in [4] is restricted to the symmetric case G(s, t) G(t, s). However the results
required here are valid in the general case. Gantmacher and Krein assert the validity of their results in
the general case and cite references to the Russian literature. A discussion of the general case was given
by S. Karlin in classroom lectures and will appear in his book [6].
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The representations (2.5a), (2.5b) show that 2j is a continuous function of
(ql(t), qz(t)) e B (see [7, p. 213]).

In the special case where La L2, Aj Bj the linear eigenvalue problem
(2.3) is essentially self-adjoint and we know even more about the spectrum. The
eigenvalues 2k are given by the variational characterization of Courant [2],
Weyl, Ritz, etc. that is,

(2.9a) 2 rain
u0

and, for j __> 1,

[qa(t)]- l(L1[u])2 dt

q2(t)(u(t))2 dt
o

,,1

qa(t)]-(LI[U])2 dt
o(2.9b) 2 max min

s-I us-, fo qz(t)(u(t))2 dt

where Sk denotes an arbitrary k-dimensional subspace of W22(0, 1) whose elements
satisfy the boundary conditions

(2.9c) Aou] A [u] 0

and S- denotes the orthogonal complement of S in LzF(0 1), q2 dtl, i.e., q(t) S{
if (2.9c) holds and

(2.9d) q(t)q)(t)u(t) dt 0

for every u(t) e S.
From this basic fact we obtain the following lemma.
LEMMA 2.1. Let (qa(t; o-), q2(t; a))e A, 0 <= a <_ oo, be a one-parameter family

of pairs of functions which is continuous in B as a function of a. Let 2j(a) denote
the j-th positive eigenvalue of

LI[u ,Oql(t r), Ao[u AiFu 0
(2.10)

L1[0] Uqz(t a), Ao[0 A a[0] O.

Suppose a < r2 implies

(2.11) qj(t, a) < qj(t, 0"2) ql(t, O’l)q2(t, 0"1) ql(t, 62)q2(t, 0"2).

Then the eigenvalue 2j(a) is a continuousfunction of a and

(2.12) 2(a1) > 2(a2).

Moreover,for each j, there exist two positive constants Aa and Mj such that

(2.13) 0 < Aj =< .j(ql, q2) =< Mj
for all (q q2) B..
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3. Linear problems, oscillation theory. In this section we develop some further
properties of (2.3). Our fundamental tool is an extension of some basic results of
W. Leighton and Z. Nehari [91.

Let 2 > 0 be a fixed constant, let (ql(t), q2(t))A and consider the linear
differential equation

(3.1)
Ll[U 20q(t), 0 < < 1,

L2[0 =/],uqz(t), 0 < < 1.

LEMMA 3.1. Let (u(t), O(t)) be a solution of (3.1) and let a [0, 1). If u(a), u’(a),
O(a), O’(a) are nonnegative (but not all zero), then the functions u(x), u’(x), O(x), O’(x)
are all positive for a < x <= 1.

Proof. In the case where

L[u] L2[u] =- u"

this result is Lemma 2.1 of [9]. In the general case we use the representations
(Volterra integral equations)

(3.2a)

(3.2b)

dx
O(s) O(a) + p2(a)O’(a)|

p(x)
-F ,’],

P2(X
u(t)q2(t) dt

+ pz(x)
C2(t)O(t) dt,

dx
u(s) u(a) + pl(a)u’(a) |

p(x)
+2

dx f,x O(t)q(t) dt
p(x)

Jr- C (t)u(t) dr.

Case 1. O(a) + O’(a) > 0. There is an interval (a, a + 6) in which O(t) is positive.
Let us assume O(t) is known and use (3.2b) to obtain u(t) in this interval. Since we
are dealing with a Volterra integral equation we may use Picard iterations with
Uo(t) =- u(a). A straightforward induction shows that u,(t) is positive on (a, a + 6)
and hence

u(t)>=O, a<t<a+6.

Using this result in (3.2a) we see that

O(a + 6) > O.

Hence O(t) and u(t) are (strictly) positive for (a, 1]. Using the representations
(3.1a) and (3.1b) we see that if(t) and u’(t) are also positive for (a, 1].

Case 2. u(0) + u’(0) > 0. A similar argument (reversing the roles of u and 0)
completes the proof in this case.

LZMMA 3.2. Let (u(t),O(t)) be a solution of (3.1) and let at(O, 1]. Suppose
u(a) >= O, O(a) .>= 0 while u’(a) < O, O’(a) < 0 (but not all zero). Then for [0, a)
we have

u(t) > O, O(t) > O, u’(t) < O, if(t) < O.
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Proof. As in the proof of Lemma 2.2 of [9], we let s 1 and apply Lemma
3.1.

LEMMA 3.3.
Suppose either

or

Let (u(t), O(t)) be a nontrivial solution of (3.1) and let a6(O, 1).

u(a) u’(a)= 0

O(a) o’(a) o.
Then, in (at least) one of the two intervals [0, a), (a, 1] all four functions u(t), u’(t),
O(t), if(t) are different from zero.

Proof. This result follows from the two preceding lemmas exactly as in [9].
These rather elementary results are the basis of some interesting theorems

on the "continuity" of the spectrum of (2.3) which are stronger than the results
mentioned earlier [7, p. 213].

LEMMA 3.4. Suppose there is a sequence (q]k)(t), q2k)(t)) A, k 1, 2,..., and
functions (?h(t), /2(t)) B such that

(3.3) q)k)____ tj(t) weakly in L2[0, 1] as k -- , j 1,2.

Let (u,k)(t), Ot,k)(t)) and 2k, be the n-th eigenfunction and n-th positive eigenvalue of
L[u.] ,o.-,.,,, Ao[u.] A[u.] O,

(3.4)
L2[O(nk)] 2,, , qk)(t), BolOS,k)] B, [0t,k)] 0.

Suppose there is a positive constant such that

(3.4a) at,k) - as k .
Finally, suppose there are functions (t), O(t) C1(0, 1] such that

(3.4b)
in C1[0, 1] as k ,
in CIEo, 1] as k .

Then the functions ((t), O(t)) are the n-th eigenfunction associated with the n-th
(positive) eigenvalue 2 of

L1E/] 2ffOql a.e., Ao[ A1 [] 0,
(3.5)

L2[0] 2fffiq2 a.e., Bo[0 Bo[0 0.

Proof. While the functions (l(t), 2(t)) need not be continuous, they belong
to B. Moreover, the functions (t), O(t) are weak solutions of (3.5), hence, strong
solutions. Thus, as in the development of (2.5a), (2.5b) we see that fi(t) and O(t)
are separately eigenfunctions of a linear integral equation whose kernel is an
oscillation kernel. Thus each has only a finite number of interior zeros in (0, 1)
and each such interior zero is a nodal zero. Let N be the number of interior zeros.

Because of the C1[0, 1] convergence there is a k0 such that k => ko implies
that u,k)(t) has at least N interior nodal zeros. Since each u,k)(t) has exactly n interior
nodal zeros, we have

(3.6) N < n.
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Let n > and let

be the n interior zeros of u(,k)(t). There is a subsequence (k’) and a set of values

such that

(3.7) .(k’) as k’ ---, oe

If N < n, then either there is a pair

(3.8a)
or

(3.8b)
or

(3.8c)
However, if (3.8a) occurs, then a(t) has a double zero at j. If

0()0’() __> o,
then (because of the linearity) we may take

0(j) >__ o, 0’() >__ 0;

and then Lemma 3.1 contradicts the boundary conditions at 1. On the other
hand, if

0(j) >__ 0, 0’(j) __< 0,

then the boundary conditions at 0 and Lemma 3.2 lead to a contradiction.
If (3.8b) occurs as a result of 1’) 0, then (because of the boundary condition

at 0) (t) has a double zero at 0. However, we also have

0(0)0’(0) >__ 0.

Hence, the boundary conditions at and Lemma 3.1 lead to a contradiction.
A similar argument disposes of the case (3.8c).
This result leads us to consider another basic assumption.
ASSUMPTION 3. For every fixed n there are constants A,, B, such that 2,, the

nth positive eigenvalue of the linear eigenvalue problem (2.3), satisfies

(3.9) 0 < A, =< 2n =< B,

for all (ql(t), qz(t)) A.
THEOREM 3.1. Suppose Assumption 3 holds. Let (ql)(t), qCz)(t))e A for k

1, 2, Suppose there are two functions (gtl(t), -2(t)) such that

(3.10) q})(t)--’gt(t) weakly in L2(0, 1) as k -, oe, j 1,2.

The convexity of A implies that (gll, g/2) B. Let 2( and (u(,k)(t), OCnk)(t)) be the n-th
(positive) eigenvalue and the corresponding eigenfunction of (2.3) with qj(t) replaced
by q}’)(t). Let (u(,)(t), O,)(t)) be normalized so that

max 0() u(.) oo) 1
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where
f max {If(t)l, 0 __< __< 1}.

Let 0 and (fit(t), O(t)) be the n-th (positive) eigenvalue and corresponding eigen-

function of (2.3) with qj(t) replaced by Eli(t). Then

,Vn) - ,u(,)(t) fit(t) in C’[O, 1],

Ok)(t) O(t) in C’[0, 1].

Proof. There is a subsequence (k’) and a constant/z and two functions U(t),
O(t) such that

2.’)-, ,
u(,k)(t)-U(t) in C’[0, 1],

O(,)(t)--, O(t) in C’[0, 1].

On applying Lemma 3.3 we see that

u(t) r4t), o(t) O(t).

A straightforward argument based on the uniqueness of the quantities/, fi(t), O(t)
shows that the entire sequence converges.

Having established this result, one is naturally led to the question When does
Assumption 3 hold? Clearly, Lemma 2.1, the variational characterization of #,,
given by (2.9b), asserts that Assumption 3 holds in the symmetrizable case. It
seems reasonable to conjecture that Assumption 3 always holds. However, we
have not established this assertion. On the other hand, the methods of this section
may be used to establish this fact for certain cases. These results are presented in
the Appendix. We note that the case (A) of Odeh and Tadjbakhsh is included.
The case (B) of Odeh and Tadjbakhsh is a symmetrizable case.

4. The basic existence theorem. In this section we return to our original non-
linear problem (1.3), (1.3a). We assume that Assumptions 1-3 hold.

Let

(4.1)

Let 2j, j 0, 1,
problem

(4.2a)

Let /, j 0, 1,
problem

(4.2b)

h(t) H(t, O, 0), k 1,2,

g(t) Hk(t, oo, oo), k= 1,2.

denote the positive eigenvalues of the linear eigenvalue

L,[v] 2bh,(t), Ao[v A,[v] O,

L2[b] 2vh2(t), Bo[4 B,[qS] 0.

denote the positive eigenvalues of the linear eigenvalue

L,[w] plpgl(t),

L2[]

Ao[W AI[W O,

Bo[] B,[] 0.
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Naturally, we assume

(4.2c) /j < /]’j + 1, J2j < J2j + 1"

Let 2 > 0 be fixed. Let (ql(t), q2(t)) A. Let

a. o’.(ql, q2),

(4.3) U.(t) Un(t q l, q2),

O.(t) O.(t; ql, q2)

denote the nth positive eigenvalue and eigenfunction respectively of the linear
eigenvalue problem

(4.4a)

normalized so that

(4.4b) max {11 Ull , IlOnll l.

Note. Since the eigenvalues are all simple, this normalization determines
(U,, O,) up to sign.

Remark. Each function U,(t), O,(t) has exactly n nodal zeros in (0, 1) and no
other interior zeros.

Given (q a, qe) e A, and hence (U,, O,), let e e (0, ) and let

P. P.(q q2

(4.5a) V.(t) V.(t; ql, q2, ),

W.(t) ug.(t ql, q2, )

denote the nth positive eigenvalue and eigenfunction respectively of the linear
eigenvalue problem

LI[V.] 2p.tP.Ha(t, aU.(t), aO.(t)),

(4.5b) Lz[W.] 2p. V.Hz(t, eU.(t), cO.(t)),

Ao[V,] A I[Vn] BolT,] Bl[tI.] 0,

normalized so that

(4.5c) max {llv.llooll%ll(R)} .
Note. Because the functions H{t,u, O) are even, we know the functions

H{t, oU,(t), e(R),(t)) are well-defined.
LMM 4.1. The quantities U,(t;ql,q2), (R),(t;ql,q2), H(t,U,,(R),),

H2(t, U,, (R),), p,(q, q=, ), (t, q, q:, ), ,(t, ql, q2, ) are continuous func-
tions of (q l, q2, e) in the following sense. If

ask o,

weakly in L2(0 1) as k - o,
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then

(4.6a)

(4.6b)

and

uniformly on [0, 1],

unijbrmly on [0, 1],

uniformly on [0, 1],

V,(t; q(k),q(2k),e(k)) V(t;?/1,?/2,) uniformly on [0, 1],
(4.6c)

tP,(t q(xk), q2), a()) tP,(t; ?/1, 2, () uniformly on [0, 1 ].

Proof Apply Theorem 3.1.
LEMMA 4.2. Suppose

(4.7)

Let (ql(t), qz(t)) A. Then there is at least one value of a (0, ) such that

P,(q q2, ) 1.

Proof By Lemma 4.1, for fixed (ql,q2)eA, P,(ql,q2, ) is a continuous
function of a. The lemma follows from the observations that

(4.8a) lim P,(ql q2, 0)
)on

-o -<1
and

(4.8b) -lim P,(ql, q2,0) --- >1.fin

LEMMA 4.3. Let (4.7) hold. There is a positive constant 1 > 0 such that for all
(ql(t), qz(t)) A and all (0, 1) we have

(4.9) P,(q q2, ) < 1.

Proof. Assume the lemma is false. Using the continuity of Pn(ql, q2, ) and
condition (4.8a), we may assume that there is a sequence (qk)(t);q)(t)) A and a
sequence e()e (0, oe) such that

(4.10a) () 0 as k - ,(4.lOb) "(),P,(ql q(2),())= for allk= 1,2,....

However, we may extract a subsequence (k’) and a pair of functions (g/l(t), {/2(t)) B
such that

(4.11) qJk’)---- ?/j(t) weakly in L2(0, 1), u 1,2.

Applying Lemma 4.1 or Theorem 3.1 we see that

lim p,(q(’), q2’), cz(’)) 2,
,,-. -<1,
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which contradicts (4.10b).
LEMMA 4.4. Let (4.7) hold. There is a finite positive constant 0{2 such that for

all (ql(t), q2(t)) A and all 0{ (0{2, o) we have

(4.12) P,(q, q2, 0{) > 1.

Proof. Assume the lemma is false. Using Lemma 4.1 and condition (4.8b) we
may assume that there is a sequence (q])(t), q2)(t)) A and a sequence 0{) > 0 such
that

(4.13a) 0{(k)
__

as k -(4.13b) P,(qa q2), 0{()) 1, k 1,2, ....
Using Lemma 4.1 and extracting enough subsequences we may also assume that
there is a pair of functions (?h(t), 12(t)) B such that

q)(t) ?tj(t) weakly in L2(0, 1), j 1,2,

U,)(t) U,(t ;q]), q2k)) U,(t, ?ta, /2) uniformly,

(R),)(t) U,(t q]), q2)) --+ O,(t, 77 1, ?/2) uniformly.

Then

Hj(t,0{()U,k)(t), 0{()(R),(t)) H;(t, oo, ) g;(t),
uniformly on all closed intervals not containing the zeros (at most 2n) of

Un(t; Y 1, Y 2)(R).(t 1, Y 2)"

Thus, this convergence is L2(0, 1) convergence and

(k).Pn(ql q(2), 0{()) -- > 1,

j= 1,2,

(4.14b) 0{3 /-l-;n 0{2"

Then

(4.15) 0{0 < 0{1 < 0{2 < 0{3"

Also, let F be a mapping defined on

S A x [0{0,0{3]

by

(4.16) F(qa q2, 0{) Ha(t, 0{Un, 0{On), Hz(t, 0{U 0{On),
P.(ql q2, 0{

2
(4.1 4a) 0{0 -a-o{ 1,

which contradicts (4.13b).
THEOREM 4.1. Let inequality (4.7) hold. Let A,,B, be the constants of (3.9)

describing Assumption 3. Let
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Then F has a fixed point (?/1, ?/2,4). Finally let

dUn(t,

o.(t, ,, ) o(t).

Then (u(t), O(t)) is a solution of (1.3), (1.3a), and each function u(t) or O(t) has exactly
n interior nodal zeros in (0, 1).

Proof. The inequalities (4.15) follow immediately from the inequality (4.7).
By Lemma 4.1, the mapping is continuous. Clearly, S is convex. Moreover, standard
estimates, together with the continuity of Hj(t, u, 0), show that F is compact.
Finally we shall show that F maps S into S. Clearly,

(H(t, U,, (R)), H2(t, oU,, 0O)) A.

Thus we need only show that

(4.17) ao < <
Pn(q, q2, ) 3"

If e leo, e], then from (4.9) we see that

(4.18a)
Pn(q q2, ) 0"

From (3.9) we have that a e [o, 2] implies

< 23"(4.18b)
P,(q q2, ) A,

If a, 3], then (3.9) implies that

(4.18c) o Bn Pn(q

Finally, if a [a2, a], then (4.12) implies that

(4.18d)
P,(ql, q2, ) 3.

The inequalities (4.18a), (4.18b), (4.18c), (4.18d) show that F maps S into S.
The Schauder fixed-point theorem [3] asserts the existence of a fixed point

(l(t), O2(t), ). Then

(4.19) P,(, 2, ) 1.

Moreover, using (4.4a) and (4.4b) together with the fact that

Hi(t, 8U.,
we see that

U,(t) (t), O,(t) ,(t)

and the functions u(t), O(t) satisfy (1.3), (1.3a).

5. Appfieations to other problems. In many cases of interest Theorem 4.1
cannot be applied directly. For example, Assumption 2 does not hold when

lim H(t, u, O)H2(t, u, O) O.

j 1,2,
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However, it often happens that one may modify the functions Hk(t, u, O) for large u, 0
without changing the set of solutions and the modified problem satisfies all the
hypotheses of Theorem 4.1.

In a preliminary report [13] of this work we discussed a general case. Here
we restrict ourselves to Problems A and 13 of Odeh and Tadjbakhsh [10].

Let

(5.1) 2o < 2.

In [12] we proved the existence of a maximal solution (u(t), O(t)) of (1.4) and the
boundary conditions (A) or (B) subject to the additional constraint (1.4a); that is,

(5.2) u(t) <= 0 <= O(t) < rt/2.

Moreover, if (v(t), O(t)) is any other solution of (1.4) which satisfies the appropriate
boundary conditions and the constraint (1.4a), then

(5.3)
Iv(t)l _-< u(t) lu(t)l,

I,(t)l =< O(t).

Let

re/2 > 0o >_- max O(t), 0<l-m<1/4,

and set

sin 0
0 I01-< 0o,

(5.4a) /Q (0)
sin 0o {m + (1 m)e-t(ll-)}, 101-> 0o,
0o

} cos 0 101 < 0o,
(5.4b) H2(0)

cos0o{m + (1 m)e-ll-)}, I01-> 0o,

where fi and 7 have been chosen so that

(5.4c) fflk(O)6C, -o < 0< o, k= 1,2;

that is,

1 sin 0o 0o cos 0o(5.5a) fl rn 0o sin 0o
> 0,

1 sin 0o(5.5b) 7 > 0.
m cos 0o

LEMMA 5.1. Let 2 be fixed and satisfy (5.1). Consider the system of differential
equations

u" 20f1 (0),
(5.6)

0"= 2u/2(0)
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subject to the appropriate boundary conditions (A) or (B). Then every solution of
(5.6) is also a solution of (1.4) which also satisfies the constraint (1.4a). Conversely
any solution of (1.4) and their corresponding boundary conditions which also satisfies
the constraint (1.4a) is a solution of (5.6).

Proof. Since (u(t), O(t)) is a maximal solution, we see that every solution of
(4.1), (4.1a) is also a solution of (5.6). Similarly, using Theorems 4.3 and 5.3 of [12
we see that (5.6) has a unique positive solution (O(t), O(t)) which must also be a
maximal solution. But then

(t) u(t), O(t)
and all solutions of (5.6) satisfy (1.4), (1.4a).

Suppose

2,<2.

Since cos 0o may be taken as small as we please, we may easily satisfy all the
conditions and apply Theorem 4.1 to obtain a solution (u,(t), O,(t)) with exactly n
interior nodal zeros.

Appendix. This appendix is devoted to establishing Assumption 3 in two cases
of special interest. The basic tools are Lemmas 3.1, 3.2 and 3.3.

We shall be concerned with three problems. In all three cases we take

L,[9] L2[] =_ L[].

The difficulties will arise from the boundary condition. Let (ql(t), q2(t)) A and
consider the differential equations

L[u] 20q
(A.1)

L[O] 2uq2.

Problem S. u(O) u(1) 0(0) 0(1) O.
Note. This is a symmetrizable problem and we may apply Lemma 2.1.
Problem N. u(0) u(1) 0, 0(0) 0’(1) 0.
Problem A. u’(O) u(1) O, 0(0) 0’(1) O.
Note. The boundary conditions in Problem A are the boundary conditions

A of Odeh and Tadjbakhsh I10]. The eigenvalues of these problems will be denoted
by 2k(S), 2k(N), 2(A), respectively.

We now turn our attention to a basic boundary value problem.
LEMMA A.I. Let 2 be a fixed positive constant. Let (ql(t),qz(t))e A. There

exists a unique pair (u(t), O(t)) which satisfies (A.1) and also satisfies the boundary
conditions

(A.2)
u(1) u(0) 0,

0(0) 0, 0’(0) .
Moreover, ![" to (0, 1) and U(to)= O, then u’(to):/: O. Similarly, if to 6(0, 1) and
O(to) O, then O’(to) :/: O.
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Proof. Let uj(t), j 0, 1, 2, 3, be the basic solutions of (A.1) which satisfy the
initial conditions

t) kblj(O)=(kj, k 0,1, j 0,1,2,3,

(A.3)
d

L[uj] (0 (k+ 2,j, k O, 1, j O, 1,2, 3.

These functions exist. The existence of u0, u is clear when we view (A. 1) as a fourth
order equation for u(t). The existence of u2, u3 is clear when we view (A.1) as a
fourth order equation for O(t). Moreover, they are linearly independent. A direct
computation shows that

[_u(lju(l + u(

is a solution. And, O(t) is obtained from the differential equation. Suppose there
were two solutions, say u(t) and v(t). Then (u(t) v(t)) w(t) is a solution (of the
fourth order equation in u) satisfying

C[w](0= C[w] (0=0.w(0)
2q(0)

Then, using Lemma 3.1 we would have

w’(O o, w’(Ow(l > o.
But,

w( 0.

The concluding remark of the lemma follows from Lemma 3.3.
Let

1
r(t) _=

2ql(t)’

P(t) =- 2qz(t).

For the remainder of this section we let r(t) and P(t) be continuous functions of a
parameter a; that is, the coefficients of (A.1) are

2qa(t, a) Jr(t, 0")] -1 and 2q2(t, a) P(t, a).

Let u(t, a), O(t, ) denote the solution of (A.1) which also satisfies the boundary
conditions (A.2). With this notation we obtain a corollary to the preceding lemma.

COROLLARY A.1. The functions u(t, a), u’(t, a), O(t, a) and O’(t, a) are continuous

functions of a.

Proof. The functions uj(t, ) satisfying (3.13) (for each a) are continuous in a.
This follows from general theorems for Uo(t), Uz(t). For u(t) and u3(t) the continuity
follows from the representations (3.2a), (3.2b). Also, those representations establish
the continuity of u’(t, r), O(t, a), O’(t, a).
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Following {} 2, let Z(u, a) denote the number of interior zeros of u(t, a) while
Z(O, (7) denotes the number of interior zeros of O(t, (7). Because Kl(s, t) is an oscilla-
tion kernel,

(A.4) Z(u, (7) <= Z(O,

LEMMA A.2. For every (7o there is an e((7o) > 0 such that

(A.5) Ir rol < e Z(O, r) >_ Z(O, ro).

Proof. Let M Z(O, (70). Let o 0, and for j 1, 2, ..., M let j denote
the ordered interior zeros of O(t, (7o), i.e.,

0 < j < j+ < l, O(j, (70)= O.

By Rolle’s theorem there is a point r/j with

j < /j < j+l, j 0, 1,’’", M 1,
such that

Let

Let

0’(r/j, ao) 0.

qM 1/2(M + 1).

p min 10(r/j, ao)[ > 0, j 0, 1,2, ..., M.
There is an e > 0 such that 1(7 (70[ < e implies

10(,, ) 0(,, ao)l < 1/2p.

Thus, there exist M + 1 points at which the continuous function O(t, (7) alternates
in sign. Hence, O(t, (7) has at least M zeros.

LEMMA A.3. If 0(1, (70) # 0, there exists an ((7o) > 0 such that 1(7 (7ol <
implies that

(A.6) Z(O, (7) Z(O, (70).

Proof. Suppose not. Then there is a sequence (Tn--" (7O such that

z(o, ,) > z(o, o).

Let j((7,) denote the zeros of O(t, (7,) as in the above lemma. Consider the following
vectors in 9lM + 1:

(n) (l((Tn), 2((7n),""", M+ 1((7n)), n 1,2,

There is a subsequence ("’) which converges to a limit vector (1, 2,"",
t+ 1). We observe that

0__< j__< j+l =<
and

0(, ao) O.

But O(t, (70) has only M interior zeros. Hence, one of the following cases must
occur.
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Case 1. 1 0. But then the point r/l(a,) at which 0’(r/l(a,), a,) 0 must also
converge to zero. Hence

But, of course, 0’(0, ao)= 1.
Case 2. ,+1 1. But then

contrary to our assumption.
Case 3. There is a j such that

But then r/j(0-,) j and

0’(0, ao) 0.

0(1, ao) 0

0 < j-- j+ < 1.

0’(, o) 0(, o) o,

We observe that Sk contains at most one element.
For the remainder of this section we assume that

8r(t, a) <= O,
cP(t, a) >_ 0

8a 8a

and 0-1 < 0-2 implies that

P(t, 0-1) P(t, 0-2)-

LEMMA A.4. Suppose

Rk(S, 0-o), 1 /k+ 1(S, 0"2)"

Then

(A.9) 0-0 < 0-2"

The set Nk + is not empty; and, ![0- Nk+ 1, then

(A.10) ao < 0- < 0-2"

Pro@ The inequality (A.9) follows from Lemma 2.1. Let (u(t, 0-o), O(t, 0-0)) be
the solution of (A.1) which satisfies the boundary conditions (A.2). Then (u(t,
O(t, 0-0)) is (except for scalar multiples) the kth eigenfunction of Problem S. To see

A
_

{ll (A, )},

Nk {all 2k(N,

S {all (S, )}.
(A.8)

We shall let Ak, Nk, Sk denote the set of all k-values; that is,

(A.7) 2k(A, 0-), (1 2k(N, a), 2k(S, a)).

which is impossible.
DEFINITION. A value 0- will be called a k-value for the Problem A (the Problem

N, the Problem S)if
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this, let v(t) be a kth eigenfunction of Problem S. We need only verify that ’(0)
r(O)Ll[v](O) :/: O. If ’(0) 0, then Lemma 3.1 implies that v(1) - 0. However,

v(1) 0. We observe that because Kl(s, t) and K2(s t) are both oscillation kernels,
we have

Z(u, ao) Z(O, ao),

Z(u, a2) Z(O, a2).

Let 0- increase from ao to 0-2. Since all zeros of O(t, a) are nodal zeros, we see
that

sgn 0’(1, ao) (- 1)+ 1,

sgn 0’(1, a2) 1) + 2.

Thus, there must be at least one value of a (ao, a2) such that

(A.11) 0’(1, a) 0.

Now there is an e,o e(ao, a2) > 0 such that

(A.12a) Z(O, ao) < Z(O, 0-), 10- aol < Co

and

(A.12b) Z(O, 02) =< Z(O, 0-), I0- o21 < eo.
Moreover, for every point # in the closed interval Iao + eo/2, a2 o/2] there is an
c e,(#)such that

z(o, ) z(o, ), I 1 < ().

Thus, we may apply the Heine-Borel theorem to conclude that

Z(O, a) =_ const., ao + Co/2 =< a __< a2 e,o/2.

Thus, on letting ;o --+ 0 we see that

Z(O, a) const., ao < 0- < 0"2.

This fact, combined with the inequalities (A.12a), (A.12b) and the fact that

Z(O, 0-2) Z(O, 0-0) -Jr- 1,

implies that

Thus

z(o, a) k + 1, 0-0 0- 0"2.

Suppose there are values 0" e Nt+l which do not lie in the interval (0"0, 0"2)"
Case 1. There is a value # Nk+ and # < ao. Let u(t, ) be the solution of

(A.1) which satisfies the borandary condition (A.2). Then as before u(t, ) must be
the (k + 1)st eigenfunction of Problem N (except for scalar multiples).

Let 0" increase from # to 0"o. The argument given above shows that

k Z(0, ao) > Z(0, a)= k + .
This is impossible.
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Case 2. There is a value # e Nt‘+ and # > 02. But again, the argument given
above shows that

k + Z(O, ) > Z(O, 0-2)= k + .
Thus, the lemma is proved.

COROLLARY A.2. For any fixed value of 0",

(A.13) 0") < At, + (N, 0") < At‘ + (S, o-).

Proof. Let a be fixed, and let r(t, 0", a’) =- r(t, 0.’) while

(t, , ’) (o’)P(t, ).
Applying the above ideas to r(t, a, a’), P(t, 0", a’) as functions of 0.’ we obtain (in an
obvious notation)

/k(S, 0., 0.0) /k+ 1(S, 0", 0") /k+ 1(N, 0", 0"])

for some 0"’1 e (0";, 0"). But then

(0";)2 ,t‘(S, 0") < (0"])2 ’k+ 1(N, 0") < (0.)2 k+ 1(S, 0.).

We wish to obtain similar results for the k values of Problem A and the
eigenvalues related to Problem A. Hence we consider another special problem.

LEMMA A.5. There is a unique function pair (v(t, 0.), O(t, 0.)) which satisfies
(A.1) (under the identification v(t, 0")= u, #/(t, a)= O) and the boundary conditions

v() o, v’() ,
(0) ’(1) 0.

Moreover, !f to (0, 1) and V(to)= O, then v’(to) O. Similarly, if to (0, 1) and
O(to) O, then v’(to) a O.

Proof. Let vj(t), j 0, 1, 2, 3, be the basic solutions of (A.1) which satisfy the
initial (terminal) conditions

(A.14)

vj(1)= fit‘j, k=0,1, j=0,1,2,3,

(rLl[Vj])(1) fit‘+ zj, k =0,1, j=0,1,2,3.

Then, a computation gives v(t, 0.) in the form

v(t, (7) Vl(t (7) -[- Mv2(t,

The rest of the lemma follows exactly as the proof of Lemma A.1.
COROLt,ARY A.3. The functions v(t, 0.), v’(t, 0.), #/(t, a), #/’(t, a) are all continuous

functions of .
Let Z(v, 0.), ZOP, 0.) denote the number of interior zeros of v(t, a) and O(t, 0.)

respectively. Then, as before, because we are dealing with oscillation kernels

z(,, o-) __< z(v, o-).

LEMMA A.6. For every 0.0 there is an s. s(a0)> 0 such that [0.- Oo[ < s.

implies that

z(v, ) >= z(v, o).
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Proof. The proof of this lemma is exactly the same as the proof of Lemma A.2.
LENNA A.7. For every 0.o for which v(O, 0.o)=/= 0 there is an (0-o) > 0

such that I0. 0.ol < implies that

Z(v, a) Z(v, o).

Proof. The proof of this lemma is exactly the same as the proof of Lemma A.3.
LFMMA A.8. Let

0-1 sup {0.’0. Nk},
0" 3 inf{0"’0"e Nk+a}.

We assume < 0-3, 0.1 < 00. Then

and, if 0. A+ a, then

0-1 0.3

The proof of this lemma is exactly the same as the proof of Lemma A.4.
COROLLARY A.4. For every fixed value of 0.,

(A.15) Ru(N, 0.) < 2u+ I(A, 0.) < 2k+ I(N, 0-) < /k+ 1(S, 0").

Proof The proof follows the same argument as the proof of Corollary A.2.
THORFM A. 1. For the special cases ofProblemA andProblem N, Assumption 3

holds.
Proof. Since Assumption 3 holds for Problem S, the upper bound on 2, follows

from the inequalities (A.13), (A.15). The lower bound follows from an elementary
argument based on the Krein-Rutman theory [8. See [5] also.
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ON BOUNDARY VALUE PROBLEMS
FOR A SINGULARLY PERTURBED DIFFERENTIAL EQUATION

WITH A TURNING POINT*

R. E. O’MALLEY, JR.

1. Introduction. Let us consider boundary value problems for the linear
equation

(1.1) ey" + 2xA(x, e)y’ A(x, e)B(x, e)y 0

on the interval -1 < x __< for e a small positive parameter. We suppose that
A(x, e) is nonzero throughout [-1, 1] for e sufficiently small, and that both A
and B have asymptotic expansions in this interval as e tends to zero. Thus the
reduced equation obtained by setting e 0 in (1.1) is singular at x 0. Following
Wasow [10] and others, we call x 0 a turning point for (1.1). Our object is to
determine under what conditions the solution y(x, ) of the given boundary value
problem will converge as e 0 to the solution of a reduced boundary value
problem, i.e., to a solution of the reduced equation which satisfies some boundary
condition. Where such convergence occurs and what boundary condition is
appropriate for the reduced problem are of primary interest.

Wasow’s fundamental work on asymptotic solutions of boundary value
problems for linear ordinary differential equations without turning points is
well known (see Wasow [9]). Specializing his results, we obtain the limiting
behavior of the solution of the boundary value problem

(1.2)
ey" + 2A(x, e)y’ + A(x, e)B(x, e.)y O,

y(- 1) and y(1) prescribed, 1 x 1.

Thus if A(x, e) is negative throughout [- 1, 1], y converges to the solution of the
reduced problem

2z’ + B(x, e)z O, z(- 1) y(- 1)

as e ---, 0 everywhere away from the endpoint x 1. Similarly, if A is positive, y
converges to the solution of

2z’ + B(x, e)z 0, z(1) y(1)

as e --, 0 except at x -1. In each case, boundary layer behavior (nonuniform
convergence) generally occurs at the excepted endpoint.

In his unpublished thesis [8], Wasow also considered a boundary value
problem for an equation with a turning point. Specifically, he discussed the non-
homogeneous form of (1.1) for A(x, e) < 0 and B(x, ) O. The equation
was directly integrated and the integrals involved were expanded asymptotically

Received by the editors June 19, 1969, and in revised form February 23, 1970.
]" Courant Institute of Mathematical Sciences, New York University, New York, New York

10012. This research was supported by the National Science Foundation under Grant NSF GP 11458.

479



480 R.E. O’MALLEY, JR.

to give the limiting behavior of the solution as -, 0. Using a two-variable ap-
proach, Cochran 2] also solved a special problem, namely, (1.1) when 2A(x, e)

A(x,e)B(x,e)=- 1/4. Otherwise, no asymptotic analysis of boundary value
problems for (1.1) seems to have been previously reported. Asymptotic solutions
of such equations have, however, been studied (see, e.g., Sibuya 7]). Finally, for
certain special nonlinear problems of physical significance, some results are also
known (cf. Dorr [3]).

We shall first consider boundary value problems for (1.1) where A and B are
independent of x and e. The general solution of (1.1) can then be obtained in terms
of appropriate Weber (or parabolic cylinder) functions (cf. Whittaker and Watson
[11]) and boundary value problems can then be solved asymptotically by using
the known asymptotic expansions of these special functions. We shall show that
the general problem can be uniformly reduced to the case where A and B are
constants. This follows from Lee’s recent work [4] on systems which can be uni-
formly reduced to Weber’s equation. Thus the problem can be analyzed in general.
Principal results are contained in Theorems 1, 2 and 3.

2. A special problem of fundamental significance. Let us analyze the boundary
value problem

(2.1) ey" + 2xy’ fly 0, y(_ 1) prescribed,

on the interval < x =< 1, where and fl are constants and > 0. By analogy
to Wasow’s results for (1.2), we might expect the corresponding reduced boundary
value problem to be

2xz’1- flz O, zl(-1)--y(-1) on[-1,0),
(2.2)

2xz’2 fiZz 0, z2(1)

Behavior at the turning point x 0 will most likely vary with the sign of ft. If
is positive, we expect y(0, e) to converge to z1(0)= z2(0)= 0. If fi 0, Z l(X)
y( 1) and Zz(X) y(1), and we might expect y(0, ) to converge to their average

value. If is negative, both z 1(0) and z2(0) are unbounded and we expect y(x, e) to
have complicated limiting behavior.

To solve (2.1), we set

y Z e tx/(2e’),
where z satisfies

(2.3) g_,2
d2z

(x + (1 +/))z.

This transformation puts (2.1) into the form (2.3) usually studied and shows that
x 0 is a second order turning point (cf. Sibuya [7] and McKelvey [5]). Since the
parabolic cylinder functions D,(t) and D,_ 1(it) are linearly independent solutions
of

d2w
dt2 + n +- w=0,
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the general solution of the differential equation (2.1) is

(2.4) y(x) e-/(2 cD__/ x + cD/

for c and c2 arbitrary (i.e., independent of x). Since y(1) and y(- 1) are prescribed
for problem (2.1),

y(1) e-/( ciD_ _/ + cD/
(2.5)

y(-1) e-/2IcD_ _t/2( ) + c2Dt/2 if)]
provide two linear equations for the unknowns c and c2.

We note that the parabolic cylinder function D,(z) is an entire function having
the asymptotic approximations

(2.6) D,(z)=

e-Z2/4z"(1 + o(1))

e-Z2/4z"(1 + o(1))

as Izl oo for larg zl < 3r/4,

X enie z2/4

--(1 / o(1))
F(-n) zn+l

as Izl for r/4 < arg z < 5/4.

Thus for x negative D,,(x) is asymptotically exponentially large as Ixl -* oo unless n
is a nonnegative integer. In the latter event D,(z)= e -z2/4 He,(z), where He,(z)
is the nth Hermite polynomial and D,,(x) is asymptotically exponentially small.
This difference has substantial influence on the behavior of asymptotic solutions
of (2.1).

Case (a). Problem (2.1) with fl # 2n, n l, 2, Setting

1-///2 X e-ax2/(2D/2
(2.7) y(x) m + m2

e-/(2oO_
-/2 e-/(ZOD/2

we use the boundary conditions (2.5) and the asymptotic expansions (2.6) and
find that

m(e) - y(-1) (-1)/2y(1), mz(e) (-1)t/Zy(1) as e -, 0.

Thus, using (2.6) again, we let e --, 0 and obtain:
(i) for x > 0,

y(x) m O(e-,2 )/) + m.( x)//2(1 + o(1))

for any small 6 > 0, so,

(2.8) y(x) z2(x) y(1)xt/2
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(2.9)

(ii) for x < 0,

y(x) (-x)/Z(m + m2)(1 + o(1)),-, zl(x)= y(-1)(-x)t/2;

(iii) for x 0,

(2.10)
y(O) _/2)-/21 mF( +//2)(1+o(1))

21 +’/4F(1 + fl/4)

mzx/( 2)’/’
F(/2-/3/4)

(1 + o(1))] O(ee/).

In obtaining (2.10) use has been made of the relation D,(0) x//2n/2/F((1 n)/2).
Thus if fl is not a negative even integer, y converges to zl(x) on - 1, 0) and

to Zz(X) on (0, ]. If fl > 0, y actually converges uniformly on [- 1, 1] since y(0) 0
zl(0) z2(0). If fl 0 and y(1) 4= y(- 1), convergence is nonuniform at x 0

since

y(]) + y(-]) z,(0) + z(0)

For/1 < 0, but not an even integer, both z 1(0) and Z2(0 are unbounded and y(0)
becomes unbounded in proportion to e/4.

Case (b). Problem (2.1) with fl -2n, n 1,2, Here it is convenient to
write

(2.11) y(x) nle-aX2/He-l-/z( 2x/ex) + n2e-aX2/(Z)D/2(ix//ex)
e-/ He_l_ t/2(x//2/e) e-/(2)Da/2(ix//2/e,)

where He,(z) z"(1 + o(1)) as z . Thus, we find that

nl, 2 1/2J-y(1) -T- (-- 1)/ZY( 1)].

Thus for x - 0,

(2.12) y(x) nl xl +t/2 (1 + 0(1)) + n2xa/2(1 + 0(1))

that is, away from x _+ the solution becomes exponentially large as e 0
unless n 0. In this event y(1) and y(-1) cannot be prescribed independently.
This peculiar behavior is illustrated by the special example

y" + 2xy’ + 2y 0, y(4-_ 1) prescribed,

which can be directly integrated.
Changing the sign of the coefficient of y’, we consider instead the problem

(2.13) y"-27xy’ +Tfly=O, -1 x 1, y( +/- l) prescribed,

where 7 > 0. By analogy with Wasow’s results, we expect boundary layer behavior
to occur near x 4-_ with convergence to a solution of the reduced equation
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taking place in the interior of the interval (-1, 1). The general solution of the
differential equation is of the form

(2.14) y(x) ce’X2/(2D_ _a/2(i 2x/e ) + c2e"C2/(2Da/2(-x//e, x),

and the constants c and c2 will again be determined by the prescribed boundary
conditions. Two cases arise.

Case (c). Problem (2.13) with/3 2m, m 0, 1, 2, .... Proceeding as before,
we see that y has the form

eX/(2)D_
_

a/2(i 2x/e x)
(2.15) y(x) l "n

t- k2
e’/(2)D_ //2(ix/e

where

Thus

e’"’-/(2)D//2(- x//e x)
e/(2)D//2( x/e)

k-(-1)/2y(-1) and k2y(1)+(-1):/2y(-1).

e- (1 xZ)/e

(2.16) y(x) x+a/2 (y(1) + o(1)) forx > 0,

(2.17) y(x)
Y(- 1)e-la-x2)/(1 + o(1))

(_x)+/2 + O(e-11-)/) for x < 0,

and

(2.18) y(0) O(e -(1-6)/) for any small 6 > 0.

Hence, if fl is not zero or a positive even integer, y(x) 0 within (- 1, 1) as
, 0. Note that z 0 is the trivial solution of the reduced equation.

Case (d). Problem (2.13) with fl 2m, m 0, 1, 2, Here

(2.19) y(x) 11 -1 + 12
e’/(2)D_ a/2(i/e) He,/2(-)

where

Thus for x - 0,

(2.20)

1,,2 1/2{y(1) T- (- 1)#/2y( 1)}.

y(x) -(y() (- :/y(- ))
x + /2 (1 + o(1))

Z

1
+ (y(1) + (-1)t/2y( 1))x/2(1 + o(1))

and

(2.21) y(0) O(d/);

so, away from the boundaries x + 1, y decays exponentially to the limiting
solution

Z(X) 12x#/2
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which satisfies the reduced equation. A simple example of such convergence is
furnished by the example

ey" 2ocxy’ O, y( +_ 1) prescribed.

Case (d) is of independent interest, because the limiting solution cannot be
easily obtained by using the more intuitive boundary layer methods. In fact, the
result stated here contradicts the assertion in Pearson [6, Appendix I] that the
solutions of such problems are very nearly zero except near each endpoint where
there is a boundary layer.

It is interesting to generalize slightly and observe that the limiting solution of
the boundary value problem

ey" 27xy’ + 7flY O, -1 X a2

y(-1) and y(a2) prescribed,

fl=2m, m 0,1,2,...,

y(aZ)(x/a2)/2

away from x if 0 < a2 < 1, while if a2 > the limiting solution is

y(- )(- x)/2

away from x a2. Further discussion of related problems may be found in
Ackerberg and O’Malley [1].

Before considering variable coefficient problems, we summarize the results
obtained thus far.

The asymptotic solution of the boundary value problem

ey" + 2zxy’ ofly O, -1 <= x <= 1,

y(1 ), y( 1 prescribed,

is given in Table 1.

TABLE

Case

(a) >0, fie -2n,
n-- 1,2,....

(b) >0, fl- -2n,
n= 1,2,....

(c) z <0, flg:2m,
m 0,1,2,....

(d) <0, fl=2m,
m 0,1,2,....

Limiting solution 0

y( 1)(- x)/2, <__ x < O,
0(/4), x O,
y(1)xl/2, 0 < x <= 1.

Solutions become exponentially large for -1 < x < 1.

0, -l<x<l.

1/2(y(1) + 1)/2y( 1))x//2, < X < 1.
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3. The uniform reduction theorem. Instead of examining the equation

(1.1) ey" + 2xA(x, e)y’ A(x, e)B(x, e)y 0

for x e [- 1, 1], it is convenient to introduce the new variable

sA(s,O)ds(3.1) r/ r/(x)
e

where e A(0, 0). We note that r/’(x) 4:0 for x 4:0 and that q(x) is a monotonically
increasing function with q(0) 0 (since A(x, 0) 4: 0). In terms of r/, y satisfies

(3.2) ey,, + 2eq
A(x, O) rl J y" k x-5--(c- - y O,

where r/_ =_ r/(- 1) __< r/<= rt(1) r/+. Then we have the following theorem.
THEOREM 1. Let y be a solution of the equation

(1.1) ey" + 2xA(x, e)y’ A(x, e)B(x, )y 0,

where A(x, ) and B(x, e) are holomorphic in x and e and possess asymptotic expan-
sions as 0 for x in some complex neighborhood of the interval - 1, 1 and for
e in some sector S: 0 < ]e] __< eo, large] 00,0o > 0. Suppose also that A and B
are real when x - 1, !] and is positive, and that A(x, O) is nonzero on the interval- 1, 1]. Further, let W(rl) satisfy the equation

(3.3) ew,, + 2er/w,- (aft + ea(e))w 0,

where e A(0, 0), fl B(0, 0) and rl_ <= <= rl +.
Then functions M, N and a exist such that

(3.4) y M(r/, e)w + eN(r/,

where M, N and a are holomorphic functions having asymptotic power series expan-
sions whose terms can be found recursively. Moreover, M(0, 0) 1.

Note 1. The coefficient of w, in (3.3) equals that of y, in (3.2) when e 0.
Similarly, the coefficient of w in (3.3) agrees with that of y in (3.2) at the turning
point r/= 0 when e 0. For e 4: 0, a nontrivial correction a(e) is, in general,
necessary (cf. analogous results in McKelvey [5]). If A and B are constants, then
M _= 1, N 0 and a 0 provides the trivial transformation.

Note 2. By the results of 2, the general solution of (3.3) has the form

(3.5a) w(r/) e-"2/a)[clD_l-//2( q) + e2D/2(i/e, q)],

where/ fl + ea(e)/e and Cl and ca are arbitrary functions of e. Similarly,

(3.5b) w,(rl)
2e qz/(2e) DC- C1 -//2

(cf. Whittaker and Watson [11]). When w and w, are known, the general solution
y of (3.1) is determined by (3.4).

Proof. For convenience, we rewrite (3.2)as
(3.6) ey,, + (2er/+ e(r/, e))y,- (aft + 2er/0(r/)+ el(q, e))y O,
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where

(3.7) O(rl)=--(Orl2B(X’O)
and 6(r/, e) and (r/, e) have asymptotic power series expansions such that

2r/ qxx
(3.8) (r/, O)

A(x, o)
A(x’ O) - 2"

Substituting (3.4) into (3.6), we obtain an equation of the form

Cw + eDw,=O.
By setting C and D separately equal to zero, a system of two differential equations
for M and N is obtained. Thus, we have

2q(M, OM) + e[(a 6)M + (aft + ea)(2N, + fiN) + M, + M,,] 0(3.9)
and

(3.10)
-2zrl(N + ON)- 2zN(1 + qS) + M + 2M,

+ eE(a 6)N + N, + N,,] 0.

In order to solve formally these equations asymptotically, we substitute

(3.11) M(q,e) Z M, N(q,e) Ukek, a(e) Z a
k20 kO kO

and successively equate coecients of like powers of e in the resulting equations.
When e O, we obtain

Mo- OMo =0,
(3.12)

2(qNo, + No + qNo(O + ((q, 0)))= ((q, 0)Mo + 2Mo,.
Since we want Mo(0) and No(q) to be holomorphic, we obtain

Mo() exp O(t) dt

(3.13)
2ego() exp O(t) dt exp (O(t) + (t, 0))dt

Note that Mo() and No() 0 if A(x, 0) and B(x, 0) are constants.
In general, we find M, N and

_
successively for 1, 2, 3, By induc-

tion, suppose that M, N and

_
are known for allj N 1. Equating coecients of

d in (3.9) and (3.10) to zero, we have

(.4 (,, O(M3 -,_ Mo + g_(
and

(3.5 [,, + + ,(0 + (, o; (, 0M, + M, + J,_ (,

where K_ and J_ are known. We then select
(3. 6 - G-(o

so that

(. 7 ,-Mo( + G-( C,_(.
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Then we obtain the holomorphic solutions

(3.18) M(r/) M(O)exp O(t)dt + L_(s)exp

and

(3.19)

o(t) dt) ds

2zr/N(r/) exp (O(s) + ((s, 0))ds [(((t, O)+ 20(t))M(t)

+ 2L_ l(t) + J_ l(t) dt.

With the stated hypotheses on A and B, we can show that appropriate func-
tions M(r/, e), N(r/, e) and a(e) exist which have the formally determined expan-
sions. We refer to Sibuya [5] where expansions analogous to those for M, N and a

are shown to be asymptotically correct in sectors with central angle less than n.

The difficult problem of establishing the uniform validity (in q) of these expansions
was achieved by Lee [4]. As he observes, such results are known only for equations
reducible to Airy’s equation or Weber’s equation. For the special case considered
here, the expansions obtained above were generated by a more direct procedure
than that of Sibuya.

4. A more general boundary value problem.
THEOREM 2. Let y(x) satisfy the boundary value problem

(4.1) ey" + 2xA(x, e)y’ A(x, e)B(x, e)y O, y(4- 1) prescribed,

on the interval -1 <= x < 1, where A(x, O)> O. Suppose that the hypotheses of
Theorem hold and that B(O, O):/: -2n, n 1, 2,.... Then

(4.2) y(x)

zl(x +o(1) .for-1 <= x <0,

0(/) for x O,

Zz(X) +o(1) forO < x <= 1,

where zl(x and Z2(X satisfy the reduced boundary value problems

2xA(x, O)z’l A(x, O)B(x, O)zl O, z 1( 1) y( 1),
(4.3)

2xA(x, O)z’2 A(x, O)B(x, 0)z2 0, z2(1) y(1).

We shall not consider the exceptional case B(0, 0) -2n, n 1, 2, The
reader may recall the discussion above that for the special case where A and B are
constants the solution became exponentially large.

Proof. Introducing the new independent variable r/by (3.2), we see that (3.4)
to (3.6) imply that y has the form

y(q)--e-nz/(2e,)[ClIM(rl, e,)D_I_/2

(4.4) + ca M(, :)D/

iefl+ - N(r/, t:)D_ 1-fi/2
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Since y(r/_) and y(r/+) are prescribed, two linear equations are available for deter-
mining the constants c and c2. For convenience, we introduce

k: cle -’"- /(2e)D_ 1-ti/z(x/
and

/(2e)D +k2 2e’t2+ /2[,1X//20/ rl

Using the expansions (2.6), we have

y(q)ke-,2/F(l+/2)(Mo(rl)_2erlNo(rl)) y )//2
for > 0 and

Y(q) Mo(r/)r//2 (q_)t/2 + (r/ /2

for r/< 0. Thus we obtain bounded coefficients kl and k2 directly and

Mo(rl) , ]/2y(r/) y(q+)Mo(q+)//.+t z2(q) for q > 0,

(4.5)
Mo(q) () /2

Y(q) Y("-)Mo(q_) z a(q) for q < 0.

Since Mo(q) is given by (3.13), we observe that z(q) and z2(q) satisfy the reduced
boundary value problems

2z, ( + 20())z 0, i= 1,2,
(4.6)

z,(._) y(._), +) y(. +).

Finally, we have

(4.7)
+

Reintroducing the independent variable x we obtain (4.2).
Similarly, we have the following theorem.
TnoM 3. Let y(x) satisfy the boundary value problem

(4.8) ey" 2xC(x, e)y’ + C(x, e)B(x, e)y O, y( 1) prescribed,

for x e [- 1, 1] where C(x, O) > O. Suppose that C(x, ) and B(x, e) satisfy the hypo-
theses of Theorem and that B(O, O) 2m, m O, 1, 2,.... Then

(4.9) y(x) O for-1 < x < 1 as O.

Note 1. The limiting solution trivially satisfies the reduced differential
equation within (-1, 1). Since it fails, in general, to satisfy the boundary con-
ditions, nonuniform convergence of the solution can be expected as e 0 at
x= landx= -1.
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Note 2. In cases where B(0, 0)= 2m, m 0, 1, 2,..., the limiting solution
within (- 1, 1) may be nontrivial see Ackerberg and O’Malley [1]. More careful
analysis is necessary in the variable coefficient case.

Proof. Introducing the new variable

(4.10) n(x) - sO(s, o) ds

where 7 C(0, 0), we proceed as before and find that as a function of r/the general
solution of the differential equation is given by

(4.11)

where

(4.12)

y()-- C lR(F/) + c2S(t/),

[ 2/? /?R(q) e"2/(20 M(q, e)D_ 1-//2 rl ie N(rl, .)D/2

S(q)--e’nZ/(Z[M(q,e)D/2
/27U(q, e)O_

Here, fi fl- ea(D/7 and M(r/,0, N(r/,e) and a(e) are the functions whose
existence is proved by Theorem 1. We note that drl/dx > 0 for x e [- 1, 1], x 4: 0,
and define r/_ r/( 1) and r/+ r/(1). The prescribed values y(rl-) and y(q +) are
available for determining the constants c and c2 in (4.11). We find that the bound-
ary value problem has the unique solution

y(n-)
(4.13) y(r/)

D
where

By (2.6),

and

(S(ri + )R(rl) S(rl)R(rl +))
Y(q +)(S(q_ )R(q) S(q)R(q_ ))
D

D S(rl +)R(rl _) S(rl _)R(rl +).

R(rl)
e’"2/’:(Mo(rl) + 27r/No(q))

(ix/?/e,rl) + /2

e"/x(Mo(rl) + 27r/No(r/))
F(- fl/2) (x/2x/t/) +///2

for q :/: 0,

for r/ > 0

)///2r/ Mo(r/) for q < 0.

Noting that Mo(q) + 27rlNo(rl) is nonzero throughout [r/_, r/+] by (3.13), we have

(4.14)
and

(4.15)

y(rl) y(-1)e("2-"-)/O(1) + y(1)e-"+/O(1) for r/ < 0

y(r/) y(- 1) IS(r/+)R(q) S(tl)R(r +)]e- "+ +"-)/O(1)

+ y(1.)e"2-"+)/O(1) for r/ > 0.
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Since y(0) - 0 and

[S(q +)R(r/) S(tl)R(q +)]e- ("+ +"-)/ 0 for q > 0,

y(q)0 forq_ <q<min(q+,-q_).

If q+ N -q_, this proves (4.9) and, in addition, indicates the boundary layer
behavior which occurs at the endpoints. Otherwise, we note that the differential
equation for y(q) (cf. (3.2)) has no turning point on the q-interval 0 < -q_/2 N q
N q+. Applying Wasow’s theory for (1.2), we see that the solution y(q) converges
asymptotically to the solution of the reduced boundary value problem

27qz, 7
2 qZB(x’ O)
xz 0, z(-,_/2) y(-,_/2)

in the interior of this interval as e 0. Since y(-q_/2) O, however, y is asymp-
totically zero throughout the open interval q_ < q < q+.

Instead of referring to (1.2), we could show directly that the coefficient of
y( 1) in (4.15) is asymptotically zero for 0 < q < q +. In the case where C(x, e) 7
and B(x, :) fl, for example, this is equivalent to showing that

exp - +]
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A REPRESENTATION OF LINEAR CONTINUOUS OPERATORS
ON TESTING FUNCTIONS AND DISTRIBUTIONS*

VACLAV DOLEZAL"

It is well known that, due to the famous Schwarz’s kernel theorem, every
linear continuous operator from @ into @’ (space of testing functions and its dual,
respectively) can be represented by a distributional kernel. In this paper we con-
sider linear continuous operators from into , and operators from ’ into ’.
Unlike in the case of Schwarz’s kernel theorem, whose proof is based on topo-
logicalJvector space theory, we use entirely elementary methods, i.e., only the
concept of convergence in the respective spaces. First, theorems characterizing
linear continuous operators from into and ’ into @’ are proved. Using these
results, necessary and sufficient conditions for an operator to be shift-invariant
are found. Then, convergence of sequences of operators is studied and it is shown
that the spaces of operators are sequentially complete. Finally, certain modifica-
tions and extensions of the presented results are discussed.

1. Let denote the set of all complex-valued testing functions defined on
R"; as usual, we write q, 0 in 9, if o, for n 1, 2, the support of every
q, is contained in a fixed bounded subset of R and, for every multi-index k,
Dkq, --* 0 uniformly.

Let 9’ signify the set of all distributions, i.e., the set of all linear and continuous
functionals (in the sense of the above convergence) on 9; furthermore, let
stand for the set of all distributions of finite order.

Suppose we wished to introduce the weak convergence into @ i.e., we would
write q, 0 weakly, if (f, q,) 0 for everyf ’. However, surprisingly enough,
we would not obtain anything new; actually, we have the following theorem.

THEOREM 1.1. Let qn , n 1, 2, ..., be a sequence such that (f, q,) 0
for everyfe ., then q, - 0 in

Proof First observe that if the sequence q, has the property that (f, q,) - 0
for everyfe @,, then any subsequence q,, also has the same property. Furthermore,
if p is a fixed multi-index, then the sequence DPq, also has this property, because if
fe @’., then (- 1))DPfe ’., and consequently, ((- 1)DPf, qn) (f, DPq,) O.
In particular, if e R and p is a fixed multi-index, we obtain DPq,() 0 by setting
f=

(i) First, we are going to show that the supports of all q0, are contained in a
bounded subset of Rm. Suppose that this is not true i.e., for every a > 0 we can find
and index n >= and a point t, R with It,[ >_- a such that p,o(t) - 0. Because
each q, has a compact support it follows that n --+ oo as a c.

Let us now construct a sequence t R and a sequence of indices n < n2 <
as follows"
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Find tl e R with It1} > 1 and nl >_ such that 21 q)nl(tl)#: 0. Next,
find t2 e R with It2[ > 2, 2 supp , and n2 > n such that 22 O,(t2) # 0
and

(1.1) I(t)l < 1212 -x

for all k n2. Such a pair t2, n2 actually exists, because due to the above fact there
exist arbitrarily large indices n and points t such that .(t) 0; moreover,
since ,() 0 for any point Rm, inequality (1.1) can be satisfied.

Generally, if indices n, n2, ..., n_ and points t, t2, ".’, t_ are already
found, we construct n > n_ and t so as to have

(1.2) tol > q, tq supp ,, for 1, 2, .-., q 1,

2q ,(tq) O,
and

(1.3) Ik(t,-p)l < lq-pl2 -p, p 1,2,..., q- 1,

whenever k no.
Since Itil , the functional f= i=12l-X6t, belongs to ,, thus, by

assumption,

(1.4) zj ( j) Izl-lj(t3 0
i=1

asj .
However, let j nq, when nq is a term of the sequence n < n2 < we

constructed; then we have, due to (1.2) and (1.3),

Iz.l Iil-no(ti) Iil-l%(ti)
i=1 i=1

q-1

i=1

q-1

> Z
i=1

which contradicts (1.4). Hence, all supports of , are contained in a set

(ii) Now, let us show that, for any multi-index k, we have D, 0 uniformly
on I. Suppose that this is not true;i.e., there exists a multi-index p, number > 0,
a subsequence ,, and points t I such that

(a.5) IO,(t31 .
Because I is compact, we may assume that we have already selected the indices ni
and the corresponding points tg so that t I. Moreover, we can assume that
n and t are chosen so that we have

(1.6) tg 1 < i-3 for 1, 2, ....
Observe also that the sequence t contains infinitely many distinct points, since
otherwise (1.5) would contradict the pointwise convergence of OPni Finally,
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since DPq),,() 0, we may assume that

(1.7) IO%n,()l < e/2

for all ni, 1, 2,....
Next, denoteti=(t.1, 2 tT’) (1 2,i,’" "",m),andletOq

c/ctq, <= q < m. Then we have, by the mean value theorem,

(1.8) DPq,,(t,)- DPq,,()= , (DqDPqgni(i).(t q),
q=l

stand for

where i 2ti + (1 2) with 2 (0, 1). Thus, by (1.6),

(1.9) I, 1 < i- 3.

However, (1.8) yields, by (1.5), (1.6) and (1.7),

(1.10) e/2 < IDPq),,(t,)- DPq),,()I < IDqDPq,,(Z)I -3.
q=l

Consequently, (1.10) shows that, for every i, at least one partial derivative Dq, say
Dq,, satisfies the inequality

g
"3(1.11) ]Dq’DVqg"fli)l > m’

On the other hand, since q assumes only values 1, 2, ..., m, we may assume that
our subsequence q,i has already been chosen so that q q’ for all i, and denote
Dq,Dp Dp’. Due to (1.9) we may finally assume that q,, and are such that
I[i l > I[i+ l for every i.

Thus, summarizing our results, we see that our original sequence q contains
a subsequence q. such that, with some fixed multi-index p’, the sequence
v. DP’q. has the following properties:

There exists a sequence . e R with [. and

(1.12) I.- l > 1,+1 l
for all n such that

(1.13 v,(,)l > mn

Next, recalling our remark at the beginning of the proof, we are going to
construct a subsequence Vn, of V, as follows"

Put A e/(4m); because v,()- O, we can find /71 __-- 1 SO that Ivr()l < A/2
for all r >= nl. Since Vn, is continuous at , there exists a/1 > 0 such that lv,,(t)l < A
for every e Ii {t "l l < 1 and ,, I 1"

Next, find n2 > n such that ,= e I and Iv2(,)l < A/2; such an n2 exists due to
(1.12) and the hct that v(,) 0 as p m. By continuity of v, there exists a

22 > 0, 22 < 2 such that [v,=(t)[ < A for every eI2 {t’[t- [ < 22} and

Generally, if na < n2 < < nk_ and 2a > 22 > > 2k_ are estab-
lished, we find n > n_ so that

(1.14) , elk_l {t’lt- l < k-1}



494 VACLAV DOLEZAL

and
A

Iv,(,_)l < 5" 21- p’ p= 1,2,...,k- 1;

such an nk exists due to (1.12) and pointwise convergence of Vp at points f,,, ,2, "’",

,k-,. By continuity of v,k we then establish 2k > 0, ,% < 2k- so that Iv,(t)l < A
for Ik and , Ik, etc.

Now define a functional f on 9 by

(1.15) f= n-26%,
j=l

i.e., for any q e ,
(1.16) (f (p) nf 2

j=l

Since . as j and each q0 is bounded, it follows from (1.16) that the series
converges; furthermore, each partial sum of (1.15) is in 9’, and consequently
(cf. I1 p. 37]) f 6 9’. Finally, it is clear that f 6 9’

By assumption, {f, v,) 0 as k oe i.e.,

(1.17) /% n-2v,([..)--. 0.
j=l

However,
(1.18)
where

/k a + n-21)nk(nk -- b,

k-1

a n- 2v,(,j),
j=l j=k+l

n-f Zvn,,(,j).

Using the inequalities (1.14) we see that
k- kl A

On the other hand, because ,.; I for j => k + 1, we have, by our construction,

Iv,(,)l < A for j >= k + 1, and consequently,

Ib[< n-fZA <A.
j=k+l

Thus, (1.18) yields finally, by (1.13),

I,1 > In/-2v.(,,)l -lal -Ibl > n-2 e 3
/3

.mmnk 2A mm(nk- 1).

This, however, contradicts (1.17) which completes the proof.
Let us now introduce some further concepts.
For every a e R letf e 9’ if, for every a e R and q e 9 there exists a finite

limit
(1.19) limfl--(fa+h--,o\z

f,,), qg>, Z# O,

where h (0, 0, ..., 0, x, 0, ..., 0) R" (z stands at the ith place), then, by the
theorem on completeness of ’ (cf. [1, p. 37]), (1.19) defines a distribution g, in

’ for every a Rm, and we write g #f,/a.
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From this definition it follows immediately that the following propositions
are true (see [3, p. 148] or [2]).

LEMMA 1.1. Let fa 9’ for every a Rm, and let ff0,(a) (fa, qg), q9 6 9;
then c3j’/c3ai exists if and only if (O/c3ai)(a) exists at every point a R and q9 9.
Moreover, then

ai -a
LEMMA 1.2. Letf. e 9’ for every a e Rm; then cf./3ai exists if and only if

(ai,, ai) l(fa,,- fa) L

where a (a a2, ai-in 9’ for all convergent sequences a, a’, a, :/: a’,
ai+ 1,c3f) am)’a (al’ a2’ "’"’ am). Moreover, 3fa/a L.
If ai exists and (O/Oaj)(f,/ai) also exists, then the latter derivative will

be denoted by 2fa/aj?a, and similarly for derivatives of higher order.
We can easily verify that the following proposition holds.
LEMMA 1.3. Let fa ’ for every a Rm, let O,(a) (fa, ) for every

aM let k be a multi-index. Then Df exists aM is iMependent of the order ofd-
ferentiation if and only D,(a) existsfor every a R aM and is iMepeMent
of the order ofdifferentiation. Then

(1.20) D,f, q) Da(fa, q).

Next, let {f} be a family such that f. e 9’ for every a e Rm; the family {f.} is
called continuous if, for every (p 9, the function O0(a) (f., (p) is continuous
on Rm.

Clearly, {f} is continuous if and only if f.. f. in 9’ for any sequence
a a in Rm.

DEFINITION. Let F be the set of all families f,}, wherefa 9’ for every a R’,
such that, for {fa} F, the function ffo(a) (fa, q) is in 9 for every o 9.

Observe that F is not empty, because {6,} F; moreover, every {f,} F is
clearly a continuous family.

Then we have the following lemma.
LEMMA 1.4. {f} F if and only if:

D,f,} is a continuous family,Dfo exists for every multi-index k and { k(a) k

(b) a.f.- 0 in 9’ for every sequence of numbers a. and points a. such that
la,I asn o.

Proof By Lemma 1.3, condition (a) is satisfied if and only if ,(a) is infinitely
smooth for every q9 9. As for (b), let o(a) vanish identically outside of a bounded
set in Rm, for any q9 9. Let ,, a, be sequences satisfying the hypothesis; then, for
any o 9, (.L., q) .(L., q) .,0(a.) 0 as n ---, .

Conversely, let a.f.. 0 in 9’ for any sequences ., a. with the above proper-
ties. Suppose that there exists q e 9 such that Oo(a) does not vanish outside of a
bounded set i.e., there exists a sequence a. e R with [a.[ such that Oo(a.) :# O.
Setting . (o(a.))-1, we obtain (0.f.., q) .(f.., q) .o(a.) 1, i.e., a
contradiction to the assumption made.
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From Lemma 1.3 we also have the following obvious assertion.
LEMMA 1.5. If{L} F and k is a multi-index, then {Dakf} 6 F.
Now we are ready to state the following result.
THEOREM 1.2. Let {f} F, and let ,(a) (f, q)) for every a R" and q) 6 9

then the mapping q) @o is linear and continuous (in the sense ofconvergence in 9).
Proof Linearity being obvious, let us turn to continuity. Thus, let q, 0 in

and denote for brevity ,(a)= O,(a)= (f,, q,); clearly ,(() 0 at any
point Rm.

(i) First show that the supports of all the , are contained in a bounded subset
of R".

To prove it suppose that this is not true;i.e., for every a > 0 there exists an
index na > 1 and a point ta e R" with [t,[ >= a such that ,o(t,) 4: 0. The compact-
ness of supports implies that n o as a .

Construct a sequence of indices nl < n2 < and points t, e R" as follows"
Find tl with It1[ > 1 andn _>_ 1 such that 2x On(tl) 0. Nexl, find t2 with

[t2[ > 2, 2 q supp O,i and n2 > n such that 22 n2(t2) 0 and

(1.21) 10(tl)l < 1/21211
for all k => n2.

Generally, if nl < n2 < < nq_l and t, t2, "", tq_ are already found,
we establish nq > r/q_ and tq SO as to have

]tq] > q, tq dd supp 0,i for 1, 2, ..., q 1,

q Onq(tq) 0

(1.22)

(1.23)

and

(1.24) ]Ok(tq 1)1 < 21--I/q 1] for all k >= nq.

Such nq and tq clearly exist due to the pointwise convergence of Ok and the fact that
na oo as a --, .

Now, define functions Vk, k 1, 2, ..., and q) by
k

(1.25) Vk Z 2-i(]gni (D , 2-iq)ni.
i=1 i=1

Since q,i- 0 in 9, the infinite series in (1.25) converges uniformly, and con-
sequently, q is continuous;moreover, since all q, vanish outside a bounded set in
Rm, so does (p. On the other hand, for every multi-index r we clearly have
DrVk =12-iDrn, uniformly. Hence, e and Vk @ in .

By assumption, (fa, ) . If a eRm, we have (fa, Vk) (fa, )
Oo(a) as k i.e., by (1.25),

(1.26) (a) 2-i@ni(a).
i=1

Putting a tq, we obtain, due to (1.22),

+ Z
i= i=q+
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consequently, by (1.24), (1.23),

I’o(t)l > 2-ql2ol-
(1.27)

> 2-ql,ql-

i=q+l

i=q+l
2-i1/2lql- 2 -q-112q > 0.

However, since ]tq] -+ c as q ---, oo, (1.27) shows that , does not have a compact
support, which contradicts the fact that ff, 9. Hence, there exists C > 0 such
that, for every n, supp ,, c I {t: It] =< C}.

(ii) Now we are going to show that for any multi-index k, the sequence
kDag,, -+ 0 uniformly. Thus, supposing that this is not true we conclude as in the

second part of the proof of Theorem 1.1 that there exist an : > 0, a fixed multi-
index s, a subsequence % of our original sequence ,r and a sequence of points

R with

such that

(1.29) ID2;,(,)I > r,f3/2m
for all .

However, by Lemma 1.3,

and, by Lemma 1.5, {Df,,} e F. Since also q 0 in 9, write for simplicity
instead of q, and put D% v, g, DJ. Thus, summarizing,

(1.30) (p,-+0 ing, v,(a)= (g,q),)e forn= 1,2,...,

[v,(,)] > 3/2m,
where the , satisfy (1.28).

Next, let us construct a subsequence v,i of v, as follows: Since v,(a) 0 at
any point a e Rm, choose na so large that ]Vk({)] < A/(2) for every k n,
where A e/(4m) and fl i i- 2.

By continuity of v,,, there exists 2 > 0 such that ]v,,(t)] < A/ for every
t I {t:t ] < 2} and , I.

Further, find n2 > n so that

(1.31) , 11 and ]v,(,)] < A/2;

by continuity of v,, there exists 2 > 0, 22 < 21 such that ]v,(t)l < A/# for all
te I2 {t:]t {] < 22} and .I2.

Generally, if indices nx < n2 < < nk_ and numbers 2 > 22 >
> 2k- are already established, we find nk > nk-1 SO as to have

(1.32) , elk_ {t:lt- {1 < k-1}
and

A
]Vnk(nk_p)] < " 2l-p, p 1, 2, ..., k 1;
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such an nn clearly exists due to the pointwise convergence of v, at any point. By
continuity of v,k we then find 2n > 0, 2n < 2n-1 such that Iv,k(t)[ < A/la for In
and , q In, etc.

Now, define functions

(1.33) Pr q,,. n/- 2, q y’, (p,,. n/- 2.
i=1 i=1

As before, we conclude easily that qo @ and pr --+ qo in @. Thus, by the fact that
{go} F, (g,, o) .

On the other hand, for any a R",

(1.34) {go, pD --’ (go, q) (a).

By (1.33) and (1.30),

i=1 i=1

consequently, by (1.34),

v(a) Vni(a)n 2.
i=1

Choose a ,; then

i=1

where
k-1

i=1 i=k+l

However, because by our construction , e In_ c In_ 2 C C I1, we have

Iv,,(?,)l < All, for 1, 2, ..., k 1; hence,

Similarly, by (1.32),

Thus, by (1.35) and (1.30),

I1 <
A n12_.=-- n/-2 <A.

i=1

Y’, v,,(F,k)l < A y’, 2 -i A.
i=n+l i=1

g
3(1.36) p([nk)] > _m/lk /./ 2 2A --mm(nn 1).

However, , --+ { and nn ---’ oo as k --+ oo, so that (1.36) contradicts the continuity
of v 9. Hence the proof.

The theorem just proved has the following converse.
THF,OREM 1.3. Let T :9 --+ be a linear and continuous mapping (in the sense

ofconvergence in 9); then there exists afamily {f,} F such that (Ttp)(a) (f,
for any q) 9.

Proof For any a R define a functional fa on by

(1.37) <fa, (p> (Tq))(a).

Obviously, f, is linear; moreover, if q0. -+ 0 in L, then TO, 0 in 9, and con-
sequently, <f,, (,) --+ 0 by (1.37). Hence, f, 9’.
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On the other hand, since TO e 9 for every 0 e 9, (1.37) shows that {fa} F.
Thus, Theorems 1.2 and 1.3 prove that every linear continuous operator from

9 into itself has the form (1.37).

2. Let us now discuss some corollaries of Theorems 1.1, 1.2 and 1.3, which
concern linear continuous operators mapping 9’ into 9’.

By continuity of an operator A : --. 9’, where c 9’, we understand that
Ax, --, Ax whenever x,, x and x, --, x in 9’.

THEOREM 2.1. Let {f,} F; for every x 9’ define the functional Ax on 9 by

(2.1) (Ax, q)) (x, (fa,

Then Ax 9’ for every x 9’ and A is a linear continuous operator from 9’ into

itself.
Note. Writing the "arguments" explicitly, (2.1) should read

((Ax)(t), q)(t)) (x(a), (f(t),

however, bearing this license in mind, the short-hand notation used in (2.1) can
hardly lead to a misunderstanding.

Proof (i) The linearity of the functional Ax is obvious. If qg, --, 0 in 9, then, by
Theorem 1.2, {fa, qg,) --, 0 in 9, and consequently, by (2.1) and continuity of x,
(Ax, qg,) - 0; hence Ax 9’.

(ii) Linearity of A is obvious. If x, - x in 9’, then (2.1) shows that Ax, --, Ax
which completes the proof.

For proving the next theorem we will need the following lemma (cf. [2]).
LEMMA. 2.1. Let A: -- 9’ be a linear continuous operator, where is a linear

D,f for any multi-index k. Thensubset of 9’ furthermore, let { f,} e F and let k

{Af,} F and

(2.2) D(Af,) A(Dfa).

Proof Choose a point a e Rm, a sequence of numbers a, a’, a, - a’, and put
an (a 1, a2, ai- ai+ (a 1, a2a,, ,..., am), where a ,--., am). By Lemma
1.2 we have

(ai, ai) I(L. f) c?f,/c3ai

in 9’. Since c3f,/ca , we have, by linearity and continuity of A,

(ai, ai) l(Afa AJ) Af,/cai.

Thus, again by Lemma 1.2, c(Af,)/c3a exists and equals A(c3fo/c3ai). Repeating this
argument proves formula (2.2).

Next, by Lemma 1.4, {ga} with g, DaJ’ is a continuous family, i.e., gan g
in 9’ for any sequence a, a in Rm; consequently, by continuity of A, Aga. ---, Ag,
in 9’. Thus, by (2.2), {D](Af)} is a continuous family.

Finally, let e, be a sequence of numbers and a, R a sequence of points in
R" such that la,[ oe as n . Since f,} e F, we have, by Lemma 1.4, e,f. ---, 0
in 9’. Hence, by linearity and continuity of A, cz,(Afa.) 0 in 9’. By invoking
Lemma 1.4 again we conclude the proof.
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THEOREM 2.2. Let be a linear subset of @’ such that , ..@ c ’, and let
A’ ’ be linear and continuous; denote f, A6, for every a Rm. Then
{f,} e F, aM (2.1) holdsfor every x and .

Proo We have {b,} e F;it can be easily verified that, for every multi-index
k, kD 1) D6. Hence, the assumptions of Lemma 2.1 are met and
we have {L} F.

Next, define a linear continuous operator A’ ’ by

(2.3) (A, ) (x, (L,

Then we have, for any b R, (A,) (, (, p) ) (f, ) i.e., ;.
Let have a bounded support; then there exists a sequence

such that, for each n,

(2.4) .
j=l

(cf. [1, p. 145]). This shows that (A ) 0 for every n, and consequently, by
continuity, (A )p 0.

Next, if x e , then there exists a sequence x x in ’ such that each
has a bounded support, and consequently, x, e N. Hence, (A )x 0 by con-
tinuity, which completes the proof.

Observe that Theorems 2.1 and 2.2 show that every linear and continuous
operator ’ has the form (2.1).

Let us now discuss a generalization of a time-invariant operator. Let k be a
fixed integer, 1 N k m; for any eRm, (, ,..., ), let
.., _, , 0, 0,..., 0) and + *. Clearly, (*)* *, (+) + +,
(*)+ (+)* 0 for any e R.

Let be a linear subset of ’; will be called shiftinvariant, if P,x
whenever x e and eRm. (Here, P signifies the operator of shifting; i.e.,
(Px, p(t)) (x, p(t + b)) for all x e ’ and e .)

Similarly, if is shiftinvariant and A " ’, then A will be called shift
invariant, if P,A APe, for any e R.

THEOREM 2.3. Let , ’ a let be shtinvariant; let A’
be linear and continuous. Then A is shtinvariant ifand only iff, A
for all a e R a L} e f

COROLLARY. The operator A satisfies the coition PeA APe for every
R if and only if there exists fe ’ such that A Pffor all a e R and

Proof (i) First, letf Afi P,Afi for all a e R and } e F. By Theorem
2.2,

(2.5) (Ax, p) (x, (j;,

for any x e and e . Choosing e R, we have

(2.6) (Ae,x, e) (e,x, (L,

Denote

(2.7) Oo(t)(a) (f., q0) (P,,.AS,,+,
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Then

(2.8) Oq,(t)(a +) (PoA6,,/, q)) (A5,,/,

and consequently, by (2.7),

(2.9) 0,(0(a) (A(a+ go(t -+- a*))

Thus, by (2.6) and (2.9),

(APe,x, q)) (P,x,
(2.10)

(x, Oq,(,)(a + *)) (x, Ipq,(t+a,+,)(a+)),
because (a + *)+ a + and (a + *)* a* + *.

On the other hand,

(PeAx, o) (Ax, O(t + *)) (x, (f,, O(t + *))
(x, (Po(,+,)(a)) (x, Oq(t+a,+,)(a+))

by (2.9). Hence, PeA AP,.
(ii) Conversely, let A be shift*-invariant. Since 5, e , we have, for every

a Rm, f, A6, AP,,(5,+ P,,AS,+, which is what we wished to show.
The corollary follows from Theorem 2.3 by setting k m and realizing that

that a* a, a + 0; i.e., we have Afa P,fwithf A6o.
Finally, let us present a characterization of the convergence of linear con-

tinuous operators.
Let A,, A, n 1, 2, ..., be linear continuous operators mapping c @’

into 9’; we say that A, ---, A, if A,x Ax in 9’ for every x e .
As we have seen, the family {A6,} plays a crucial role in establishing the proper-

ties of an operator A. The above definition shows that if A, --+ A, then
for any a e R". Can this implication be inverted, i.e., does A,6, --, Afa imply that
A, A? The answer to this question is furnished by the following proposition.

THEOREM 2.4. Let A,, A, n-- 1, 2,..., be continuous linear operators from
9’, where is a linear set satisfying the inclusion 9, c 9’; then

A, A ifand only if, for every q) 9,

(2.11) d/,(a) ((A, A)5,, qo) 0 in 9.

Proof Denote f A,5,, f, A6, for every a Rm. Then, by Theorem 2.2,

(2.12) (A,x, q)) (x, (f",, qg)), (Ax, q)) (x, (f,,

for every x e and q)e 9.
(i) Let (2.11) be true; i.e., for any rpe , (f,’, q)) -, (f,, qg) in 9. Then, for

any x,
(2.13) (x, (f], q955 -+ (x, (fa, q955,

and consequently, by (2.12), A, --, A.
(ii) Conversely, let A, A; then (2.13) holds for any choice of qo e 9 and

x N. Hence, for any x e 9, c ,
(x, (f" f,, qg)) -+ O.
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Consequently, by Theorem 1.1, (f -f,, o) 0 in 9; i.e., (2.11) holds. Hence
the proof.

Now we are ready to summarize our previous results; for this purpose, we
introduce the following notations"

Let N be a fixed linear subset satisfying the inclusion 9, c c 9, and let
11’ stand for the set of all linear and continuous operators mapping into 9’.
Furthermore, let 11 signify the set of all linear and continuous operators from
into itself. Finally, let B, B, 11, n 1, 2,...; we will write B, B if B,q)
in 9 for every o e 9.

The following proposition gives a picture of the relation between 11’ and
THEOREM 2.5. Let the mapping -: 11’ 11 be defined by

(2.14)

for all A 11’, x and q) 9. Then - is one-to-one from 11’ onto 11, and both
mappings - and --1 are linear and continuous.

Moreover, ,Y--(AB) (-B)(-A)for every A, B 11’ and -I I 11.
Proof Let A e 11’; then by Theorem 2.2 there exists a family { f,} e F such that

(2.1) holds. However, due to Theorem 1.2, {f,} generates an operator A*e 11
such that (2.1) becomes (2.14) with A* --A. Moreover, the value -A is deter-
mined uniquely, because if there existed A* e 11 satisfying (2.14), we would have
(x, (A* A*)q) 0 for all x and qo 9, which implies A* A* 0.

Next, if A1, A2 6li’ are such that -A1 -A2, then (2.14) implies that
((A1 A2)x, q) 0 for all x e and qe 9, and consequently, A1 A2 0;
hence, - is one-to-one.

IfA* e li, then by Theorem 1.3 there exists a family {f} e F such that (A*o)(a)
(f, q) then due to Theorem 2.1 the operator A defined by (2.1) is in 11’ and

(2.1) is (2.14) with -A A*. Consequently, - is onto.
The linearity of - and --1 is obvious. As for continuity, observe that, by

Theorem 2.4, A, A for A,, A ’ exactly if

(2.15) (f,", q)) - (f, o)

in 9 for any 0 @, wheref" A,6,,fa A6,. However, (f", q) (Y-A,)q and
(f,, q) (-A)q, and consequently, (2.15) is equivalent to -A, -A.

To verify the last assertion is a matter of simple routine;hence, the proof.

3. In the preceding section we have defined the concept of convergence of
operators either from 11’ or tl by assuming that the limit is also a linear continuous
operator. This, however, is no loss of generality; as a matter of fact, the sets tl’
and 11 are sequentially complete, and this section is devoted to proving this fact.

As usual, if q, 9, n 1, 2, ..., we say that the sequence q,- converges in
9, provided the supports of all q), are contained in a bounded set and the sequence
Dkq), converges uniformly for any multi-index k. Then, as known (cf. [1, p. 5]),
there exists a unique o e 9 such that (0, q) 0 in 9; i.e., 9 is sequentially
complete.

Similarly, if f, e 9’, n 1, 2, ..., we say that the sequence f, converges in
9’ if, for any q)e 9, the sequence of numbers {f,, q)) converges; then again
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(cf. 1, p. 37]) there exists a uniquef e @’ such thatf, fin 9’ i.e., ’ is sequentially
complete.

Using these ideas, let us state the following definitions:
Let B, e tI, n 1, 2, we say that the sequence B, converges if for every

q) the sequence B,q converges in 9.
Let A, t[’, n 1, 2, we say that the sequence A, converges if for every

x e 9’ the sequence A,x converges in 9’. Then we have the following proposition.
THEOREM 3.1. If B, 11, n 1, 2,..., and the sequence B, converges, then

there exists a unique B I such that B, B.
Proof By our definition, for every q9 e 9, the sequence B,q9 converges in 9;

i.e., by completeness of 9, there exists a testing function Bq) e @ such that

(3.1) Bn(p --, Bq in 9.

However, by Theorem 1.3, there exists a family {f"} F for every n such that
(B,q))(a) (f", q)) for every q9 and a e R". Consequently, we have, by (3.1)
for any fixed a,

(3.2) (f",, q)) - (Bq))(a).

Hence, by completeness of @’, there exists an f, e ’ for every a e R" such that

(3.3) (Bq))(a) (f,, qg);

since Bcp e for any qe 9, we have {f,} e F. Consequently, by Theorem 1.2,
B elI which completes the proof.

For proving an analogous result concerning the set If’, we will need the follow-
ing slight extension of Theorem 1.1.

THEOREM 3.2. Let q),e , n 1, 2,..., be a sequence such that, for any

f ,, the sequence (f ) converges; then the sequence , converges in .
The proofof this theorem is almost the same as that ofTheorem 1.1. Supposing

that the supports of , are not contained in a bounded set we construct the same
subsequence ,, as before. Now, we definef by

(3.4) f (- 1)2[ ’6,,
i=1

then, by assumption, the sequence

Zoo (f ,,) (- 1)’2; pnq(li)
i=1

should converge as q . However, we see as before that Iz,,I > and sgn z,,
(- 1)q, which is a contradiction.
The proof of uniform convergence ofD%, is identical with part (ii) of the proof

of Theorem 1.1.
Now, we can state the following theorem.
THEOREM 3.3. If A, e g’, n 1, 2,..., aM the sequence A converges, then

there exists a unique A ’ such that A A.
Proof By our definition and completeness of ’, for every x e there exists

a distribution Ax’ such that, for any e ,
(3.5) (A.x, q,5 --, (Ax,
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However, by Theorem 2.2, there exists a family {f} e F for every n such that
(A,,x, 99) (x, (f], 99)). Hence, by (3.5),

(3.6)

and consequently, by Theorem 3.2, (f", 99) converges in for any 09 e 9.
On the other hand, by Theorems 1.2, 3.1 and 1.3 there exists {fa} e F such that,

for any q9 e 9,

(3.7) (f,

in 9. Hence, by (3.6), (Ax, q))= (x, (fa, (P)) for all x e and qge 9; then
Theorem 2.1 shows that A e 11’ and the proof is complete.

Thus, both sets 11 and 11’ are sequentially complete.

4. We conclude the paper by making a few remarks on possible extensions
of presented results.

4.1. For i= 1, 2,..., m, let Ii be either (-, ) or [0, ), and put
S 11 x I2 Im. Let s stand for the set of all smooth functions defined
on S which have a compact support; if we introduce the convergence in s in the
same way as in 9, denote @’s the dual space of s. Finally, let ’ c @} consist
of all distributions of finite order.

Examining the proof of Theorem 1.1, we see that it works for spaces s, ’,
too; thus, we have the following theorem.

THEOREM 4.1. Let q), s, n 1, 2, ..., be a sequence such that (f, (p,) - 0
for every f ’’ then (p, --, 0 in s.

Similarly, if fa @) for every a S, we can define the partial derivatives
kDafa by (1.19) and show that Lemmas 1.1-1.5 remain true. By {f,} 6 Fs we now

understand that Oo(a)= (fa, q)) S whenever q9 e s. Then again we may use
the same argument as in the proof ofTheorems 1.2, 1.3 and obtain thenext theorem.

THEOREM 4.2. The mapping T:s s is linear and continuous exactly if there
exists afamily {f,} e Fs such that (Tq))(a) (f,, q)) for all o s and a S.

Using this and the proofs of Theorems 2.1 and 2.2 we can easily verify that the
following proposition is true.

THEOREM 4.3. Let s be a linear subset such that ’ s c ’s; then the
operator A’s ’s is linear and continuous ifand only if
(4.1) (Ax, q) (x, (L, q)))

for every x e ’s and q9 e s, wherefa A6afor every a S and {f,} e F.
Furthermore, it is not hard to verify that Theorem 2.3 remains true, provided

shift-invariance is understood in such a sense that P,A AP, for every S.
Finally, defining the convergence of operators in the same way as in 2, we

conclude that the following assertion is true.
THEOREM 4.4. Let A,, A,n 1, 2,..., be continuous linear operators from

s @’s, where s is a linear set such that’ s ’s then A, A ifand only
if, for every c# @s,

<(A, A)6a, 5 -- 0 in s.
As a result, Theorem 2.5 remains true without any change.
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In the same manner as in 3 we can conclude that here also the sets tI’ and
are sequentially complete.

Example. Let m ! and S [0, ); furthermore, let W(t, ) be defined on the
region R {(t, )’0 __< r _<_ < } and let W(t, ) have a continuous partial
derivative of any order on R. (At the boundaries r 0 and r we understand
derivatives from the inside of R, and the corresponding limits at (0, 0).)

For a>__0, pUtfa= W(t,a)Ha, where Ha(t)= 1 for t>__a and Ha(t)=0
elsewhere. Then {f,} Fs. Actually, for any q e @s we have

(4.2) ffo(a) (f, q) W(t, a)q(t)dt;

however, (4.2) shows that ffo is infinitely smooth and vanishes for a >__ sup supp q.
Hence, @s.

Thus, by Theorem 4.3, the equation

(4.3) (Ax, qg) x, W(t, a)qg(t) dt q9 e

defines a linear continuous operator from - .It is easy to verify that if x is a regular distribution corresponding to a locally
integrable function x(t), i.e., there exists a locally integrable x(t) such that

(x, q) x(t)q(t)dt for all 99 e s, then Ax is also regular and corresponds to

the function W(t, "c)x(c)

Next, let W(t, -c), n 1, 2, ..-, be a sequence of smooth functions defined
for 0 __< : __< < oe such that, for every pair of indices i, j __> 0 and T > 0, we have

+w.(t, )
0

3tizJ

uniformly on 0 < z =< T; for every n define an operator A,’5 by (4.3).
Then (4.2) shows that, for any qe @, (f, o) 0 in @s; consequently, by
Theorem 4.4, A, 0.

4.2. In the theory developed in 1- 3 we have dealt with a single space
oftesting functions on R and the corresponding dual 9’. However, it can be readily
seen that Theorem 1.2 remains true if q9 is a mapping from m into
r - m, where k stands for the set of testing functions defined on Rk. Similarly,
Theorem 1.3 can be extended in this way. As a result, Theorems 2.1-2.4 and all
theorems in 3 may be extended to the case that A is a continuous linear operator
from , into .

4.3. Considering the situation that the testing functions 0 e have values
in a Banach space B and (f, qg) also have values in B, we can verify that the above
proofs still go through; thus, analogous theorems are true for this version.
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ON THE ASYMPTOTIC BEHAVIOR
OF AUTONOMOUS DIFFERENTIAL EQUATIONS*

R. H. MARTIN, JR.-

1. Introduction. Let E be a Banach space over the field of real or complex
numbers and let l. denote the norm on E. In this paper it is assumed that E has
the strong topology. If A is a continuous function from E into E, we will be con-
cerned with studying the behavior as tends to + of the solutions to the auto-
nomous differential equation

(ADE) u’(t) Au(t), u(O) z,

where z is in E and is in [0, ). The principal tool used in this paper is the right
derivative of the norm on E. If x and y are in E, then we define

(1.1) D+[x,y;A] lim (Ix-y+h[Ax-Ay]l-lx-yl)/h.
h-’+0

This notion will be used to study the set of attraction of the solutions to (ADE)
and to give sufficient conditions for (ADE) to have a unique critical point which is
globally asymptotically stable.

Let p be a nonincreasing function from [0, oo) into (0, c) such that

(1.2) D+Ix, y; A] <= -p(r)lx Yl
whenever x and y are in E with Ixl, [yl < r. In 2] N. N. Krasovskii shows that if
p(r) > Po > O, E is a finite-dimensional Hilbert space, and A is continuously
differentiable, then (ADE) has a unique critical point which is globally asymp-
totically stable. L. Markus and H. Yamabe [3, Theorem 1] improve this result by
requiring that

exp - p(r) dr ds < c

for each : > 0. In [5, Theorem 1] the author establishes the same result assuming
that E is a Banach space, A is continuous, and

ff p(r) dr o0.

The techniques used here are similar to those in [5]. However, in this paper, we
are interested in obtaining results similar to those in 2], [3] and [5] in certain
"singular" situations.

2. Basic definitions and lemmas. If f is a subset of E and x is in E, let d(x, f)
denote the distance from x to f (i.e., d(x, f) inf {Ix YI:Y f2}). If R is a positive
number, let S(fL R) {x E :d(x, f) < R} and if z is in E and f {z}, let S(z, R)
denote S(, R).
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DEFINITION 2.1. If f is a subset of E and v is a function from E into [0, oo),
then v is called positive definite with respect to f if v(x) 0 for all x in f and for
each e > 0 and each bounded subset Q of E, there is a positive number
such that v(x) > 6 for all x in Q S(fL e).

Remark 2.1. It will be convenient to allow the set f in Definition 2.1 to be the
empty set. In this case, for each bounded subset Q of E there is a positive number
6 6(Q) such that v(x) >= 6 for all x in Q.

DEFINITION 2.2. A solution u to (ADE) is said to approach a subset f of E
if for each positive number
for all in IT,

LEMMA 2.1. If T > 0, u and v are solutions to (ADE) which are defined on
[0, T), and p(t) ]u(t) v(t)[ for each in [0, T), then p’+(t) D+[u(t), v(t) A].

Proof. It is shown in [1, p. 3] that

p’+(t) lim (]u(t)- v(t) + h[u’(t) v’(t)]]- ]u(t)- v(t)l)/h,
h+O

and the lemma is immediate.
DEFINITION 2.3. Suppose that A is a function from E into E and that there is a

number M such that D + Ix, y A] < M]x y] for all x and y in E. Then for each z
in E define

2+[z;A] lim [sup{Ix-yl-D+[x,y;A]’x,ysS(z,R),xCy}].
R+O

Remark 2.2. Note that the term in the limit in Definition 2.3 is bounded above
by M and is nonincreasing as R +0so that 2+[z; A] is either a number or

Example 2.1. Suppose U is a continuous linear function from E into E,
U sup {]Ux] "]x] 1}, and/l[U] limh-,+o I 4- hU] 1)/h (where I is the

identity function on E). Then/l[U] sup {D+[x, 0; U]’[x] 1} (see [5, Example
1]). Furthermore, if Visa continuous linear function from E into E, then #[U + V]
__<#[U] +#[V],l#[U]l__< IlU ,andl/[U]-#[V]l -< flU- V (see[1, p. 41]and
references cited there). Also, if E is finite-dimensional and U is associated with a
square matrix, then Coppel [1, p. 41] gives formulas for computing/[U] for three
different norms on E.

Example 2.2. Suppose that A is a function from E into E for which there is
a number M such that D+[x, y; A] <__ Mix y] for all x and y in E. Suppose
further that A has a Fr6chet derivative dA(x) for each x in E and that dA is con-
tinuous on E. If z is in E and R > 0 is sufficiently small so that dA is bounded on
S(z, R), then, by [5, Example 3] (see also [4, Theorem 3.1]),

sup {Ix yl-lD+[x, y; A]’x, ye S(z,R),x =/= y} <= sup {#[dA(x)]’x S(z,R)}.

By Example 2.1, ]#IdA(x)] #IdA(y)]] <_ IdA(x)- dA(y) and so, since dA is
continuous, 2+ [z A] =< #IdA(z)]. Using the techniques in [4, Theorem 3. !], one
can show that 2+[z;A] #IdA(z)].

LEMMA 2.2 Suppose that A is afunctionfrom E into Efor which there is a number
M such that D + Ix, y;A] <= M]x y] for all x and y in E. If x and y are in E, z()

(1 )x + y for each in [0, 1], and p is a (Riemann) integrable function
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from [0, 1] into the real numbers such that 2+[z(); A] =< p() for each in [0, 1],
then

(i)

and

D+[x, y A] <= Ix Yl p(s) ds

(ii) lAx- Ayl -Ix- Yl p(s) ds.

Proof. Since ID+[x, y;A]I lAx Ayl, (ii) is an immediate consequence of
(i). Furthermore, for each positive number e there is a continuous function a on

[0, 1] such that a() > p() for each in [0, 1] and (a(s) p(s))ds < e. Thus (i)

will follow if it is shown that if is continuous on [0, 1] and 2+[z(); A] < () for

each in [0, 1], then D+[x, y; A] Ix Yl a(s) ds. Let be in [0, 1]. Since a is

continuous and 2 + [z(t); A] < (t), there is a neighborhood U(t) of such that

(2.1) D+[z(I),z(z);A IX y[ 7(s) ds

for each 1 and 2 in U(t) with 1 _-< 2" Here we have used the definition of 2+,

the fact that Iz(a)- z(l)l Ix- YI(- ), and the fact that (s)ds

o’()( ) for some in [,. Consider the function

(2.2) @() D + Ix, z(); A] [x Yl a(s) ds

for each in [0, 1]. Note that if w and w2 are in E and w3 is on the line segment
from wl to w2, then D+[w,wz;A]=D+[w,w3;A]+ D+[w3,wz;A (this
follows easily from (1.1) since Iw2 wl[ [w2 w3[ + [w3 wll). Consequently,
if 0 _< 1 =< 2 - 1, then

(2.3) 0(2)- 0()_-< D+[z(),Z(z);A] -Ix- Yl a(s)ds.

By (2.1), for each in [0, 1] there is a neighborhood U() of such that is non-
increasing in U(0. Thus is nonincreasing in [0, 1] and so (1) @(0) (1) =< 0.
This completes the proof of the lemma.

3. The main results. In this section we will establish two theorems concern-
ing the asymptotic behavior of the solutions to (ADE). The basis conditions
imposed on the function A are the following"

(C1) A is continuous on E.
(C2) For each number M there is a number N such that if x is in E with

Ix[ > N then lAx[ >= M.
(C3) D+[x, y;A] <= 0 for each x and y in E.
(C4) For each z in E there is a solution uz to (ADE) defined on some interval

[0, Tz) such that u(0) z.
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LEMMA 3.1. Suppose A satisfies the conditions (C1)-(C4). Then for each z in E
there is a unique solution uz to (ADE) on [0, ) such that uz(O) z. Furthermore,
Uz is bounded on 0, ), the function t [U’z(t)[ is nonincreasing on [0, ), and
lug(t)- u(s)l _-< IAzl It- sl for each s and in [0, ). Also, if w is in E, then
[uz(t) Uw(t)[ <= [Uz(S) Uw(S)[ <= [z w[ whenever 0 < s <= t.

Proof Suppose that u is definedon [0, T) and T < . Let 0 < h < T and
for each in 0, T- h) define p(t) [Uz(t + h) u(t)[. By Lemma 2.1 and con-
dition (C3), p’+(t)= D+[u(t + h), uz(t);A] < O, so that if 0 =< s =< t, then

]u(t + h)- uz(t)] < lu(s + h)- u(s)l.

Dividing each side of (3.1) by h and letting h + 0, it follows that

(3.2) lu;(t)l -lu;(s)l

whenever 0 =< s =<t< T. Letting s 0 we have by (3.2) that [Uz(tl)- Uz(t2)[
__< u’(0)[ [ta t2[ and it follows that u(t) tends to a limit as tends to Tfrom below.
By condition (C4), u can be continued past Tand it follows that u can be extended
to [0, oe). It is immediate from (3.2) that the function --, [u’(t)[ is nonincreasing and,
if >= O, [Au(t)[ [u’(t)[ < lu’(0)l IAzl, so u is bounded on [0, o) by condition
(C2). If w is in E and p(t)= lug(t)- u(t)l, then by Lemma 2.1 and condition
(C3), p’+(t) D+[uz(t), u,(t); A] < 0 and the last assertion of the lemma and the
uniqueness of uz is immediate.

THEOREM 3.1. In addition to the conditions (C1)-(C4) suppose there is a closed
subset f of E and a function v from E into [0, ) which is positive definite with
respect to f such that 2+Ix;A] =< -v(x)for each x in E. Then exactly one of the
following occurs"

(i) Each solution u to (ADE) tends to f.
(ii) There is a unique point xc in E f such that Axc= 0 and limt_o u(t)

x for each z in E.
Remark 3.1. In this theorem we allow f to be the empty set and use the con-

vention noted in Remark 2.1. In this case, conclusion (ii) must hold.
This theorem will be proved with a sequence of lemmas each of which is

under the suppositions of Theorem 3.1. For the proof we suppose that (i) does
not hold and show that (ii) must hold. Note that (i) and (ii) cannot hold simul-
taneously since f is closed.

LEMMA 3.2./f(i) does not hold, there are a positive number less than 1, a solution
u to (ADE) on [0, v), and a sequence (t) in [0, o) such that t+ >= t + 1 and
d(u(t), f) >= z. Furthermore, there is a positive number fl less than one such that
ilk >= 1 and s is in Its, t + fl], then u(s) is in S(u(t), /2).

Proof Since (i) does not hold the existence of u and the sequence (t) such
that d(u(t),f) > > 0 is obvious. By Lemma 3.1, if fl e(1 + 2]Au(0)l)-x,
k > 1, and s is in [tk, tk + fl], then [u(s) u(t)[ =< I/u(0)[ Is tl _-< IAu(0)l/3 < e/2
and the last assertion of the lemma is true.

LEMMA 3.3. If u iS as in Lemma 3.2, then limt_,oo u’(t) O.
Proof Let e,/ and (t) be as in Lemma 3.2. By Lemma 3.1, u is bounded on

[0, oe); so, let R > 1 be such that [u(t)[ < R for all => 0 and let Q S(0, R).
Then there is a positive number 6 such that if x is in Q S(fL e/2), v(x) >= .
Now let 0 < h <///2 and for each in [0, oe) let p(t)= [u(t + h)- u(t)[. By
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Lemma 2.1, p’+(t) D+[u(t + h), u(t); A]. Define the function ffrom [0, )into
the real numbers by f(t) -6 if is in Ilk, tk +//2] for some positive integer k
and f(t) 0 otherwise. Since S(u(tk), /2) is contained in Q S(f, /2) for each
k >= 1, 2 + Ix; A] <= v(x) _< 6 for all x in S(u(t), /2). By part (i) of Lemma 2.2,
D+ Ix, y;A] <__ -6]x y[ for each x and y in S(u(tk), z/2). By the choice of/ (see
Lemma 3.2), if is in Its, t +/3/2] and 0 < h <///2, then u(t) and u(t + h) are
in S(u(t), /2). Thus D+[u(t + h), u(t);A] <= -61u(t + h)- u(t)] whenever is in
[t,t + /2]andD+[u(t + h),u(t);A] <_ 0otherwise. Inparticular, p’+(t)__< f(t)p(t)
for all in [0, oe) so that

(3.3) lu(t + h)- u(t)l <-_ lu(h) u(O)l exp f(s) ds

for each in [0, o) and 0 < h <//2. Dividing each side of (3.3) by h and letting

h +0, we have lu’(t)l _-< lu’(0)l exp f(s) ds It follows easily from the defini-

tion off that lim f(s) ds , and the assertion of the lemma follows.

LMMA 3.4. There is an x in E such that d(x, )) >= and lim_.oo u(t)= x
(where u and are as in Lemma 3.2).

Proof. We will use the notations of Lemma 3.3. Since lu(s)l < R for all s in
[0, oe), if k __> 1 and z()= (1- )u(tk)+ u(t) for each in [0, 1], then Iz()

u(t)l lu(t) u(t)l < 2e. Thus if 0 <__ <__ e/(4R), then z() is in S(u(t),
e/2) so that 2+[z();A] =< -. By taking p(s) 0, if s is in [e/(4R), 1] and p(s)

-6 if s is in [0, e/(4R)), then 2/[z();A] __< p() for each in [0, 1]. Since

1 p(s)ds -e/(4R), we have by part (ii) of Lemma 2.2 that
do

(3.4) IAu(t)- Au(tu)l >- 6lu(t)- u(tk)l/(4R)

for all in [0, oe) and k => 1. Now let e be a positive number. Since t o as
k oe we have by Lemma 3.3 that there is a positive integer n such that if __>
then ]u’(t)] < 6ee/(16R). Thus if t, s _>_ t,, then by (3.4) and the choice of

lu(t)- u(s)l =< lu(t)- u(t.)l + lu(t.)- u(s)l

< 4R(lAu(t)- Au(t.)l + IAu(s)- Au(t.)l)/(&z)

<= 4R(lu’(t)l + lu’(s)l + 2]u’(t.)l)/(6)

Consequently the net (u(t))t>_o is Cauchy and so it tends to a limit xc in E as
tends to o. Since lim_,oo u(t)= xc and d(u(t), f) >= for each k => itis im-
mediate that d(x, f) >= z, and the lemma is proved.

LEMMA 3.5. With the notations ofLemma 3.4, Ax 0 and if z is in E and uz is
the solution to (ADE) such that uz(O) z, then lim,__,o uz(t) x.

Proof. By condition (C1) and Lemmas 3.3 and 3.4,

Ax lim Au(t) lim u’(t) O.

Let z be in E and let u be the solution to (ADE) defined on [0, oe) such that u(0) z.
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Since u is bounded on [0, oe) let R > [x[ be such that lug(t)[ < R for all in [0,
Since d(x, f) >= , there is a 6 > 0 such that if x is in S(x, e/2), then v(x) >=
and hence 2+Ix;A] _< -. As in the proof of Lemma 3.4, if z() (1 )x
+ u(t) and p()= -6 if is in [0, e/(4R)), p()= 0 if is in [e/(4R), 1] and

p(t) [u(t) x[, then p’+ (t) D + [u(t), x; A] __< p(t) p(s) ds <__ 6ep(t)/(4R)

for all in [0, oe). Consequently,

luz(t)- x] <= Iz- xl exp (-&t/(4R)),

and it follows that limt-.oo uz(t) x, and the lemma is true.
Thus, if conclusion (i) does not hold, conclusion (ii) must hold, and the proof

of Theorem 3.1 is complete.
Example 3.1. Let R denote the space of real numbers and let E R2 with the

norm 1-I on R2 defined by ](x, Y)I max {Ix], ]y]} for each (x, y) in R2. Define
A(x, y) (-x3 + 6 exp (y x), sin (x) 2y) for all (x, y) is R2. Then A is Fr6chet
differentiable on R2 and dA(x, y) is associated with the matrix

3x2 6 exp (y x) 6 exp (y x)

cos (x) :2

Using the formula in [1, p. 41] we have

#IdA(x, y)] max { 3x2 6 exp (y x) + 6 exp (y x), 2 + ]cos (x)] }
_< max {-3x2, -1}.

If v(x,y)= if x2 _>_ 1/2 and v(x,y)= 3x2 if x2 < 1/2, then v is positive definite
with respect to f {(0, y)’ye R}. By Example 2.2, 2+[(x, y); A] =< l[dA(x, y)]
<= -v(x, y) for each (x, y)in R2, and since IA(x, y)] as I(x, y)] oe, each of
the conditions of Theorem 3.1 is fulfilled. One can easily check that there is an
(x, y) in R2 such that 1 < x < exp (1) and y 3 In (x) + x In (6) and
A(x, y) 0, so that conclusion (ii) of Theorem 3.1 prevails.

Remark 3.2. If, in Example 3.1, we use the norm I" on R2 defined by I(x, y)]
(X2 + y2)1/2, then by the formula in [1, p. 41],

#IDA(0, 0)] (-S + x/)/2 > 0,

so that the conditions of Theorem 3.1 are not satisfied with this norm.
LEMMA 3.6. Assume that each ofthe conditions ofTheorem 3.1 holds and suppose

that there are two subsets 1 and ’2 of E such that f f U ’2 and d(fl, f2)
inf{d(x,z)’xef} 7 > O. Then if conclusion (i) to Theorem 3.1 holds,

either every solution to (ADE.) tends to f or every solution to (ADE) tends to f2.
Proof It is easy to see that if u is a solution to (ADE) then either u tends to

f or u tends to f2. Suppose that u tends to f and, for contradiction, assume that
v is a solution to (ADE) such that v tends to f2. Let T > 0 be such that if is in
IT, oe), then u(t) is in S(fl, 7/3) and v(t) is in S(’2,7/3). Then if >= T,

(3.5) ]u(t)- v(t)l 7/3.

Suppose that lu(t)l, Iv(t)l < R. Let 6 > 0 be such that if x is in S(0, R) S(fL y/3),
then v(x) >_ 6. Let r 7/(6R); and define f(t) 0 if is in [0, r), and let f(t)
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-6a if is in IT, ). For each in [0, ) let p(t) [u(t) v(t)[. By Lemma 2.1
and condition (C3), if is in [0, T), then p’+(t) D +[u(t), v(t);A] <= 0 f(t)p(t).
Now let be in IT, ), and for each in [0, 1], let z() (1 )u(t) + v(t), and let
g() d(z(), S(fl, 7/3)). Then g is continuous, g(0) 0, and g(1) => 7/3. Let o be
the member of [0, 1) such that g(l) 0 and g() > 0 for each in (1,1]. Since
Iz()- z()l _-< I l(lu(t)l + Iv(01) _-< 1 I2R, if is in [1, 1 + o), then
z() is in S(O,R)-S(fLT/3) and hence 2+[z();A] =<-v(z())<=-ft. Con-
sequently, if p() -6 for in (1, 1 + a) and p() 0 if is in [0, 1] (1, 1
+ ), then p(s) ds -6; so, by part (i) of Lemma 2.2, D/[u(t), v(t); A]

<= -rlu(t) v(t)l. By Lemma 2.1, p’+(t) <= -p(t) f(t)p(t), and it follows that

lu(t) v(t)l =< lu(0) v(0)l exp f(s) ds for all in [0, ). In particular, if is

in IT, ), then lu(t) v(t)l =< lu(0) v(0)l exp (-6a(t T)). But this implies that
limt. lu(t)- v(t)l 0, which is a contradiction to (3.5). This contradiction
proves the lemma.

THEOREM 3.2. In addition to the suppositions of Theorem 3.1 suppose that the
intersection of f with each bounded subset ofE isfinite. Then there is a unique point
Xc in E such that Axe 0 and limt_o Uz(t) xc for each solution uz to (ADE).

Proof If conclusion (ii) ofTheorem 3.1 prevails, the theorem is obvious. If con-
clusion (i) prevails, then it is an immediate consequence of Lemma 3.6 that there
is a unique member x of f such that

(3.6) lim Uz(t)= x

for all z in E. Since (3.6) implies that Az : 0 if z -- x, it remains to show that
Ax 0. If z is in E, then by (3.6) and condition (C1), lim_.o u’(t) lim,_oo Au(t)

Axc. By Lemma 3.1, the function lU’z(t)l is nonincreasing so that IAzl
lu’(0)l => lu’(t)l -IAuz(t)l for all in [0, c). Thus by (3.6) and condition (C1),

IAzl >= IAxl for all z in E. Taking z Xc, we have that IAxcl <= IAU,c(t)l
for all in [0, oe), and by Lemma 3.1, [Axc[ [u;,c(0)[ >= [u;,c(t)[, so that

(3.7) lu,(t)l IAxl
for all in [0, oe). As in the proof of Lemma 3.3, we can show that the function

lu’,(t)l is strictly decreasing when ux(t) is not in f. Thus by (3.7), uxc(t) must
remain in f and it is immediate that u(t) Xc for all in [0, oe). Consequently,
Axc u(0) 0 and the proof of Theorem 3.2 is complete.

Example 3.2. Suppose that E is the space of real numbers and Ax -x3 for
all x in E. Then 2+[z; A] -3x2, and if f {0} and v(x) 3x2, each of the
suppositions of Theorem 3.2 is fulfilled.

Example 3.3. Let R be the space of real numbers and let E R2 with the norm
1" on R2 defined by I(x, Y)I x2 + y2)1/2. Define A(x, y) (-x + sin (y), -y
+ cos (x)) for each (x, y) in R2. Then A is Fr6chet differentiable on R2 and dA(x, y)
is associated with the matrix

1 cos (y)/.
-sin (x) 1
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Using the formula in [1, p. 41], we have

#IdA(x, y)] max {- 1 + (cos (y) sin (x))/2, 1 (cos (y) sin (x))/2}
1 + Icos (y) sin (x)[/2.

Thus if O {(z/2 + nzc, mzc)" m even and n odd, or m odd and n even} and v(x, y)
-1- Icos(y)- sin (x)l/2, then each of the suppositions of Theorem 3.2 are
fulfilled.

Remark 3.3. If, in Example 3.3, we use the norm l" on R2 defined by I(x, Y)I
max {Ixl, lyl}, then #IdA(x, y)] max {-1 + Icos (Y)I,- 1 + Isin (x)l} so that

O {(x, y)’x R, y ng, or y R, x zc/2 + nzc, n an integer}. Thus if v(x, y)
la[dA(x, y)], the suppositions ofTheorem 3.1 are fulfilled but those ofTheorem

3.2 are not.
Remark 3.4. The conditions (C1)-(C4) given at the beginning of this section are

not all independent. If E is finite-dimensional, then (C1) implies (C4). If E is not
finite-dimensional, then (C1) does not imply (C4); however, in [6, Theorem 1],
it is shown that (C1) and (C3) imply (C4). It should also be noted that if A satisfies
the suppositions of Theorem 3.1 (respectively, Theorem 3.2), y is in E, and Ayx
Ax y for each x in E, then Ay satisfies the suppositions of Theorem 3.1

(respectively, Theorem 3.2). In particular, ifA satisfies the suppositions ofTheorem
3.2, then A is a bijection since, for each y in E, there is a unique xr in E such that

Ax y O.

Aeknowledgmento The author would like to express his appreciation to the
referee for several helpful suggestions, especially concerning 2. The proof of
Lemma 2.2 given here was suggested by the referee.
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NONCONTINUOUS LYAPUNOV FUNCTIONS AND
EXTENDABILITY OF SOLUTIONS*

STEPHEN R. BERNFELD-

1. Introduction. A characterization of boundedness, equiboundedness, and
uniform boundedness of solutions of

(E) 5c f(t, x)

in terms of Lyapunov functions has been given by Yoshizawa I6]. In particular,
for f(t,x) continuous, he has constructed Lyapunov functions in terms of the
solution funnels. In order to obtain the behavior of the Lyapunov function along
solutions it is necessary to know what the solutions are. In contrast, when f(t, x) is
Lipschitz, a characterization of uniform boundedness in terms of Lipschitz
Lyapunov functions has also been obtained by Yoshizawa [6]: moreover, the
behavior of the Lyapunov function along solutions can be found without knowing
the solutions. However, even for f(t, x) Lipschitz, there has been no characteriza-
tion of the boundedness and equiboundedness of the solutions of (E) in terms of
Lyapunov functions whose behavior along solutions can be found without
knowledge of the solutions. With the use of a result of J. Yorke [5, we construct a
noncontinuous Lyapunov function which will serve as a test for the boundedness,
equiboundedness and uniform boundedness of the solutions of (E) when they are
unique to the right; and the behavior of the Lyapunov function along solutions
can be found without knowledge of the solution.

In addition, a characterization in terms of Lyapunov functions of the global
existence of solutions is provided which extends the results of Kato and Strauss 3]
to systems which only have uniqueness to the right. The construction of these
Lyapunov functions are more "natural" than those constructed before and seem
to have more applications.

2. Preliminaries. Let R" denote Euclidean n-space. ]-I will denote the
Euclidean norm. For x, y R" define d(x, y) Ix Yl. Denote a solution of (E)
through (to, Xo) R R" by x(., to, x0). A solution through (to, Xo) exists in the
future if x(t, to, Xo) exists for all > to and exists in the past if x(t, to, Xo) exists for
all < to. A solution exists forever if it exists in the past and in the future.

For (to, Xo) R R" define the positive and negative solution funnels as

and

+Fto,x {(t, x(t))’t >= to, X(to)= Xo} = Rn+l

Fo,x {(t,x(t)):t <= to, X(to)= Xo} Rn+ 1,
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respectively, where 2(t) f(t, x(t)). The solution funnel through (to, Xo), denoted
by Fto,,o, is defined as

Fo,o Ft+o,xo U Fo,o.

We define the : cross section Fto,xo(r) Fto,xo VI ( x R") R", and define the set
Fto,,o[a, b] (3 [a,b] F,o,o(r) c

We now define the following distances between points and sets and between
sets by"

(1)

d(x, T) inf {d(x, y); y T},
p*(S, T) sup {d(x, T) x S},
p(S, T) max {p*(S, T), p*(T, S)}.

If the sets are compact, then p is the Hausdorff metric.
The following properties of solution funnels will prove useful and are slight

generalizations of known results (see [4]).
LEMMA 1. Suppose all solutions of (E) exist Jbrever. If we consider any point

(t, x)_ R x R" and any closed interval [a, b], then for each e > 0 there exists a
6 > 0 such that

whenever

p*(F,u[a, b], F,,[a, b]) < e

LEMMA 2. Consider the system (E). For each point (to, xo) R x R" and each
e > 0 there exists a > 0 such that

p(Vt,,,,[t, S,tl -t- s],(x1)) < ;

.[’or all s such that ]sl < 6, and all (t, xx) such that d(x, Xo) + ]t to] < 6.
We now define various types of boundedness (see [6]).
DEFINITION 1. The solutions of (E) are bounded if for each (to, Xo) R x R"

there exists a fl > 0 such that Ix(t, to, Xo)l < fl for all _> to, where fl may depend
on the solution.

DEFINITION 2. The solutions of (E) are equibounded if for any a > 0 and to eR
there exists fl(to, a) such that whenever IXol < a then Ix(t, to, Xo)l < fl for all
t>=to.

DEFiNITiON 3. The solutions of (E) are uniformly bounded if the fl in Definition 2
is independent of to.

DEFINITION 4. Let V:R x R" R. We say V(t, x) is radially unbounded if

(2) V(t, x) oe as Ixl--, o

uniformly in for in R. V(t, x) is mildly unbounded if (2) holds uniformly in for
in compact sets of R. We say V(t, x) is bounded on bounded sets if

(3) V(t, x) <= K(t, ) for Ix] __< a

for some K R x R R.
V is uniformly bounded above if K is independent of t.



NONCONTINUOUS LYAPUNOV FUNCTIONS 517

In the usual Lyapunov theory, V(t, x) is locally Lipschitz and the time deriva-
tive of V along solutions of (E) can be found without knowledge of the solution.
J. Yorke [5] developed a more general derivative of the function V, which is only
assumed to be lower semicontinuous, along solutions of (E) by defining

(4) l(t, x) lim inf h- l(V(t + h, x + hy) V(t, x)).
y"* f(t,x)
h-O

Using the following result of Yorke [5], we are able to discuss the behavior
of solutions along lower semicontinuous functions.

THEOREM 1. Let V: R R" R be lower semicontinuous. Assume solutions of
(E) are unique to the right. Then the following are equivalent:

(5) 9(t, x)=< 0

and

(6)
V(t, x(t)) is a nonincreasing function of t,

where x(t) is a solution of (E).

3. Results. We are now able to characterize boundedness, equiboundedness
and uniform boundedness of the solutions of (E) with the use of a single Lyapunov
function whose behavior along solutions can be found without knowing the
solutions.

THEOREM 2. Assume all solutions of (E) are unique to the right. Then all solutions
are bounded if and only if there exists a lower semicontinuous function V(t, x)
satisfying

(a) V(t, x) is radially unbounded, and
(b) l(t, x) =< O.
Furthermore, solutions are equibounded if and only if V(t, x) is bounded on

bounded sets. Finally solutions are uniformly bounded if and only if V(t, x) is uni-
formly bounded above.

Proof Assume there exists a lower semicontinuous function V(t, x) satisfying
(a) and (b). Using Theorem 1 we have that V(t, x(t)) is a nonincreasing function of t.
Assume there exists a point (to, Xo) and a solution x(., to, Xo) such that x(t, to, Xo)
is not bounded for > to. Then there exists a sequence of points {t,} such that
t, > to and

Ix(t,, to, Xo)[

Using (a) we have V(t,, x(t,, to, Xo)) - o but since

V(t,, x(t,, to, Xo)) <= V(to, Xo)

we arrive at a contradiction.
Conversely, define

V(t, x) sup ]x(t + s, t, x)].
s>0

Since V(t, x) >= Ixl we have that V is radially unbounded. We now show that V is
lower semicontinuous. Consider any point (t, x) R R". There exists a sequence
of points {t,}, where we can assume t, > t, such that [x(t,, t, x)] , V(t, x) as
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n oo. For each e > 0 there exists an N such that

(7) V(t, x) < Ix(tu, t, x)l + ,.
Since solutions are unique to the right, then by continuous dependence we have
the existence of a 6(e) such that

(8) Ix(t, t, x) x(t, r, )1 <

whenever d(/, x) + Iz tl < 6 and z < tu. Combining (7) and (8) we have

V(t, x) <= Ix(tu, z,/)1 + 2e;

and since Ix(tN, r,/t)l < V(r,/), we obtain

V(t, x) < V(z, #) + 2e

for all (z,/) in the a-neighborhood of (t, x). Hence

V(t, x) < lim inf V(z, #) + 2e.
(r,u)-,(t,x)

Since e is arbitrary we obtain

V(t, x) <= lira inf V(z,/);
(r,u)--,(t,x)

that is, V is lower semicontinuous.
It follows easily that V is nonincreasing along solutions; and using Theorem

we have that (t, x) =< 0. Hence, the first part of the proof is complete.
We now prove solutions are equibounded under the added assumption that

V is bounded on bounded sets. Assume solutions are not equibounded. Then there
exist an > 0, tl R, a sequence of points {x,} R" such that Ix.I _-< , and a
sequence of points {t,}, t, > tl, such that

(9) Ix(t,, l, x,)l oo as n oo.

Using the conditions on V we have

K(t, o) >= V(tl x,) >= V(t,, X(tn, l, Xn))

which contradicts (9) since V(t,, x(t,, l, x,)) oo.
Conversely, from the definition of equiboundedness we have, for each a > 0

and each t, the existence of fl(t, ) such that V(t, x) < fl(t, ) whenever
We now show that solutions are uniformly bounded when V(t, x) is uniformly

bounded above. Ifsolutions are not uniformly bounded, then there exists an al > 0,
two sequences of points {:,}, {t,}, where r, > t,, and a sequence of points {x,},
where ]x.] < 1, such that

(10) IX(’Cn, t,, X,)I OO as n oo.

Using the conditions on V(t, x) and (10) we have

K1(1) >= V(t,, x,) >= V(r,,, x(r,, t,, x,)) oo,

where KI(. is the uniform upper bound on V. This is a contradiction.
Conversely, from the definition of uniform boundedness, it follows im-

mediately that V(t, x) is uniformly bounded above. This completes the proof of
Theorem 2.
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Remarks. We have thus characterized the various types of boundedness in
terms of a single noncontinuous Lyapunov function whose behavior along solu-
tions can be calculated without knowing the solutions. As mentioned before no
characterization of boundedness has been done even when f is locally Lipschitz.
Moreover, the only characterization of equiboundedness (Kato and Strauss [3])
has been given under the added assumption that solutions exist in the past.

The fact that Vis not continuous is crucial in distinguishing between bounded-
ness and equiboundedness since a continuous Lyapunov function is always
bounded above. We also notice that when f(t, x) is independent of the Lyapunov
function is also independent of t. Moreover, when V is continuou,s, examples can
be provided in which there exists no V independent of such that V(t, x) <= 0 when
f is independent of t.

Although the Lyapunov function constructed in Theorem 2 is not Lipschitz
in x, in general, we shall show in the following example that under the conditions
ofTheorem 2 no Lipschitz Lyapunov function can be constructed which is radially
unbounded and nonincreasing along solutions. Hence we are not able to use the
usual generalized derivative of Yoshizawa [6] which requires the Lyapunov
function to be Lipschitz in x.

Example. Consider the scalar equation

(s) (x- n)(n + -x)1/2,

0,

n<=x<_n+l,_

x<0,

where n 0, 1, 2,.... Solutions are unique to the right and bounded. We shall
assume there exists a Lipschitz function V(t, x) which is radically unbounded and
nonincreasing along solutions, and we shall arrive at a contradiction. Given the
point (0, 1), there exists a point (0, x 1), x1 > 1, such that

]V(O, Xl)- V(O, 1)[ < 1/2

since V is Lipschitz in x. Letting Xl(. be the solution through (0, Xl), there exists
a point (tl, x2) such that tl > 0, x2 > 2, Xl(tl) 2 and

IV(t,, x2) V(tl, Xl(tl))] < 1/22.

Continuing this process, we obtain at the nth step a point t. > t._ 1, a solution
x.(. such that x.(t.) n + and a point (t., x.+ 1), where X.+l > n + 1, such
that

]V(t,, x,+ 1) V(t,, x,(t,))l < 2 -("+ 1).

Since V is nonincreasing along solutions we obtain

IV(t,,x,+)- V(0, 1)l < IV(t,,X,+l)-

+ V(t,-1, x,) V(tn-1, Xn-l(tn- 1))1 / +

+lV(O, Xl)- V(0,1)1 =< 2-’< 1.
k=l
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Therefore,
v(o, ) > v(t., x.+ ) for all n.

Since V is radially unbounded we have that V(0, 1) is not defined, thus completing
our claim.

In order to characterize the existence in the future of solutions on compact
sets one may use the rather complicated Okamura function (see [6, p. 8]). Similarly
we may use a variation of this function in order to characterize the existence in the
past of solutions on compact sets. However, the Okamura function cannot be
simultaneously defined in both directions in order to obtain a characterization of
the existence of solutions forever.

In the following discussion we shall first construct a Lyapunov function
for solutions existing in the future and then construct one for solutions existing
in the past. We shall then characterize global existence in terms of a Lyapunov
function which is required to have certain properties on compact subsets
of R.

We assume solutions of (E) are unique to the right and construct a Lyapunov
function which is equivalent to the existence of solutions in the future. On the set
(-oo, T), for any T, assuming solutions exist, define

Vr(t, x) sup Ix(s, t, x)l for (t, x) e (- oo, T) x R".
t<_s<T

Using Lemmas and 2 we can show that VT(t, X) is continuous, mildly unbounded,
and PT(t, X) __< 0. These conditions are thus equivalent to the existence of solutions
on [to, T] for any initial point (to, x0) (-oo, T) R".

In previous work dealing with Lyapunov functions and existence in the
future (Kato and Strauss I3], Bernfeld [1]), the construction of these functions
depended on the behavior of the solutions in the past. When this behavior cannot
be determined, such as in delay equations or in global semidynamical systems (see
[2]) (when f is autonomous, for example), then this type of construction cannot be
made. We will construct a more "natural" Lyapunov function which depends
upon the behavior of the solutions in the future. One consequence of this is that
iff(t, x) f(t + w, x) for all (t, x) R R", then we can insure that V(t + w, x)

V(t, x) for all (t, x)
The following lemma for upper semicontinuous functions will be needed in

order to characterize existence in the past.
LEMMA 3. Let V: R R" R be upper semicontinuous and define

(11) ’(t,x) lim sup h-l(v(t + h,x + hy)- V(t,x)).
yf(t,x)
hO

If solutions of (E) are unique to the right, then the following are equivalent"

(12) I(t, x) > 0
and

(13) V(t, x(t)) is a nondecreasing function of t,

where x(t) is the solution of (E) satisfying x(t) x.

Proof. Since V(t, x) is upper semicontinuous we have that Vl(t, x) def V(t, x)
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is lower semicontinuous. In particular,

’(t, x) lim inf (V(t + h, x + hy) Vx(t, x))
f(t,x)

(14) Yh-o
-v,(t,x).

Assume (12) holds; then from (14) we have Vl(t, x) <= O. Since Vl(t, x) is lower
semicontinuous, V(t,x(t)) is a nonincreasing function of t, a consequence of
Theorem 1. Hence V(t, x(t)) is a nondecreasing function of t. Assume (13) holds;
then V (t, x) is lower semicontinuous, and V(t, x(t)) is a nonincreasing function of t.
Hence from Theorem 1, (za(t,x) <= O. Using (14) we have ff’(t, x) > 0 proving the
lemma.

Once again assume solutions of (E) are unique to the right. On the set IS, oo)
for any S assuming solutions exist, define

Vs(t, x) sup Ix(z, t, x)l for (t, x)

Using Lemmas 1, 2 and 3, we can show Vs(t, x) is upper semicontinuous, mildly
unbounded, and f’s(t, x) > O. These conditions are thus equivalent to the existence
of solutions on IS, to) for any initial point (to, Xo) (S, oo) R".

We now combine these results in order to insure existence on any compact
interval [-T, T], T > 0.

LF.MMA 4. Assume all solutions of (E) are unique to the right. Let T > O. Then

for each point (to, Xo) (-T, T) R" the solutions x(t, to, Xo) are defined for all
[- T, T] if and only if there exists a function Vr(t, x) defined on [- T, T] R

such that Vr(t, x) is continuous and satisfies

and
(a) Vr(t, x) is mildly unbounded,

(b) /r(t, x) O, G(t, x) >= O.

Sketch of proof. The sufficiency follows by combining the previous results
concerning existence in the past and in the future.

Define

Vr(t, x) Ix(T, t, x)]

for (t, x) (-T, T) R". Using Lemmas 1, 2 and 3 we can show that Vr is con-
tinuous and satisfies (a) and (b).

We now present our main result concerning global existence.
THEOREM 3. Assume all solutions of (E) are unique to the right. Then all solutions

of (E) exist forever if and only if there exists a function V(t, x) such that V(t, x) is

continuous on D, where D R R"\ {k} R" and

and
(a’) V(t, x) is mildly unbounded on R x R",

(b’) 9(t, x) < 0, P(t, x) > 0 for all (t, x) e D.

Proof. From (b’), Theorem and Lemma 3 we have that V is constant along
solutions and hence from Lemma 4 solutions exist on [- k, k] for all integers k > 0.
Thus solutions exist forever.
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Conversely, define

V(t, x) Ix([tl + 1, t, x)[ for - k,

v(k, x) Ixl,

V(t, x) Ix(0, t, x)l for < 0,

t>0,

where k 0, 1, 2 .... It readily follows that for (t, x) D, V is continuous due to
continuity with respect to initial conditions. We also notice that for (t, x) D, V
is constant along solutions. Using Theorem 1 and Lemma 3 we have that (b’) is
satisfied.

We now show V is mildly unbounded. Assume not; then there exist a T > 0,
an m > 0 and a sequence of points {(t,, x,)} such that -T =<
and V(t,, x,) <= M. We assume without loss ofgenerality that t, to and It,, to) D.
First assume to is not a positive integer and to > 0. We have for n sufficiently
large that [t,] [to] hence,

v(t., x.) x([to] + 1, t., x.).

We may assume without loss of generality that
defy,x([to] + 1,t,,x,)yo asn-oo.

We consider the set Ftto]+ 1,ro[[to], [to] + 1]; and since all solutions exist in the
past, this set is compact. Moreover, applying Lemma 1 for sufficiently large n we
have

p*(Ft,o]+,..[[to], [to] + I], Ft,o]+,.ro[[to], [to] + I]) < I;

and since x, Ft,o+ 1,r.[[to], [to] + 1], we have

p*(x,, F[,o]+,,ro[[to], [to] + 1]) <

This leads to a contradiction since [x,[ oo and Ft,o]+ 1,ro[[to], [to] + 1] is compact.
If to < 0, we can use similar techniques and arrive at a contradiction. When to k
for some integer k we then consider the two possible cases t,/ to and t, " to.
Once again we use similar techniques as before, and for each case we arrive at a
contradiction, thus completing the proof of Theorem 3.

Remarks. To obtain only sufficient conditions for solutions existing forever,
we may replace (b’) with l(t, x) 0. To see this we define, for each solution b(t),

V’(t, dp(t)) lim inf [V(t + r, #(t + )) V(t, O(t))]z-
r-0

then since 17 __< V’ and V is continuous, we have that V is nondecreasing along
solutions. Moreover, since l#(t, x) 0 implies V is nonincreasing along solutions,
we have Vis constant along solutions. Using the same techniques used in Theorem 3
we conclude that solutions exist forever. The converse is not true; that is, we shall
give an example in which a Lyapunov function is continuous, mildly unbounded,
constant along solutions; and yet there exists a sequence of points {x,}, Ix,I - oo
and f/(t,x,)=/= O. Consider the scalar equation # 0 on the domain x _> 0.
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Define the following Lyapunov function"

(3k + 1)Ix- 3k-] /2 + 3k[(3k + 1)- x 1/2 3k=<x<3k+ 1,

3k+l 23k + Ix --(3h; -k- 1)31/2 nt- (3] -+- 1)[(3k + 2) x] 1/2

V(x)

1
(3/ + 3)Ix- (3k nt- 2)] 1/2 -t- (3k + 1) 23k+

3k+ l__<x< 3k+2,

[(3k + 3)- x-] /2,

3k+2<=x<3k + 3,

for k 0, 1, 2, ..-. We observe that V is constant along all solutions of 2 0,
continuous, andmildlyunbounded. Wenowshow l)(3k + 1)= 9(3k + 2)= -.
From the definition of l)(x) we have

l(x) __< min V(x),-d7 V(x)

where (d+/dx)V(x) and (d-/dx)V(x) are the ordinary right- and left-hand deriva-
tives of V(x). By direct computation, we can show that (d//dx)V(3k + 1)

(d-/dx)V(3k + 2)= - and thus our claim follows. In general, we then
expect that (b’)cannot be replaced by V(x) =_ 0 in Theorem 3.
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ON THE RECIPROCAL MODULUS RELATION FOR
ELLIPTIC INTEGRALS*

HENRY E. FETTIS$

The reciprocal modulus theorem relates the elliptic integrals with modulus
k to those with modulus 1/k. For the complete integral of the first kind

r/2 dO
(1) K(k)

0 x/1 k2 sin2 0

it is given in nearly all references as (see e.g., l] through [4])

(2) K(1/k) k[K(k) + iK’(k)],

where K’(k) is defined as K(k’), and k’ x//1 k2 is the complementary modulus.
The corresponding formula for K’ is

(3) K’(1/k) kK’(k).

That (2) is inconsistent is evident if it is solved for K(k). This gives, after making use
of (3),
(4) K(k) -[K(1/k)- iK’(1/k).

In fact, (2) is correct only if the additional condition

Im (k2) < 0

is imposed. For Im (k2) > 0 the correct relation is

(5) K(1/k) k[K(k)- iK’(k)],

a result which is now consistent with (4). On the real axis, the relation is actually
ambiguous, and is different depending on whether k2 is taken as k2

nt- i0 or
k2 i0. The situation is similar to that encountered with Legendre functions on
the cut (- 1, 1). In fact, (2) and (5) can be obtained by making use of the relation
between K(k), K’(k) and the Legendre functions of order -1/2"

p_ /(z)
2 2 z

c l+z
(6)

Q-1/2(z)-- + z + 1

and using the following relation between P_I/2(z) and P_I/2(-z), valid for
Im (z) > 0"

(7) P- 1/2(- z) ei/ZP_
2

,/(z) + -Q_,/(z).

Received by the editors September 10, 1969, and in final revised form April 17, 1970.
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However, a more straightforward derivation of the correct sign convention can be
obtained by employing one ofKummer’s identities for the hypergeometric function
[1, vol. 1, formula 2.9 (25)], specialized for the case where a 1/2, b 1/2, c 1,
z--k2. 2 In the notation of the above reference we have, for Im (z)> 0 and
larg zl < n,

U, F(1/2, 1/2, 1, k2) K(k),

(8) U2 F(1/2, 1/2, 1, 1 k2) K’(k),

U3 (-z)- ’/2F(1/2, 1/2, 1, 1/k2) k-’e’/2K(1/k)
while relation (25) [loc. cit.] becomes

(9) ein/2U2 U + ein/2U3
which gives ultimately the desired relationship

(10) K(1/k) k[K(k)- iK’(k)], Im (k2) > 0.

The correctness of (5) can also be verified from the expressions for K(k) and
K’(k) when k is on the unit circle :3

K(e’) 1/2 e-’/2[K(cos (0/2)) + iK(sin (0/2))],
(11)

K’(e) e-0/2K(sin (0/2)),

0 __< 0 < n/2. Since K(e-) and K’(e-) are the complex conjugates of K(e) and
K’(e) respectively, we also have

(12)
K(e -’) 1/2e’/2[K(cos (0/2)) iK(sin (0/2))]

e’[K(e’) iK’(e’O)],
also in agreement with (5).

It is worthy of additional mention that the sign of in the transformed expres-
sions for other cases of the elliptic integrals when k is replaced by l/k, 1/k’, ik/k’,
and k’/ik (as given, for example, in Table 4 of[l, vol. 2, p. 319]) is dependent on the
sign of Im (k2), and further that in the first two cases those prescribed for E are
actually inconsistent with those given for K, as can easily be verified from
Legendre’s relation"

(13) E(k)K’(k) + K(k)E’(k)- K(k)K’(k)= n/2.

In the first case, the signs given for K apply when Im (k2) < 0 while those for E
hold for Im (k2) > 0. In the second case, the signs given for K are valid for Im (k2)
> 0 and those for E apply when Im (k2) < 0. In the last two cases the sign conven-
tions for K’ and E’ are consistent and hold for Im (k2) < 0.

An equivalent statement of the relationship under discussion can be found in [7, Ex. 21, p. 299]
and is due originally to Barnes [8]. However, the sign convention is improperly stated in [7] and should
read (in part) "opposite to the sign of I(x)." The author is indebted to the referee for pointing out these
two references.

These relations can be found from the equivalence of the elliptic integrals and Legendre function
of order -1/2 (see [6]).
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A final observation is that, although the discussion has heretofore referred to
the imaginary part of k2, similar deductions can be made which relate the sign
convention to the imaginary part of k, provided that when k lies in the second or
third quadrants, its argument is defined as +(- 0) with 0 < 0 __< /2. The
functions K(k) and K’(k) can then be continued analytically into these regions
by the relations

(14a)
K(ke’) K(k),

K’(ke’) K’(k) + 2iK(k),

when 0 =< arg k =< re/2. Values thus obtained correspond to values in the second
positive Riemann sheet of the kZ-plane. Similarly, when -rc/2 < arg k < 0 the
appropriate continuation is given by

(14b)
K(ke’) K(k),

K’(ke’’) K’(k)- 2iK(k).

With the analytic continuation defined by (14a) and (14b), equation (11) is valid
in the larger interval 0 __< 0 __< r.
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INVERSION OF A CONVOLUTION TRANSFORM
RELATED TO HEAT CONDUCTION*

HARRY POLLARD- AND D. V. WIDDER

1. Introduction. It is well known that the temperature of a semi-infinite
rod which is initially at zero degrees and whose end is held at the variable tempera-
ture b(t) as the time changes is given by the convolution

(1.1) u(x, t) h(x, y)(y) dy, x > 0, > 0,

where

X e- at2/(4t)

(1.2) h(x, t) - k(x, t), k(x, t) x > O.

The rod is thought of as extending along a positive x-axis with its end at the
origin. See, for example, D. V. Widder [1].

Let us suppose now that the temperature is known as a function of time at a
single point x of the rod. Is it possible from these data alone to recover the function
(t) which is causing the flow of heat? Otherwise stated: given U(Xo, t) in (1.1);
find (y). Without restriction we set Xo 1. Iff(t) u(1, t), we wish then to invert
the convolution transform

(1.3) f(t) h(t y)c/)(y) dy, h(t) h(1, t).

H. Pollard and J. Blackman [2 have given inversion procedures for transforms of
type (1.3) when the Nmiliar Laplace transform method is not available; that is,
when f(t) is known only in a neighborhood of the origin or, if known for all t,
when it has no Laplace transform, e.g., f(0 exp (exp t). Explicit knowledge of
the kernel h(t) enables us here to give an alternate solution, also having the above-
mentioned advantage over the Laplace method. We shall show that the transform
(1.3) is inverted by the differential operator

(1.4)

wherex is the classical Riemann-Liouville fractional derivative.

2. Operational considerations. To conjecture (1.4) by operational calculus
we define, as usual,

(2.1) earth(t)- 4(t + a).
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If is regarded as a number, then from A. Erd61yi [3, (28), p. 146] we have

(2.2) e-4- e-h(y)dy.

Hence, by (2.1),

e-’/-d(t) d(t y)h(y)dy h(t Y)O(Y) dy,

assuming that 4(y) 0 when y < O. Thus

e-’ldp(t) f(t), dp(t) e’l-f(t).

Since e"/ is not itself a Laplace transform no definition of e"/ similar to (2.2) is
available. We proceed differently in the following section.

3. Definition of the inversion operator. To obtain an effective interpretation
of the operator e4- we expand in infinite series.

DEFINITION 3.1.

e’f(t) cosh rxf(t + sinh rx/f(t),

?.2n
cosh r,-f(t) ,=o (n)

?.2n-
sinh rx/f(t ,= (2n 1) gt")(t)’.

ill f(y)
(3.1) g( . f -- li

dy.

Here we have used in (3.1) the classical Riemann-Liouville definition of the
fractional integral _@-1/2. For the operation of the definition to be applicable the
function f(t) must be such that the integral (3.1) exists and the two series converge.

Let us apply Definition 3.1 to the function h(t) of 1. In this case,

fo- h(y)dy=2k(1 t).(3.2) g(t) -- iit
See, for example, D. V. Widder [4, p. 289]. Thus

n 62n
g")(t) 2 k(1, t) 2 k(x, t)[x= 1.

Here we have used the fact that k(x, t) satisfies the heat equation

62k
t>0.

X2 t’
Obviously,

(3.3)

so that

h(x, t) 2 x k(x, t),

2n-
g(")(t)

6x2n- h(x, t)l,,= 1.
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Since h(x, t) also satisfies the heat equation we have

er’/-#h(t) o (- r)" c"h(x, t)
l’l! xn

But this is the Maclaurin series for h(1 r, t), an entire function of r for fixed
> 0. We have thus proved the following result, basic for the inversion of the

transform (1.3).
THEOREM 3.1. If --oO < r < oo, 0 < < oo, then

d’/-h(1, t) h(1 r, t).

4. Properties of the kernel h(x, t). The following facts about h(x, t) are either
self-evident or easily proved.

(a) h(x, t) > O, x, > O.
(b) h(x, 0 +) h(x, oo O, x > O.
(c) h(xo, t) e T, < x/6, xo > O,

h(xo, t) e ,, > x/6, Xo >0.

(d) h(x, t) dt 1, x > O.

(e) lim h(x, t) dt 1, c > O,

lim h(x, t)dt 0, c > 0.
x-*O+

We now prove two further results.
LEMMA 4.1. If c > O,

yclim [hr(x, Y)I dy O.

For, by property (c) above, if x < x,
Ihy(x, y)ldy hy(x, y)dy h(x, c).

The result now follows by (b).
LEMMA 4.2. If 0 < X < ,

o*ylhr(x,

y) dy < 2.

For, by (c),

fo ;x[hr(x, Y)IY dy hr(x, y)y dy
dO 2/6

2h(x, x2/6)(x2/6)- fx2/6
,0

< (6//’c)1/2e-3/2 + < 2.

Here we have integrated by parts and used (a) and (d).

hy(x, y)y dy

h(x, y) ,ty +
2/6

h(x, y) dy
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5. The Lebesgue integral convolution with h(x, t). If b(y) is Lebesgue in-
tegrable on an interval (0, c), the convolution (1.1) is well-defined for 0 < x < ,
0 < < c. It is a familiar fact (H. S. Carslaw and J. C. Jaeger [5]), as we indicated
in 1, that the function q(y) of(1.1) may be obtained from u(x, t) simply by allowing
to approach zero (assuming u(x, t) known for all x and not just for x 1). Since

it seems impossible to quote a reference for this fact, in the desired generality,
we prove the basic facts here.

THEOREM 5.1. If

then

(i) th(y)eL, 0yc,

(ii) (x)= [4(to y)- 4)(to)] dy o(x), x 0+, 0 < to < c,

(iii) F(x) h(x, y)c(to y) dy,

F(O +) (to).

The result is true when b is constant by (e). Hence we need only show that

to floh(x, y)d(y) h(x, y)[(to y) (to)] dy

o(to)h(x, to) hy(x, y)(y) dy o(1), x - O+

By (b), h(0 +, to) 0. Let 0 < 6 < to. Then by Lemma 4.2,

fj h.(x, y)z(y) dy

Hence by Lemma 4.1,

f’a h(x, y)o(y) dy __< max I(y)l Ih(x, y) dy o(1),
O<:y<--to .t

lim sup
xO+ fl hy(x, y)(y) dy __<2 max (Y)I/Y.

O<=y<_6

x - O+,

This inequality, with hypothesis (ii), shows that the integral (5.1) tends to zero
with x, as desired.

COROLLARY 5.1.

f(O +) dp(to) for almost all to in (0, c),

f(O + dp(to when dp(to -) exists.

For, hypothesis (ii) holds in points to of the Lebesgue set for 4) or when
q(to-) exists and equals 4)(to).
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6. The Stieltjes integral convolution with h(x, t). Ifthe integral (1.1) is replaced
by a Stieltjes integral, a modification of the inversion formula is necessary.

THEOREM 6.1. If
(i) (y) is of bounded variation on 0 <= y <= c,

then

(ii) F(x, t) h(x, y)d(y),

(6.1) mo+ F(x, y)dy (to-) (0), 0 < to <= c.
0

Obvious calculations give

f(x, t) -e(O)h(x, t) + h,(x, y)e(y)dy,

F(x r) dr (0) h(x r) dr + dr h(x r y)(y) dy

;o fo to(0) h(x, r) dr + (y) dy by(x, r y) dr
y

-(0) h(x, r) dr + h(x, to y)e(y) dy.

Now by (e) and Corollary 5.1, equation (6.1) follows at once.

7. Te ers terems. We can now solve the problem originally posed.
TOM 7.1. If
(i) 4(Y)e L, 0 y N c,

(ii) f(t) h(1, y)(y) dy,

then

lim e’f(t) (t)
rl

for almost all in (0, c) or when (t) (t-).
If it is permissible to apply the operator e under the integral sign, we have,

by Theorem 3.1, that

(7.1 ef(O ( r h( r, (.
The conclusion of the theorem then follows by Corollary 5.1.

To establish (7.1) we show that F can be expanded in Maclaurin’s series.
Setting h(t)= h(1, t), k(t)= k(1, t), we have

.[(0 h(t (, n O, , ,
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since h(")(0+) 0. By (3.2),

g(t) =- f(t) 2 k(t y)d(y) dy,

g(")(t) 2 k(")(t- y)c(y)dy,

Using the heat equation as in 3, we have

F(2n)(1) h(")(t y)dp(y) dy ft")(t).

By (3.3),

n =0,1,2,....

F(r) 2 k(r, y)gp(y) dy,

F(2,- 1)(1) 2 k(")( Y)4(Y) dy g((t).

Thus, if the Maclaurin expansion is valid,

r2n r2n-
(7.2) F(1 r)= (-r)’F")(1)= o f’)(t)-

(2n- 1) g")(t)"n=O n=l

But a change of variable gives

r ( (1/(4z))
F(r) e r2zd2, z

n J1/(40 4t

This integral clearly converges for r > 0. Hence by a familiar property of the
Laplace transform, F(r) is analytic for Re r > 0, so that (7.2) is valid for ]r] < 1. But
the right-hand side of (7.2) is ef(t) by Definition 3.1. This completes the proof.

In a similar manner, an appeal to Theorem 6.1 gives the following result.
Tnzo 7.2. If
(i) (y) is of bouMed variation on 0 y c,

(ii) f(t) h(1, y) de(y),

m_ e’qf(t) dt (to -) (0), 0<to=<C.

then
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A PARADOX IN ASYMPTOTICS*

F. W. J. OLVERt

Abstract. An example is given of a convergent series expansion which has twice itself as its own
asymptotic expansion.

Can a convergent series possess a sum which differs from its asymptotic sum?
For ordinary Poincar6 expansions in powers of the asymptotic variable the
answer is always no. In the case of generalized asymptotic expansions 1], however,
the answer can be affirmative. This phenomenon was pointed out by van der
Corput in 1962 2]. The principal examples in this reference are somewhat artificial,
however, in the sense that the terms of the series are discontinuous. The purpose
of the present note is to draw attention to an example which occurs naturally in
special function theory and has been discussed erroneously in the literature.

Consider the Legendre polynomial P,(cos 0) for large n and fixed 0, with
0 < 0 < n. We have

(1) P.(cos 0)

where
sin 0 v:o

v 1/2/cos 0.,
n ](2sin0)v’

0., (, v + 1/2)0 + (,, 1/2v 1/4)=,

in the sense that the difference between P,(cos 0) and the pth partial sum of the series

is O {(P- 1/2)}n
whichisequivalentt O(n-p-l/2))" Thisresultisderivablebythe

method of Darboux; the leading term is, in effect, Laplace’s well-known
approximation.

When 2 sin 0 > 1, that is, when 7 < 0 < 65-, the series on the right of (1)
converges. But contrary to our natural expectations, and also to a statement in
Szeg6’s comprehensive treatise, 2 the sum is not P,(cos 0) but 2P,(cos 0). This may
be verified as follows. By expansion in Taylor series at the point e -i, we have

(1 2t cos 0 + t2) 1/2
e ril4

(2 sin 0) 1/2 =o -1/21 e-’
v (2i sin O)

This series converges uniformly in the disc ]e -i t] __< 2 sin 0 6, where 6 is an
arbitrary small positive number. If 2 sin 0 > 1, then 0 is includable in the
region of uniform convergence. Differentiating n times, setting 0, and equating

* Received by the editors April 3, 1970.

" Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park,
Maryland 20742. This research was supported by the U.S. Army Research Office, Durham, under
Contract 67-C-0062.

See [3, 8.4]. The statement of the result in [4, p. 534] contains a misprint in the cosine term.
[3, 8.4, (3)].
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real parts, we obtain

(2) P.(cos 0)
(2 sin 0) 1/2

as asserted. The result (2) can be easily checked in the case n 0, for example.
The explanation of the paradox is that the tail of the series (2), that is, the

sum from v p (fixed) to v oo, is not of the same O-order as the first neglected
term (as it always is with Poincar6 expansions). For example, apart from the
oscillatory factor cos 0.,v the term for which v 2n contributes-- 1/2 r(2 + 1/2)r( + 1/4)r( + 1/4)

n (2sin 0)+1/2) 2rF(2n + 1)F(n + 1/2)F(n + 1)(sin 0)

23/2n(sin o)2n+(1/2)’
as n oo. This is infinitely large compared with the (p + 1)th term, whatever the
value of p.
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THE NONOSCILLATION OF A SOLUTION OF
A THIRD ORDER EQUATION*

W. R. UTZ"

(1)

The differential equation

y’" + t2y + 3ty 0

considered by D. E. Amos in a problem posed [1] and solved by Amos, and others,
has three linearly independent oscillatory solutions and, at first glance, would
seem to have all solutions oscillatory. In this note we observe that this equation,
and more generally (2), below, belongs to the class of linear third order equations
with three linearly independent oscillatory solutions but for which there are

(nontrivial) nonoscillatory solutions. Such equations have recently been identified
and studied in [3].

According to Amos, (1) arises in a problem of describing the motion of a
particle in a magnetic field.

The solution of (1) given by Sidney Spital [1, p. 387] reveals the three linearly
independent solutions

and

2 2

Y COS--, Y2 sin
2

Y3 C cos+ sin,
where C(t/x/ and S(t/x/ are the Fresnel integrals

cos- dx, sindx.
One may write

Y3 M(t)sin (t2/2 + b(t)),

where

M(t) + S2, O(t) arc tan C/S.

Thus, Y3 is oscillatory and (1) has three linearly independent oscillatory solutions.
Some nontrivial solution does jaot oscillate according to a theorem of Lazer
[2, Theorem 3.3]. (The inequality in the statement of this theorem is reversed.)

Equation (1)can be generalized to preserve the property of having three
linearly independent oscillatory solutions by examining the solution of H. E.
Fettis [1, p. 388 for the Amos problem.

Received by the editors April 2, 1970, and in revised form June 3, 1970.
1 Department of Mathematics, University of Missouri--Columbia, Columbia, Missouri 65201.
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THEOREM. Let rn > 0 be an integer. The equation

(2) ty’"+ (2- m)y"+ t2m-Xy’+ (2m- 1)t2m-2y 0,

> O, has three linearly independent solutions such that each of these solutions
oscillates, yet some nontrivial solution of(2) is nonoscillatory.

Proof Consider

(3) y" + y=ax-,
wherein a is any real number and s > 0 is real. Let x t"/m in (3) to secure

(4) ty" + (1 m)y’ + 2m- xy amt + 2,,-

In order to eventually secure an equation without a forcing term, set

-sm + 2m- =0.

Now, let m be any positive integer and select

s =(2m- 1)/m

(the Amos case corresponds to m 2). Then (4) becomes

ty" + (1 m)y’ + m- y const.

Differentiate this equation to secure (2).
Solutions of (3)are all functions of the form

y=Acosx+Bsinx + aK(x), x > O,

where A and B are arbitrary and

K(x) sin x u cos u du / cos x u sin u du.

Thus all solutions of (2) are given by

y A cos (W/m) / B sin (W/m) / aK(W/m), > 0,

where, now, there are three arbitrary constants A, B, a.
That K(W/m) is linearly independent of cos (tm/m) and sin (W/m) is easily

sccn from an examination of the form of K(tm/m) (this examination will also reveal
that it is oscillatory), but it is also obvious from the fact that K(x) must satisfy (3)
whereas sin x and cos x satisfy y" + y 0 (and so would any linear combination
of them).

In (2), let
y ut(m- 2)/3

to secure an equation free of the second derivative and to which one can apply
the nonoscillation test of Lazer [2, Theorem 3.3]. This transformation, which does
not change oscillation, yields

u’" + p(t)u’ + q(t)u O,
where

-1
p(t) ---(m 2)(m + 1)t- 2 + t2m 2
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and

q(t) (m- 2)(m- 5)(m + 1)t -3 + (7m- 5)t2m-3.

Hence,

Thus, 2q p’ > 0 for any positive integer m if is large. This completes the proof
of the theorem.
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ON THE EVALUATION OF CERTAIN SUMS INVOLVING THE
NATURAL NUMBERS RAISED TO AN ARBITRARY POWER*

KEITH B. OLDHAM"

1. Introduction. Among the mathematical requirements which arose recently
in this laboratory in connection with electrochemical investigations (see, for
example, [1]) were those for"

(a) A value of the 1-, limit of the sum [1 x/ + x/- x// +
-T- x/-2 x//-1

(b) and (c) Asymptotic representations for the sums [1 ,,/3 + x//
x//]i and [1 27/6 3 7/6 + 47/6 + 5 7/6 + 17/6] valid for large odd Land

large 1. When standard mathematical references [2], [3] and monographs [4], [5
failed to provide answers to these problems, the present study was undertaken.

These problems and others were generalized to a study of the sums

g(2) g(3) g(/) g(k)
() g() + 5- + - + + -- kk=l

where r is any real number (positive or negative), is any positive integer and each
g(k) takes values according to some repetitive sequence of v elements, i.e.,

g(tt) g(v + tt)= g(2v + tt)

for =< tt _-< v. Note that any g(k), including g(/), is permitted to be z.ero, so that
the term in may be absent from sum (1). These sums have, of course, been
intensively studied for certain values of r, and g(k), especially for r integer
[3, Chap. 0], [6, p. 67]. A number of texts [7, 3.5], [8, p. 25 and Chap. XIII],
[9, Chap. XIV] make mention of nonintegral r instances, but none with a generality
sufficient to embrace the present problems.

The sequence g(1), g(2), ..., g(/) is specified if either the first v members

Go g(1), g(2), ...,
or the last v members

Go g(/- v + 1), g(/- v + 2), ..., g(l)

are specified, where we term Go and G the opening and closing sequences. Thus,
for example, the sum

1
(2) 1-- 4 6 -"" +

(1- 1)

has an opening sequence Go {+1,0,-1} and a closing sequence G
{- 1, + 1,0}. Though Go and G necessarily contain the same elements, they

are identical if and only if v is a divisor of I.

Received by the editors March 11, 1969, and in revised form January 5, 1970.
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We seek a diminishing power series in to express sum (1). It will transpire
that the series sought are all of the form

k=l

e" r(r + j- 1)Cj_(Gc)
T(r,Go) + F(r)F+j_aj=O

+ 0(1- v 4- 1]-r-2m-1),

where T(r, Go) depends upon r and upon the opening sequence but not on or Gc
while Gj_ 1(Go) depends on the closing sequence but not Go, r or 1. Many of the
C coefficients are often zero, as will be shown later.

The object of this article is to establish (3) and to determine T(r, Go) and
Cy_ l(Gc). First, however, two lemmas are needed.

LFMMA 1. Let p be any positive rational number and q be a positive rational
number in the range 0 < q <= 1, such that p q is an integer. Then

p-q

(4) (k + q)-
k=O

2m F(r + j- 1) 1-(r, q)- p -YBy + O(p- -2m-

j-o j!F(r)

where m is any integer exceeding -(r + 1)/2 and By is the j-th Bernoulli number.
Result (4) follows by asymptotic expansion of the definition (see I10, 1.10,

1.! 8]) of the bivariate zeta function ((r, q), known as the Hurwitz function or the
generalized zeta function. It is valid for all r except r 1.

LEMMA 2. Here we establish the identity

2,, F(r+j- F(r +j- 1)
(5) Z uj + h)l-r-JBJ =- Z (-u) )i. ll--JBJ

y=o J! j=o

where By(x) denotes the Bernoulli polynomial of order j and argument x, u and h are
real numbers, and m is any positive integer.

Let m, J and j be positive integers such that 2m >= J => j; then the binomial
theorem may be used to prove that the coefficient of 11--J in the expanSion of

may be written

uj.F(r + j- 1)(/+ h)l__y
j!

uJr(r + J-1))[_1J-y

j!

Hence, the coefficient of/l--J in the summation on the left-hand side of (5) is

j
By

j=0

which is known to equal

Accordingly,

uJF(r + J 1)Bj
J

2m. ujr(r + j 1)
j=o J!

(1 + h) 1- ujF(r + j
JBj 1)./1

j=o J! --Bj

from which (5) follows on application of the identity Bj(1 x) =_ (-)JBj(x).
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2. Unit sums. Instances of (1) in which all but one of the coefficients g(1),
g(2), ..., g(v) are zero, the remaining coefficient equaling unity, play a special
role in the derivation of relationship (3). Such a sum will be designated a "unit
sum" and may be denoted by S(r, l, v, l, 2). This notation indicates that it is the
pth element of Go which is nonzero and the 2th element of Gc which is nonzero.
The numbers p and 2 are related by the congruence2 2 + [/ 1] (mod v).

For the special case 2 v, the summation is easily accomplished with
the help of Lemma 1. Thus

1 1 1
s(, 1, , , ) + + + + 1-tzv)"

(6) v-r 2 k-r
k=l

2m aF(r + j 1)/av-((r, 1)- vj- --JBj -[- 0(1 r-2m-1).
j=o j!F(r)

In (6), as in all succeeding relations, it is assumed that r does not equal unity.
If 2 v # , Go and Gc are "out of phase." Result (4) may again be used to

achieve the summation

(7)

S(r, 1, v, , v) - +
(V + V)

v-r k=O k+

+ +...+-
(/ + 2v)

with K

z F(r + j 1)/ + O(l- -vJ-1 l-r-" 1).
j=o j!F(r)

Now we consider 2 and p unrestricted. The derivation of the unit sum follows
a similar pattern to that of (7) initially, but Lemma 2 is employed to execute the
final step"

1
S(r, l, v, p,2) +

(# + v)r+(p+2v)+ +(1_ v+2)
K

=v- k+
k=O

with K

vj_F(r + j- 1)

=o j!F(r)
(1 + 2- v)-r-JBj

-t-O([l + - V] -r-2m- 1)

V-r r,@)-+- (-v)j-F(r +J- 1)ll-r-JBj(!)
j=o j!F(r)

At-- O([l + - V] 2m-1).
Since Bi(0) (-)iBm(l) Bi, formulas (6) and (?) are seen to b.e special cases of(8).
Notice that the first term on the right-hand side of (8) depends on , v and r, but

The notation is that of Hardy and Wright [11].
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not on or 2; that the second right-hand term does not explicitly involve p; and
that the remainder term may be made small by a suitable choice of m.

3. Sums other than unit sums. It is evident that any summation (1) may be
decomposed into v unit sums, the g coefficients serving as weighting factors:

(9)
U

g(p)S(r, l, v, p, 2).
k=l

For example, sum (2) may be written as S(r, l, 3, 1, 2) S(r, l, 3, 3, 1) since in this
case g(1) 1, g(2) 0, and g(3) 1. In writing expression (9) weighting factors
have been selected from the opening sequence of the sum. With equal validity,
the closing sequence could have been chosen, leading to

kr
g(/- v + 2)S(r, 1, v, p, 2).

k=l 2=1

Recalling that S(r, l, v, p, 2) is given by (8), we may compose a nonunit sum
via either of expressions (9) or (10). For the present purpose it is best to sum the
/-independent terms over p, as indicated in (9), and the/-dependent terms over 2,
as in (10). Thereby the general formula for sum (1) is

)m (r+j__ 1,.11 )v g(p) r, + (-v)- -- g(1- v + 2)Bj
2=1

(11)
u =0 jF(r)

+ O([l + v]-r- 2m- 1).
This result does accord with (3), with

and

-v)-
g(1-- v +2)BjCj-1 J! 2=1

and we see, as asserted earlier, that T is a function only of r and G, whereas Cj_
depends only on Gc.

These results suggest that the evaluation of a sum with a repetition factor v
requires that as many as v numerical values of the bivariate zeta function and as
many as (2m + 1)v values of the Bernoulli polynomials be available. Certain
fortunate properties of these functions, however, greatly reduce the data needed
to make use of formula (11), especially for small values of v.

Consider first the trivial v 1 case. Formula (11) then degenerates to

(12)
2,. F(r + j- 1)/1(1",1) 0 0(1 r-2m-1

= j!F(r) -r-JB ).

Moreover, since B3 B B7 0, almost half the terms within the
j-summation are zero.
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With v 2, formula (11) reduces to

2-r{g(1)(r, 1/2)+ g(2)(r, 1)}
2m F(r + j 1)/1(13) + (_2)j-1 -r-j. {g(t- 1)Bj(1/2)+ g(l)Bj(1)}
j=o F(r)j

+ O([l 13 -r-2m- 1).
However, the relationship ((r, 1/2) [2 1]((r, 1), which is a special case of

(14) i=lL r, !) nr(r,1),

enables the /-independent term to be condensed. Similarly the relationship
Bj(1/2) I21 -J lIBj, which is a special case of

may be used to replace the Bernoulli polynomials in (13) by Bernbulli numbers.
The result of these replacements is

{[1 2-rig(l)+ 2-rg(2)}((r, 1)

2 F(r + j 1)/l_r_(16) + {[2
j= j !F(r) g(/)}Bj

Like (12), formula (16) converges rapidly since almost half of the terms within the
j-summation are zero.

Though condensation to the extent possible with v 2 no longer generally
occurs, formula (11) can be made considerably more arithmetically tractable for
v 3 or 4. Thus, making use of the identities (r, -)= 3r- 1](r, 1)- (r, 1/2),
’(r, 1/4)= [4r- 2r](r, 1)- (r, 1/4), B(-}) [31- 1]B- B(1/2) and B(1/4)
[41-J 21-J]Bj Bj(1/4), which follow from (14) and (15), we can convert formula
(11) into

3-r{l-g(1) g(2)-lsr(r, 1/2) + Eg(3) + (3 1)g(2)-l(r, 1)}

(17)

and

F(r + j 1)11 -r-v{[-_ 3])-l[g(1 2) g(1 1)]Bj(-)+
=o F(r)j!

+ [(3-1- 1)g(/- 1)- 32-1g(l)]Bj} + O([1- 2] -r-2m-1)

4-r{[g(1) g(3)]s(r, 1/4) + Eg(4) + (4 29g(3) + (2 1)g(2)](r, 1)}
2,. F(r + j- 1)ll_r_j{E_4]j_[g(l_ 3)- g(l- 1)]Bj(1/4)(18) + 2 --j.
j=O

+[(4J-’ 2J-’)g(1 2) + (2J- 1)g(1 1) 4J-

+ o(E 33--- )
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for v 3 and 4 respectively. When g(l- 2)= g(1- 1) for v 3 and when
g(l- 3) g(/- 1) for v 4, the Bernoulli polynomials vanish from the above
formulas, leaving the rapidly converging type of asymptotic expansion which, as
we have seen, is general for v 1 and 2.

For v 5, terms involving (r, 1/2), (r,-}), (r, 1), Bj(), Bj() and B will
generally be present. We shall not further pursue sums having five or more elements
within a repeating sequence.

4. Data required. In this section we consider the numerical values which are
needed to make practical use of formulas (12), (16), (17) and (18).

As far as the/-independent terms are concerned, it is values of ((r, 1), ((r, 1/2)
and ((r, 1/4) which are needed for the r value of interest. The ((r, 1) is the Riemann
zeta function ((r) and is extensively tabulated, but tabulations of the bivariate
function ((r, q) are few [6, p. 521] and do not include q 1/2 or q 1/4. To evaluate
((r, q) requires only the rearrangement of the p --. oe limit of (4). Thence we obtain

(r, q)= lim (k + q)-r + pl-r-jBj
,- k o F(r)j!

where m exceeds -(r + 1)/2. For r > 1 no terms are needed in the second summa-
tion, though the inclusion of a few will hasten convergence. A computer program
was written to exploit the formula above and a selection of the output is reproduced
as Table 1. Existing tabulations have been used to check Table 1 at integral
arguments. Since (r, q) displays a singularity at r + 1, computation in the
vicinity of this value is inaccurate. On the other hand, the function W(r, q)=
q/(1 r) + q(r, q) is well-behaved there. Moreover, as Fig. 1 shows, W(r, q) is an
excellent vehicle for interpolation in both r and q.

Required to evaluate the/-dependent terms are values of Bj/j !, [- 3]- Bj(1/2)/j!
and [-4]j- 1Bi(1/4)/j! for small values of j. Table 2 presents these data for j values

upto5. TheidentityzJBj(1/z)=-o()ziBiwasusedinconstructingthefinaland
penultimate columns of this tabulation.

5. Examples. To exemplify the utility of the foregoing treatment, it will
suffice to consider the three problems which motivated this study.

When r -1/2, g(1)= + 1, g(2)= -1, g(l- 1)= _+1, and g(1)= -T-1 are
inserted into formula (16), there results

21/2 + 31/2 -+-(1- 1) 1/2 11/2

(1 23/)((-1/2, 1)+_ {-1/2/2 + O(l-/e)}.

This equation provides the key to problem (a) since thence

lim {1 21/2 + 31/2 +_ (l- 1) 1/2 -T- 1/211/2} (1 23/2)(-1/2, 1)

0.3801048.

Because problem (b) involves a sum with v 4, formula (18) is applicable.
Inserting into it the values r =-1/2, g(1)= +1, g(2)= g(4)= 0, g(3)=-1,



TABLE

--4

0

+
+-
+
+
+
+1
+1-
+1
+11/2
+2
+ 21/2
+3
+ 31/2
+4

((r, )

0
+0.00444098
+0.00833333
+0.00851692
0

-0.02548520
-0.04006133
-0.05896522
-0.08333333
-0.11469997
-0.15519690
-0.20788622
-0.27734305
-0.37073766
-0.50000000

(r,-)

+0.00411527
+0.00131732
-0.00401235
-0.00998427
-0.01234568
-0.00353146
+0.00376158
+0.01403623
+0.02777778
+0.04539704
+0.06704321
+0.09244628
+0.12032492
+0.14746313
+0.16666667

(r, 1/4)

+0.00488281
+0.00400423
-0.00045573
-0.00803810
-0.01562500
-0.01510930
-0.01055877
-0.00241808
+0.01041667
+0.02922294
+0.05539997
+0.09032226
+0.13499200
+0.18925307
+0.25000000

-0.68658158
-0.97336025

1.46035451
-2.44758074
5.43504324

+6.58921554
+ 3.60093775
+2.61237535
+ 1.64493407
+ 1.34148726
+ 1.20205690
+-1.12673387
+ 1.08232323

+0.16215837
+0.09786236
-0.11808333
-0.77591123

3.36389701

+9.72877813
+7.44662281
+7.30992572
+ 10.09559713
+ 16.33304416
+27.56106120
+47.21062129
+81.36396942

+0.30688655
+0.33101390
+0.23996352
-0.24411861
2.59333588

+ 11.26251968
+9.56763334
+ 10.21305536
+ 17.19732915
+ 32.84745195
+64.66386997
+ 128.546959
+256.463691

1/6

1.5

1.0 I/4, /:5

113
2NO.

o.5b
-5 -4 -5 -I 0 2 3 4 5 6

FIG. 1. Values of the function W(r, q) for 5 < <- 6for q , 1/4, 1/2, 1/2, and 2
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0

3 0
4 --5 0

TABLE 2

37-

g(L 3) g(L -1) 0, g(L 2) 1, and g(L) +__ 1, we obtain the simple
result

1 31/2 + 51/2 -T- [L- 2] 1/2 +__ L 1/2 4((-1/2,1/4)
L-1/2 L-5/2

4 16 - O(L- 9/2)

Table 2 gives the L-independent term as 0.2751797.
Problem (c) involves a more complex application of formula (18). Four

different asymptotic representations apply, according as/(mod 4) is 0, 1, 2 or 3.
The same /-independent term applies to all four and is found straightforwardly
to be

r 45/3(--, 1/4) nt- [45/3 1]((--, 1)= -0.55974.

By noting that in problem (c), g(/- 3) and g(l- 1) are necessarily of opposite
sign, as are g(/- 2) and g(1), we may reduce formula (18), with r , to

17/6 711/6
T + [g(l- 1)+ g(/)]--+ g(/)-

7/- 5/6

g(l- 1)
144

5/- 11/6

+ g(O
3

+

The four representations now result by giving g(/)and g(/- 1) each the values _+ 1.
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FRACTIONAL INTEGRALS OF DISTRIBUTIONS*

A. ERDILYI AND A. C. McBRIDE?

Abstract. Certain operators of fractional integration arising in connection with singular differential
operators, Hankel transforms, and dual integral equations involve integration of fractional order with
respect to and multiplication of functions by fractional powers of the independent variable. Such
operations are not meaningful for distributions. In this paper a class of generalized functions is intro-
duced on which such operations can meaningfully be performed. The operations are defined as adjoints
of corresponding operations on a suitably selected space of testing functions. Relations to spherically
symmetric n-dimensional distributions and to the singular differential oper.ator

d 2v+ d

dr dr

are discussed.

1. The integral of order of a locally integrable function f can, for Re > 0,
be defined by the formula

(1.1)

One has

Uf(x) (x y)- Xf(y) dy.

d"u+,f(x), Re>0 n=0 2(1.2) Uf(x)

and this formula can be used to extend the definition of I to Re > -n, for
instance, iff is n 1 times differentiable, f(0) f’(0) f"-1)(0) 0, and
f,-1) is locally absolutely continuous.

Let us set f(x) 0 for x < 0 and

p Ix)
x > 0,

0, x=<O.
Then (1.1) can be written as a convolution,

Uf(x) p(x y)f(y) dy,

or, more briefly,

(1.4) Uf p *f;

and this form can be used to define fractional integrals of distributions whose
support is in [0, oe[. Indeed, for Re > 0, the locally integrable function (1.3)
defines a (regular) distribution whose support is [0, o[, i.e., an element of 9’+. This
distribution is an analytic function of and can be continued analytically to the
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entire z-plane. From now on, p will represent the entire function of with values in
9’+ obtained by this process. For each e C and each fe ’+, the convolution
p. * f exists and defines Uf. Important basic relations, e.g.,

(1.5) IIf U+f, I-"f f"), n 0, 1,2,

(f") denotes the distribution derivative of order n off), follow from the theory of
convolution of distributions in conjunction with

p 6") n 0, 1,2,...

This theory is well known; see, for instance, [2, Chap. 1, 5].
For certain purposes, for instance, in connection with Hankel transforms,

certain partial differential equations, and dual integral equations, certain modifica-
tions and extensions of1" must be considered, in particular, the operator I" defined
by

,, m m, um) +(1.6) I,f(r) -;-,r (r" u’" f(u)du

when Re > 0, m > 0, Ifl p is locally integrable, 1 =< p =< , and m Rer/+ m
> lip. Here one integrates with respect to r" rather than r, and in addition multi-
plies both f and the integral by appropriate powers of the variable. The case
m 2, when r is the distance in a Euclidean space, is especially important. The
operators were known to Poisson [8]; their theory was developed and applied to
Hankel transforms by Kober, partly in collaboration with one of us [4], [5];
applications to abstract differential equations (including partial differential
equations) were most thoroughly investigated by Lions [6], see also 7, Chap. 12];
while applications to dual integral equations were given by Sneddon and Erdelyi
[9] and others.

In spite of the close connection between (1.6) and (1.1), it does not appear to be
possible to base a theory of I" on convolution in 9’+. Even when m 1 and the
integral in (1.6) is a convolution integral, a difficulty arises since (pointwise)
multiplication of a distribution by an arbitrary power of the variable lacks mean-
ing; and when m - there is the added difficulty that, in general, x r" is not a
permissible change of variable in 9’+. For this reason we propose an alternative
approach to (1.1) and will show how this alternative approach can be extended to
(1.6).

Along with U we consider the adjoint operator K defined, for Re > 0
and a function b with suitable integrability properties, by

(1.7)

One has

Kdp(x) )) (y xy- gp(y) dy.

d
K+(1.8) K4’(x)

and if is a testing function, i.e., an infinitely differentiable function with compact
support, (1.8) can be used to define KO for all complex numbers e. With this
extended definition,

(1.9) KKdp K+dp, /-"(x) (- 1)""(x).
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Now, for a locally integrable f, q5 9, and Re > 0,

Uf(x)gp(x) dx f(x)K(x) dx

follows by Fubini’s theorem and suggests the definition, forf e 9’+ and all e e C, of
Uf 9’+ as the distribution given by

(1.10) (Uf 49) (f K).

Although K%b 9, the right-hand side of (1.10) is well-defined for f 9’+ it is
easy to show that Uf 9’+ and, for instance, (1.5) is a simple consequence of (1.9).

We shall not carry out the details of this program but present an analogous
approach to the theory of Irm. The latter operator will be applied to generalized
functions that are continuous linear functionals on certain testing function spaces.
Our testing functions are infinitely differentiable functions on ]0, oo and have
compact support in [0,

In {} 2, 3 we introduce this testing function space and investigate its properties,
including its behavior under the operation of K"g. In 4, 5 we introduce the dual
space, define ITg on it, and investigate the connection between our generalized
functions and spherically symmetric n-dimensional distributions in the sense of
Schwartz. In the final section, 6, we prove

(1.11) I; dr2 + r2f +

for our generalized functions f.
It is known that (1.11) is the key to the application of integrals of fractional

order to differential equations (including partial differential equations and abstract
differential equations) and to Hankel transforms. We shall not follow this up here,
but hope to develop on a future occasion such applications and also the theory of
fractional integration in 9’ which can be approached in a similar manner.Lp

2. For each > 0, let /be the collection of all those complex-valued infinitely
differentiable functions 4 of a positive variable r which vanish outside the interval
E0,1 and for which

(2.1) 2(dp)= sup {r ddp(r)dr "r > O}
is finite for each nonnegative integer k. Clearly , with the usual pointwise opera-
tions of addition and multiplication by a complex number, is a vector space over
the complex numbers, the are seminorms on , and, in particular, 0 is a norm.
The collection M {7:k 0, 1,2,...} is a countable multinorm [11, p. 8] on
and with the topology generated by this multinorm is a countably multinormed
space [11, 1.6]. As in the case of (see [11, Example 1.6.1]) it is easily seen that
this space is complete and hence a Fr6chet space. It is equally easily seen that

(2.2) U
=1

is a complete strict countable union space.
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There is some resemblance between 7k and the seminorms used by Zemanian
[11, 4.2] in connection with the Mellin transformation, but our condition on the
behavior of the test functions at oe is much more drastic. In fact, o l,b for
any b.

3. We next consider some operators on
For any fixed complex # with Re # >__ 0, we define the operator r" by

(r")(r) r"4)(r), r > O.

No confusion will arise from using the same symbol for the function r" and multi-
plication by this function. Clearly r" is a linear operator, and to prove its continuity,
it is sufficient to establish continuity at the origin. If b e 0, then 4) e for some
l, and

Then

d’(rUd(r)) k r(tt + 1) -h

h=o h r(- h + 1) ru drk-h

h=O F(/- h + 1)
Yk-h(qS)’

SO that r" maps J into itself continuously. Except when Re g 0, the map is not
onto, but it is one-to-one.

Next we define the operator
d

dr
by

Since

we have

(r)
(gb)(r) r

dr

rt, r r dr,.+ + k
dt’dp
drk

7(6b) =< 7+ 1(4)) + kT(b)

so that is a continuous linear mapping of into itself. is clearly one-to-one,
since 6b 0 only for constant functions and the only constant function in J is O.

is not onto. Consider, for example,

q51(r)=
exp

1-

0 ifr>_ 1.

Clearly 41 e J. If 6qb 41, then 4) 0 for r >__ and for 0 < r < 1,

b(r) exp
1 du

u

But then 7o(b) + oe and
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Similarly the operator ’ defined by

’(r) rr(r)
is a continuous one-to-one linear mapping of J into itself. Clearly,, =.

For m > 0, complex numbers and r/with Re > 0, Re > 0, and , we
define the "homogeneous" operator KTg of fractional integration of order with
respect to r by

mrm f rm) -nm +(3.1) Krm(F (Hm (H)H dH.

The integral is a finite integral, and

m 1 ) dt.,a (tm l(rt)t- -.m+m(3.2) K,(r)

is infinitely differentiable if r > 0.

d m f’ (tm 1)- (e)(rt)t-m-n + dt
dr(K(r))

and so

y(K,c) < I(t 1) lt-m-rtm+m- 11 dty().IF()l

Since the infinite integral is convergent, K, is a continuous linear mapping of J
into itself.

For Ree > O, Re fl > O, Req > O, we have

(3.3)

by an interchange in the order of integrations on the left-hand side;and

r
d 1q,+1 m mdr

(3.4)

by straightforward differentiation of (3.2) and (3.1). A counterpart to (3.4) is

(3.5)
-K6

and can be established by integration by parts.
Equation (3.5) can be used to extend the definition of KTg in the first place to

Re > and then, by repeated application, to the entire complex -plane. The
extended operator is an analytic function of



552 A. ERDILYI AND A. C. MCBRIDE

and Re r/ > 0, by analytic continuation, provided that in the case of (3.3) also
Re (r/ + e) > 0.

From (3.5),

and so

(3.6)

As a consequence,

(3.7)

if Re r/> 0, Re(r/ + ,) > 0.

(3.8)

and

(3.9)

K,op(r) r/Kdp(r
1 .,1

m

Kb .
From (3.4) and (3.5) we also have

+ 14 ,,+

K", + 16’dp ,’ k"q’t + ]) (mr/ + m + 1)K", + (]) mKr, p.t.lm

4. A locally integrable function f on [0, [ defines a continuous linear func-
tional on J by means of the formula

f dp f(r)dp(r) dr.

We shall consider all continuous linear functionals on J as generalized functions.
For these we can use the theory set out in 1.8 and 1.9 of [11]. The dual ofo will
as usual be denoted by f. It is complete since is a countable union of complete
countably multinormed spaces.

The operators formerly defined on o will give rise to adjoint operators on the
dual space [11, 1.6].

The operator ru on f is defined by

and the operators 6 and 6’ by

(r"f, ) (f,

(6f, ) -(f, 6’),

7, b) -(f,

All three are continuous linear mappings of’ into itself [11, Theorem 1.10.1], and
the notation has been so chosen as to be consistent in case f is an element generated
by a differentiable function.

For Re > 0, Re r/ > m- 1, and a function f that is locally integrable on
[0, [, the "homogeneous" operator I of fractional integration of order with
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respect to r is defined by
m

r/,a mr/-Irf(r) -r (r u) f(u)u"+ du

F()
(1 t)

I itself is locally integrable and for any

,, m
u) du dr.(If, 4) (r)r "- (r f(u)u"+-

Here the order of integrations may be interchanged and one has

(4.1)

whrcq’ q + 1 m -1.
As ranges over the right-hand side of (4.1) defines a functional on ) for

any f J’ and complex number provided Re q > m-1 1, and we take this
functional as the definition of I,,f. With this definition, I7 is a continuous linear
operator on f and the notation is consistent in the case ofelements off generated
by a locally integrable function.

The relations

(4.2) I> f,

provided

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

provided

Re,/ > m -1 1, Re(r/ -k 0) > m -1 1,

617 + if 17 +15f mlr,.f (mr/ + m + m)ITg + f,

I7+16f ’r’Aln’a + if mi72 i,af (mq + m)IT +

I7 + 6f A’ln’a+’r If mi72 ’f (m + m 1)I7 + f,

Re r/ > m- and Re (r/-+- 0) > m- 1

are consequences of (3.3) to (3.9).

5. There is a connection between certain subspaces of f and n-dimensional
spherically symmetric distributions. We shall assume familiarity with the elements
of distribution theory [11, Chap. 2] and shall use the customary notations.

X "--(X1, ,X.)

will denote a typical point ofRn, and we set

r -Ixl- (x21 + + x2.)/.
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A functionfon R" is said to be spherically symmetric if it depends only on Ixl,
i.e., if for any orthogonal transformation S of R", f(Sx) f(x). A distribution

f e 9’, is said to be spherically symmetric if for any orthogonal transformation S of

(f(Sx), Z(X)) (f(x), z(S-1X)> (f(x), Z(x))

for each Z 9,.
Let f(x) be a spherically symmetric function that is locally integrable on R".

Then

{f, l.) fR. f(x)x(x)dx.
If we introduce polar coordinates in R", setting x r where , a unit vect_0r,
ranges over the n-dimensional unit sphere f, with surface element do), then dx

r dr do) and

where f(x) g(r) and

(5.2)

( f, 1.> g(r)dp(r) dr (g, 40,

qb(r) rn- ffl l.(r) do) r"- ll/t(r),

say. Since Z is infinitely differentiable, so is ,, and since Z vanishes for sufficiently
large Ix[, qS(r) 0 for r > for some 1. It follows from the formula

l’dkC/(r)
(Dz)(r) do

drk I1 k

in which v (v 1,"’, v,) is a multi-index of length Iv] v + +

D,
Ox, ’ " D D’ D"

that T defines a continuous linear mapping Tof, into Clearly the map is
many-to-one, and it is not onto. For instance, let p(r) be infinitely differentiable, 1
for 0 r 1, and 0 for r 2. Then r/Zp(r) is an element of but not in

We shall now show by induction that

(5.3

-( 1)
(1 u)- (z(rul u.

nl
Indeed,

dr2 2r
(Dig)(r) do),

i=1
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the integral vanishes if r 0 since the integrand is then skew symmetric on fL and
consequently,

Now,

E iDiZ(r) do)
-d-tip

dpg(p) j(Djg)(p).

Using this and setting p ru, we have (5.3) for k 1.
Suppose (5.3) holds for k. Then

0(r) 22k(k 1)!r
(1 u2)k-1 n (Dz)(ru) dc

I1- 2k +
udu.

As before, the integrand is skew symmetric, and the integral over f vanishes if
r 0, so that

u2(1 u2)O(r) 22(k 1)!

P
| (D7.)(ruv )do du dr.

Ivl=2k+2

Here we change the variables of integration from u, v to u and w uv and integrate
with respect to u to obtain (5.3) for k + 1.

It follows from (5.3) that , is infinitely differentiable with respect to r2 for
r => 0. Let oz denote that subspace of consisting of all functions in of the form
(r) rz- ff(r), where (r)is infinitely differentiable with respect to r2 for r 0.
There is a many-to-one correspondence, defined by (5.2), between n-dimensional
test functions and elements of ". To show that T, , we need only to note
that corresponding to each (r) r"-O(r) in " we may take

and then have Tz 4.
Alternatively, T establishes a one-to-one correspondence between spherically

symmetric n-dimensional testing functions and elements of ". Tis continuous but
its inverse is not. However, if we equip " with the topology generated by the
seminorms

O(r) "r 0

and call the resulting space ,,o, then it can be shown that T is an isomorphism
between the subspace of spherically symmetric elements of , and ,,0. Unfor-
tunately for our approach to fractional integrals, " is not an invariant subspace
of for the operator

We can now show that each f6 ’, indeed each f6 "’, corresponds to a
spherically symmetric distribution T on" defined by

(5.4) (Tf, Z) (f, TZ), Z e ,.
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By [11, Theorem 1.10.1], T’ is a continuous linear mapping of J"’ into ’,, and so

T is a distribution. To show that T is spherically symmetric, it is sufficient to
remark that for each orthogonal transformation S of R", Tz(Sx) T.(x).

Not all spherically symmetric distributions correspond to elements of J"’.
For instance, the function f(x) Ix]- 3/2 is locally integrable in R" for n => 2 and
generates a regular spherically symmetric distribution, but g(r)= r -3/2 is not
locally integrable and does not appear to correspond to an element of "’ for
n > 2. Equation (5.4) can also be used to extend the mapping T’ from "’ to the
larger space ,,o, ofgeneralized functions, and as Tis an isomorphism from spheri-
cally symmetric n-dimensional testing functions to ,,o, T’ defines an isomorphism
from j,,o, to spherically symmetric n-dimensional distributions.

6. When Laplace’s operator is applied to spherically symmetric functions on
", the singular differential operator

d2 n-1 d
dr2 r dr

makes its appearance. Accordingly, this operator turns up in connection with
spherically symmetric waves in n spatial dimensions, axially symmetric potentials
in n + 1 dimensions and other problems. Moreover, it makes sense to consider the
differential operator

d2 2v -+- d
(6.1) L +dr2 r dr

for other than integer values of 2v. See [10] or [3, Chap. 4] for the importance of this
operator and for further references.

Now, Lv is not an operator on J, and for this reason we shall consider the
modified operators

r2Lv t2 -- 2v6,

(6.2) rLvr 6’2 + 2v6’,

Lvr2 66’ + (2v + 3)6 + 4(v + 1).

These are continuous linear operators on , since 6 and 6’ have this property, and as
6 and -6’ are adjoint operators, so are rZLv and rL_r.

There is a connection between the differential operator L and fractional
integration with respect to r2. This was utilized already by Poisson, and among
more recent authors, Lions [6], [7] gave the most precise and thorough discussion of
this connection.

One of the forms in which the connection between Lv and fractional integra-
tion can be expressed is [1]

It2 L Lv+ flr2
We write this in the form

.2tv ol v,lr v r2Lv+ flr2
which is the adjoint of the relation

(6.3) rL_vrK- 1/2, KV+ 1/2,rL__r,
and we will establish this last relation for testing functions.
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Indeed, by (6.2) and (3.8),

rL_rK;;- /2’c/) 6’(6’ 2v)K;d-
OtVv + 1/2,a-

,.r

and by (6.2) and (3.9),

K; /2’rL_v_r K2 1/2’a(6’ 2v- 2)6’4

-2K;[ /2’-16’.
Since 6’ and K commute, (6.3) is true for 4 e at least for Re v > when Re (v ))
>0.

Since L does not map ’ into ’, we write

(6.4) rZi;LrZf rZLv+ 2I r , f ’.

Now, r2 Lr2, rZL+, I are all continuous operators on ’ provided Re v > -.
Both sides of (6.4) are analytic functions of v for Re v > -); the two sides are
equal by (6.3) if Re v > }; and by analytic continuation, (6.4) holds for Re v > -.
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